# Search for new resonances in yy channel with the ATLAS detector

Yufeng Wang<sup>1,2</sup>

Supervisors: Yanwen Liu<sup>1</sup>, Lydia Roos<sup>2</sup>

<sup>1</sup>University of Science and Technology of China <sup>2</sup>Laboratoire de Physique Nucleaire et de Hautes Energies – Paris 2018/10/19





#### 1. Theoretical context

### **Extension of Standard Model**

#### Two Higgs-doublet models (2HDM)

TWO HIGGS-DOUBLET MODELS ARE SIMPLE EXTENSION OF THE SM WITH

AN ENRICHED SCALAR SECTOR

 $\rightarrow$  Introduction of an **additional scalar field** => 2 doublet scalar fields  $\Phi_1$  and  $\Phi_2$  in the SM lagrangian (8 degrees of freedom).

→ After symmetry breaking => Prediction of physical 5 states/Higgs Boson :

Two CP-even bosons h and H



 $\rightarrow$  Taken from Camille's <u>talk</u>

Same motivation, different experiment!

2 neutral CP-even bosons: H, h with  $m_H > m_h$ 

H or h might be the 125 GeV boson discovered 2012...  $\rightarrow$  what about the other one?

#### Theory and phenomenology of two-Higgs-doublet models

### 2. Experiment

#### **ATLAS Detector**





→ EM calorimeter and inner tracking detector are most relevant for reconstruction of photon candidates.

#### **Electromagnetic calorimeter**



### 3. A photon candidate in ATLAS

#### Photon reconstruction

- Photon energy calibration
- Photon identification
- Photon isolation

Photons in ATLAS detector are reconstructed through:

- ➤ interactions with the EM calorimeters → energy deposited in a cluster of calorimeter cells
- ➤ interactions upstream of the calorimeter (possible) → conversions to electron pairs: leaving tracks matched to a EM cluster



- **Electrons:** clusters matched to ID track from a vertex in interaction region
- **Converted photons:** clusters matched to a track from a conversion vertex
- Unconverted photons: clusters without matching tracks

- Photon Reconstruction
- Photon energy calibration
- Photon identification
- Photon isolation

(See Hicham' <u>talk</u> yesterday)

- ➤ interactions with the EM calorimeters → energy deposited in a cluster of calorimeter cells
- ➤ interactions upstream of the calorimeter (possible) → conversions to electron pairs: leaving tracks matched to a EM cluster

#### Photon energy corrected by a dedicated energy calibration:

MC based calibration
Calibrate the cluster energy to the original electron or photon energy



➢ absolute energy scale (data-driven)
Correct for data/MC difference using Z → ee samples



- validation with  $J/\psi \rightarrow ee$  and  $Z \rightarrow ll\gamma$  samples
  - Photon specific uncertainties



Electron and photon energy calibration with the ATLAS detector using 2015-2016 LHC protonproton collision data

- Photon Reconstruction
- Photon energy calibration
- Photon identification
- Photon isolation

Reject background candidates after reconstruction using:

- Leakage in the hadronic calorimeter
- Cluster shape in 2<sup>nd</sup> layer of EM calorimeter
- Cluster shape in 1<sup>st</sup> layer of EM calorimeter (tighter)



Photon identification with ATLAS detector

- Photon Reconstruction
- Photon energy calibration
- Photon identification
- Photon isolation

Photons from hard process (e.g. from resonance decays) expected to be well isolated from hadronic activity.

- Track based isolation variable: scalar sum of transverse momenta of tracks in a cone around γ candidate.
- Calorimeter-based isolation variable: sum of the transverse energy of the clusters in a cone around γ candidate (subtracting candidate contribution)



### 4. Search for new resonance in γγ channel

### Analysis status

Search for a new resonances in  $\gamma\gamma$  channel:



Run 1 result

Run 1 (2011-2012):

 $\rightarrow$  search for narrow resonances in [65;600] GeV

Run 2 (2015-2018): <u>A low mass [65;110] GeV CONF note (ICHEP 2018) with 2015 – 2017 data</u>

### Analysis overview



#### Gluon fusion production mode:

- LHC: gluon-gluon collider
- Largest cross-section for SM Higgs



#### Run 2 low-mass search: 65-110 GeV





# Signal Modeling

Narrow-width resonance: shape dominated by the detector resolution

Shape of signal: modeled using a double-sided Crystal Ball (DSCB) function.

6 parameters describing:

- A Gaussian core
- power-law low-end and high-end tails

Parameters extracted from MC.



# **Background modeling**

#### Continuum:

- real γγ events: irreducible (from MC samples)
- Jet faking photons (γ+jet, multi-jet): reducible (from data-driven control regions)

#### Resonant:

- Drell Yan Z/γ\*→ee events misidentified as γγ (from di-electron data sample)
- SM Higgs (negligible)

→ Build background templates of each components

# **Background modeling**

#### Continuum:

- real yy events: irreducible (from MC samples)
- Jet faking photons (γ+jet, multi-jet): reducible (from data-driven control regions)

#### Resonant:

- ➢ Drell Yan Z/γ\*→ee events misidentified as yy (from di-electron data sample)
- SM Higgs (negligible)

#### Continuum (γγ, γ+jet):

- two components added together according to their respective fraction measured in data
- described by an analytic function

#### Resonant (Drell-Yan):

- normalized to the amount of di-electron events faking diphoton events
- modeled using a DSCB function

# Background modeling

Check the quality of background modelling: we hope there's no "spurious signal"

#### → Signal+background fit to a backgroundonly template

#### > Continuum ( $\gamma\gamma$ , $\gamma$ +jet):

- two components added together according to their respective fraction measured in data
- described by an analytic function
- Resonant (Drell-Yan):
  - In normalized to the amount of di-electron events faking diphoton events
  - modeled using a DSCB function

#### Ideal: A good oyster template! ③



No room for spurious signal

#### Reality: a bad oyster template...? 😕



**Spurious signal** everywhere!

### 5. Results

#### **Post-fit distributions**

Background-only fit:

DY peak is clearly visible. Most prominent in the CC category, as expected.

No structure seen in the residuals.



### Summary of systematics

| Source                       | Uncertainty [%]      | Remarks                                           |  |
|------------------------------|----------------------|---------------------------------------------------|--|
| Signal yield                 |                      |                                                   |  |
| Luminosity                   | ±2                   |                                                   |  |
| Trigger eff.                 | $\pm 1.4 - 1.7$      | mx-dependent                                      |  |
| Photon identification eff.   | $\pm 1.5 - 2.3$      | $m_X$ -dependent                                  |  |
| Isolation eff.               | $\pm 4$              | •                                                 |  |
| Photon energy scale          | $\pm 0.13 - 0.49$    | $m_X$ -dependent                                  |  |
| Photon energy resolution     | $\pm 0.053 - 0.28$   | $m_X$ -dependent                                  |  |
| Pile-up                      | $\pm 1.8 - 4.1$      | $m_X$ -dependent                                  |  |
| Production mode              | $\pm 2.4 - 25$       | $m_X$ -dependent                                  |  |
| Signal modeling              |                      |                                                   |  |
| Photon energy scale          | $\pm 0.3 - 0.5$      | $m_X$ - and category-dependent                    |  |
| Photon energy resolution     | $\pm 2 - 8$          | $m_X$ - and category-dependent                    |  |
| Migration between categories |                      |                                                   |  |
| Material                     | -2.0/+1.0/+4.1       | category-dependent (UU/CU/CC)                     |  |
| Non-resonant Background      |                      |                                                   |  |
| Spurious Signal              | 128/104/79           | ratio to the expected spurious signal uncertainty |  |
|                              | (604/496/181 events) | (category-dependent)                              |  |
| DY Background modeling       |                      |                                                   |  |
| Peak position                | $\pm 0.1 - 0.2$      | category-dependent                                |  |
| Peak width                   | $\pm 2 - 3$          | category-dependent                                |  |
| Normalization                | ±9-21                | category-dependent                                |  |

#### Results



No significant excess with respect to the background-only hypothesis is observed.

An upper limit at the 95% CL is set on  $\sigma_{fid} \cdot \mathcal{B}$  from 30 to 101 fb in the range 65 < m < 110 GeV.

#### CMS results: comparison



 $\sim$ 2.9 $\sigma$  local excess at 96 GeV, not seen by ATLAS.

### **Conclusion and further plan**

In search for a new resonances <u>below the Higgs mass</u> in  $\gamma\gamma$  channel:

- ATLAS sees no significant excesses above  $1\sigma$
- Not confirming the CMS excess (but can't exclude it yet)

#### Started analysis with Full 2015 – 2018 dataset and Full mass range:

- ➤ Very low mass range: below 65 GeV?
- Low-mass range: [65-110] GeV
- ➢ Intermediate mass range: [110-200] GeV
- High-mass range: above 200 GeV for spin0 and spin2

Optimizations (systematics, templates, etc) ongoing...



### Back up

#### **Standard Model**

A theory of fundamental particles and how they interact.

- Elementary fermions (half-integer spin): 3 generations of quarks and leptons
- **Gauge bosons** (integer spin): 4 force carriers of fundamental interactions
  - Gluon (strong interaction)
  - Photon (electromagnetic interaction)
  - W and Z boson (weak interaction)
- **Higgs boson**: One last missing piece of SM, discovered in 2012 at the LHC

 $\succ$  h(125), scalar boson, spin = 0

→ Currently our best description of elementary particles and their interaction. However, the standard model is incomplete.

#### **Standard Model of Elementary Particles**



#### Standard Model

### **Extension of Standard Model**

• Standard Model: only one SU(2) doublet

$$\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}, \phi \text{ are normalized real scalar fields}$$

• Two-Higgs-doublet model(2HDM): simple possible extension of SM

$$\Phi_j = \begin{pmatrix} \Phi_j^+ \\ (v_j + \rho_j + i\eta_j)/\sqrt{2} \end{pmatrix}, j=1,2$$

• 2 complex scalar SU(2) doublets  $\rightarrow$  8 fields:

> 3 get eaten to give mass to W and Z gauge bosons

5 are physical scalar (Higgs) fields

H or h might be the H(125) discovered 2012 → What about the other? ▶1 neutral CP-odd: A
▶2 neutral CP-even: H, h with  $m_H > m_h$ ▶2 charged: H<sup>±</sup>

#### Lagrangian giving mass terms in 2HDM

• With minimization of the potential, the mass terms are given by:

• 
$$\mathcal{L}_{\Phi^{\pm} mass} = [m_{12}^2 - (\lambda_4 + \lambda_5)v_1v_2](\phi_1^- \phi_2^-) \begin{pmatrix} \frac{v_2}{v_1} & -1\\ -1 & \frac{v_1}{v_2} \end{pmatrix} \begin{pmatrix} \phi_1^+\\ \phi_2^+ \end{pmatrix}$$
  
•  $\mathcal{L}_{\eta mass} = \frac{m_A^2}{v_1^2 + v_2^2} (\eta_1 - \eta_2) \begin{pmatrix} v_2^2 & -v_1v_2\\ -v_1v_2 & v_1^2 \end{pmatrix} \begin{pmatrix} \eta_1\\ \eta_2 \end{pmatrix}$   
•  $\mathcal{L}_{\rho mass} = -(\rho_1 - \rho_2) \begin{pmatrix} m_{12}^2 \frac{v_2}{v_1} + \lambda_1v_1^2 & -m_{12}^2 + \lambda_{345}v_1v_2\\ -m_{12}^2 + \lambda_{345}v_1v_2 & m_{12}^2 \frac{v_1}{v_2} + \lambda_2v_2^2 \end{pmatrix} \begin{pmatrix} \rho_1\\ \rho_2 \end{pmatrix}$  with  $\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5$ 

### Yukawa couplings

Yukawa Lagrangian: (f couple to Higgs in SM:  $\frac{m_f}{n}$ )

 $\mathcal{L}_{Yukawa}^{2HDM}$ 

$$= -\sum_{f=u,d,l} \frac{m_f}{v} \left(\xi_h^f \bar{f} fh + \xi_H^f \bar{f} fH - i\xi_A^f \bar{f} \gamma_5 fA\right) - \left\{\frac{\sqrt{2}V_{ud}}{v} \bar{u} \left(m_u \xi_A^u P_L + m_d \xi_A^d P_R\right) dH^+ + \frac{\sqrt{2}m_l \xi_A^l}{v} \bar{v}_l l_R H^+ + H.c.\right\}$$

 $P_{L/R}$ : projection operators for left-/right-handed fermions

The coupling of the neutral Higgs bosons to the W and Z are the same in all models.

|                | Type I                     | Type II                     | Lepton-specific             | Flipped                     |
|----------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|
| $\xi_h^u$      | $\cos \alpha / \sin \beta$ | $\cos \alpha / \sin \beta$  | $\cos \alpha / \sin \beta$  | $\cos \alpha / \sin \beta$  |
| $\xi_h^d$      | $\cos \alpha / \sin \beta$ | $-\sin \alpha / \cos \beta$ | $\cos \alpha / \sin \beta$  | $-\sin \alpha / \cos \beta$ |
| $\xi_h^\ell$   | $\cos \alpha / \sin \beta$ | $-\sin \alpha / \cos \beta$ | $-\sin \alpha / \cos \beta$ | $\cos \alpha / \sin \beta$  |
| $\xi^u_H$      | $\sin \alpha / \sin \beta$ | $\sin \alpha / \sin \beta$  | $\sin \alpha / \sin \beta$  | $\sin \alpha / \sin \beta$  |
| $\xi_H^d$      | $\sin \alpha / \sin \beta$ | $\cos \alpha / \cos \beta$  | $\sin \alpha / \sin \beta$  | $\cos \alpha / \cos \beta$  |
| $\xi_H^\ell$   | $\sin \alpha / \sin \beta$ | $\cos \alpha / \cos \beta$  | $\cos \alpha / \cos \beta$  | $\sin \alpha / \sin \beta$  |
| $\xi^u_A$      | $\coteta$                  | $\coteta$                   | $\coteta$                   | $\cot eta$                  |
| $\xi^d_A$      | $-\cot\beta$               | aneta                       | $-\cot\beta$                | an eta                      |
| $\xi^{\ell}_A$ | $-\cot\beta$               | aneta                       | aneta                       | $-\cot\beta$                |

### **Two-Higgs-doublet models**

Most general **potential** for two doublets  $\Phi_1$  and  $\Phi_2$ :

• 
$$V = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 \Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2 + \lambda_4 \Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1 + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2]$$

All the parameters are real (5 independent coupling  $\lambda$  and 3 mass parameters m).

• Scalar doublets: 
$$\Phi_j = \begin{pmatrix} \Phi_j^+ \\ (v_j + \rho_j + i\eta_j)/\sqrt{2} \end{pmatrix}$$
 j=1,2

2 complex scalar SU(2) doublets  $\rightarrow$  8 fields:

> 3 get eaten to give mass to W and Z gauge bosons

➤ 5 are physical scalar (Higgs) fields.

Orthogonal combinations of  $\rho_j \rightarrow$  physical scalars:

- $h = \rho_1 sin\alpha \rho_2 cos\alpha$
- $H = -\rho_1 cos \alpha \rho_2 sin \alpha$

See backup: Lagrangian for mass terms

▶1 neutral CP-odd: A
▶2 neutral CP-even: H, h with m<sub>H</sub> > m<sub>h</sub>
▶2 charged: H<sup>±</sup>

SM Higgs boson:

$$H^{SM} = \rho_1 cos\beta + \rho_2 sin\beta$$
  
=  $hsin(\alpha - \beta) - Hcos(\alpha - \beta)$ 

#### **Experiments at LHC**



Seven experiments at the Large Hadron Collider (LHC) use detectors to analyse the myriad of particles produced by collisions in the accelerator.

ATLAS, CMS: general-purpose detectors, investigate the largest range of physics possible.
 ALICE, LHCb: detectors specialized for focusing on specific phenomena.
 TOTEM, LHCf: focus on "forward particles".
 MOEDAL: search for a hypothetical particle: the magnetic monopole.

#### LHC experiments

### **Designed parameters**

| Detector component          | Required resolution                        | η coverage           |                      |
|-----------------------------|--------------------------------------------|----------------------|----------------------|
|                             |                                            | Measurement          | Trigger              |
| Tracking                    | $\sigma_{p_T}/p_T = 0.05\% p_T \oplus 1\%$ | ±2.5                 |                      |
| EM calorimetry              | $\sigma_E/E = 10\%/\sqrt{E} \oplus 0.7\%$  | ±3.2                 | ±2.5                 |
| Hadronic calorimetry (jets) |                                            |                      |                      |
| barrel and end-cap          | $\sigma_E/E = 50\%/\sqrt{E} \oplus 3\%$    | $\pm 3.2$            | ±3.2                 |
| forward                     | $\sigma_E/E = 100\%/\sqrt{E} \oplus 10\%$  | $3.1 <  \eta  < 4.9$ | $3.1 <  \eta  < 4.9$ |
| Muon spectrometer           | $\sigma_{p_T}/p_T = 10\%$ at $p_T = 1$ TeV | ±2.7                 | ±2.4                 |

### **Higgs production**



### search in $\gamma\gamma$ channel



**Branching ratio predicted by 2HDM:** similar as SM with a fraction depending on model type

### The $\gamma\gamma$ decay channel has the advantage of a clean experimental signature:

- excellent mass resolution
- smoothly falling background (diphoton production by QCD processes)



#### **Event selection**

#### **Event selection:**

- 2g20\_tight trigger for <u>2015+2016 periods A-D3</u>
- 2g22\_tight trigger for <u>2016 periods D4-after</u>
- 2g20\_tight\_icalovloose trigger for 2017
- ET{leading,subleading} > 22 GeV
- Tight photon ID
- Photon isolation: FixedCutLoose
- Invariant mass range :
- 60-120 GeV and Search in 65-110 GeV

### Photon identification

| Variable                            | Definition                                                                                            | Description                                          |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|
| Leakage in the hadronic calorimeter | $R_{had} = \frac{E_T^{had}}{E_T}$                                                                     | Leakage in the hadronic calorimeter                  |  |
| Middle $\eta$ energy ratio          | $\mathbf{R}_{\eta} = \frac{E_{3\times7}^{s2}}{E_{7\times7}^{s2}}$                                     | $\phi  E_{3 \times 7}$                               |  |
| Middle $\phi$ energy ratio          | $\mathbf{R}_{\phi} = \frac{E_{3\times3}^{s2}}{E_{3\times7}^{s2}}$                                     | $E_{3\times 3}$                                      |  |
| Middle lateral width                | $\omega_{\eta^2} = \sqrt{\frac{\sum E_i \eta_i^2}{\sum E_i} - (\frac{\sum E_i \eta_i}{\sum E_i})^2}$  | Shower width in middle layer                         |  |
| Front side energy ratio             | $F_{side} = \frac{E(\pm 3) - E(\pm 1)}{E(\pm 1)}$                                                     | $egin{array}{c c c c c c c c c c c c c c c c c c c $ |  |
| Front lateral width (3<br>strips)   | $\omega_{s3} = \sqrt{\frac{\sum E_i (i - i_{\max})^2}{\sum E_i}}$                                     | Shower width in 3 strips around the hottest strip    |  |
| Front lateral width (total)         | $\omega_{s,tot} = \sqrt{\frac{\sum E_i (i - i_{\max})^2}{\sum E_i}}$                                  | Shower width in all strips $\Gamma^{S1}$             |  |
| Front second maximum difference     | $\Delta E = \left[ E_{2^{nd}max}^{s1} - E_{min}^{s1} \right]$                                         | E <sub>1</sub> stmax                                 |  |
| Front maxima relative<br>ratio      | $E_{ratio} = \frac{E_{1^{st}max}^{s1} - E_{2^{nd}max}^{s1}}{E_{1^{st}max}^{s1} + E_{2^{nd}max}^{s1}}$ |                                                      |  |

# **Signal Modeling**

Narrow width resonance: shape dominated by the detector re

While there is no assumption on the production mode of the resonance, the shape of signal is modelled using a **double-sided crystal ball (DSCB)** function.



#### 6 parameters of DSCB:

- $\succ \Delta m_X, \alpha_{Low}, \alpha_{High}, \sigma_{CB} \rightarrow$  mass dependent
- $\succ$  *n*<sub>Low</sub>, *n*<sub>High</sub> → mass independent (constant)

Each parameter is determined in a fit to the fixed-mass simulated samples, and is parametrized as a function of mass separately for each conversion category.



#### **Pre-fit distributions**

Search range: 65~110 GeV (width of signal~1.5GeV)



- > Data in good agreement with the background template within uncertainties.
- Small excess around the DY region, but covered by the systematics.

### **Continuum backgrounds**

irreducible (γγ):
 taken from high-statistics MC samples
 reducible (γ+jet, multi-jet):
 taken from data-driven control regions

**Step 1:** build a **template** (irreducible and reducible) representative of the non-resonant background.

**Step 2:** add the two parts together according to their **respective fraction** measured in data.



#### **Resonant Drell-Yan backgrounds**

Crucial ingredient for background estimation:  $Z \rightarrow ee$  misidentified as  $\gamma\gamma$ 

- Using a di-electron data sample to build a Drell-Yan template
- Normalize the Drell-Yan template to the amount of di-electrons events faking diphoton events



#### Spurious signal test









### Statistical model

• The data are described using an extended PDF expressed as:

$$\mathcal{L} = \prod_{c=1}^{n_c} e^{-N_c^{total}} \prod_{i=1}^{n_c^{data}} \mathcal{L}_c(m_{\gamma\gamma}(i,c))$$

 $n_c = 3$ : number of categories  $n_c^{data}$ : number of data events  $n_c^{total}$ : number of fitted events

• The per-event term is expressed as:

$$\mathcal{L}_{c}(m_{\gamma\gamma};\sigma_{fid},m_{X},N_{uu,c},N_{uc,c},N_{cu,c},N_{cc,c},N_{bkg,c},c_{c},\theta) =$$

 $\sigma_{fid}$ : fiducial production cross-section of the new resonance  $N_{xx,c}$ : number of DY background events identified as (and contribute to) UU, UC or CC

*N<sub>bkg,c</sub>*: fitted number of background events

 $c_c$ : collectively refers to the background parameters used to describe its shape

 $\theta$ : collectively designates the nuisance parameters used to describe the systematic uncertainties

#### = $N_{X,c}(\sigma_{fid}, m_X, \theta_{N_X}, \theta_{SS}) f_X(m_{\gamma\gamma}, m_X, x_X(m_X), \theta_{\sigma})$

- +  $N_{uu,c}(\theta_{N_{uu,c}})f_{uu,c}(m_{\gamma\gamma}, x_{uu,c}, \theta_{uu,c})$
- +  $N_{uc,c}(\theta_{N_{uc,c}})f_{uc,c}(m_{\gamma\gamma}, x_{uc,c}, \theta_{uc,c})$
- +  $N_{cu,c}(\theta_{N_{cu,c}})f_{cu,c}(m_{\gamma\gamma}, x_{cu,c}, \theta_{cu,c})$
- +  $N_{cc,c}(\theta_{N_{cc,c}})f_{cc,c}(m_{\gamma\gamma}, x_{cc,c}, \theta_{cc,c})$
- +  $N_{bkg,c}f_{bkg,c}(m_{\gamma\gamma},c_c)$

The continuum background PDF  $f_{bkg,c}$  is described by the function chosen for each category mentioned before.