

Search for a low mass ($m_{\gamma\gamma}$ < 110 GeV) Higgs boson in the di-photon decay channel at

\sqrt{s} = 13 TeV in pp collisions at CMS

Camille Camen IPNL

Journées de Rencontre des Jeunes Chercheurs

October 2018

Outline

Theoretical context

- The Higgs boson in the standard model (SM)
- Why Higgs bosons beyond the SM
- Two Higgs doublet models (2HDM)

Search for a light Higgs boson in the diphoton channel : motivations

The CMS (Compact Muon Solenoid) detector

Analysis Strategy

- Background
- Boosted Decision Trees (BDT)
- Analysis Steps and results

Conclusion

The Higgs boson in the standard model (SM)

PROBLEM: How to give a mass to the Z and W boson without breaking the SM gauge invariance ?

1964 : Higgs, **Englert** & **Brout**, **Hagen Guralnik** and **Kibble** imagine a new solution :

- → Introducing a new complex scalar field in the SM in a « mexican hat » shaped potential
- → Infinite number of minima => spontaneous symmetry breaking
- \rightarrow Generating mass term for Z and W bosons, for fermions via Yukawa couplings
- → Prediction of a new particle : The Higgs Boson

V(\$)

Im(b)

Why Higgs bosons beyond the SM

PROBLEM: THE SM IS NEVERTHELESS INCOMPLETE AND CANNOT ADRESS SEVERAL ISSUES !

Many indications that the SM is only a **low-energy approximation**

of a more global theory => **Beyond SM** theories

Additional

higgs bosons...

Two Higgs-doublet models (2HDM)

TWO HIGGS-DOUBLET MODELS ARE SIMPLE EXTENSION OF THE SM WITH AN ENRICHED SCALAR SECTOR

 \rightarrow Introduction of an additional scalar field => 2 doublet scalar fields Φ_1 and Φ_2 in the SM lagrangian (8 degrees of freedom).

→ After symmetry breaking => Prediction of physical 5 states/Higgs Boson :

Search for a light Higgs boson in the diphoton channel

LEP 2003: historical motivation

6

Search for a light Higgs boson in the diphoton channel

Signal strength

Search for a light Higgs boson in the diphoton channel Signal strength

Search for a light Higgs boson in the diphoton channel

LHC Run 1 (8 TeV)

 \rightarrow IPNL responsible for the low mass

(m<110 GeV) search in the **diphoton** channel

In CMS

Why the diphoton channel ?

- Clear signature with two isolated and highly energetic photons
- Excellent invariant mass resolution

→ 2015 (8 TeV): 2σ excess at 97.5 GeV (γγ channel)

CMS experiment and particle reconstruction

http://www.particlecentral.com/images/cms_slice.jpg

CMS experiment and particle reconstruction

http://www.particlecentral.com/images/cms_slice.jpg

Backgrounds

Analysis Steps overview

Boosted decison trees (BDT)

→ ANALYSIS PERFORMED USING MANY BDT : TOOLS ALLOWING TO ORDINATE EVENTS IN MORE OR LESS SIGNAL-LIKE CATEGORIES.

Boosted decison trees (BDT)

- BDT trained on simulated samples so it knows which event are signal or background
- Then applied to **real data**

Analysis Steps overview

Analysis Strategy : event reconstruction

- **Clustering** the **energy hits** in the crystals of the **electromagnetic** calorimeter (ECAL)
- Energy corrected by **Boosted Regression Tree** (same method as BDT but predicting the value of a variable instead of classifying events)

- if the vertex assigned to the event stands within 1cm to the real diphoton interaction point = Correct vertex assignement
- Second BDT to estimate the probability for the vertex assignment to be **correct** (within 1) cm)

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

Analysis Strategy : Photon Identification

Analysis Strategy : Diphoton event Selection

Diphoton Event Selection

Diphoton BDT Output variable

irreducible background rejection

Diphoton BDT

- Reject diphoton candidates from physical processes with 2 photons in the final state
- Discriminating variables : PhotonID, invariant mass resolution, kinematic variables
- **BDT Output variable** = estimate the diphoton event « quality » 26

Analysis Strategy : Diphoton event categorisation

Diphoton Event Categorisation

Optimize the significance

Diphoton BDT Output variable 4 CATEGORIES xp/Np(N/1) Signal 125 GeV 4.5 Bruit standard 4 REJECTED 2.5 2 1.5 0.5 ւերտ, հո -0.8 -0.6 0.6 0.8 -0.4 -0.2 0.2 0.4 Note du BDT SIGNAL/BKG RATIO

- Set boundaries on the output variable distribution to form categories with different signal /background ratio
- number of categories and boundarie optimized to maximize the expected significance

27

Expected significance vs number of categories

Analysis Strategy : background and signal modelisation

Signal

 Parametric model extracted from simulation : H→ γγ standard samples for different higgs masses.

Background

- Drell-Yan Parametric model extracted
 from simulation : Z→e⁺e⁻
- Continuum background extracted from

Analysis Strategy : Statistical Analysis

Analysis Strategy : Statistical Analysis

Statistical analysis Exclusion limit on higgs boson cross section for different mass hypoyhesis 35.9 fb⁻¹ (13 TeV) **CMS** Preliminary **** (qd) 0.2 Observed Ζ ΡΕΑΚ $\sigma \times BR(H \rightarrow \gamma\gamma)_{95\%CL} (1)$ Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ OBSERVED LIMIT $\mathcal{H} \sigma_{SM} \times BR$ EXCESS 0.06 0.04 0.02 95 85 90 100 105 110 80 70 75 m_L (GeV) Смѕ нід-17-013

Signal extracted from background by fitting the observed di-photon Mass distributions in each category

Exclusion limit

- For each mass hypothesis → set limits on
 H→ γγ cross section with 95 % confident level
- Compare limits: observed limit consistent with the expected one
- => 2.9 σ slight excess at 95.3 GeV

Analysis Strategy : Statistical Analysis

Local p-value section for different mass hypoyhesis

Signal extracted from background by fitting the observed di-photon Mass distributions in each category

Exclusion limit

- For each mass hypothesis → set limits on
 H→ γγ cross section with 95 % confident level
- Compare limits: observed limit consistent with the expected one
- => 2.9 σ slight excess at 95.3 GeV

Conclusion

- LHC data are **sensitive** to some theoretical models (2HDM, NMSSM...)
- Results of the CMS H $\rightarrow \gamma\gamma$ analysis have been reported, using 35.9 fb -1 of collision data collected in 2016 at 13 TeV
- New data collected in 2017 → more statistics and better sensitivity to constrain models and to confirm or not the 2016 excess.

Back Up

2HDM types

The different possible **couplings** between the **SM fermions** and the two **scalar doublets** in 2HDMs.

	Type I	Type II	Flipped	Lepton Specific
		×	(Type Y)	(Type X)
Up-type quark	ϕ_2	ϕ_2	ϕ_2	ϕ_2
Down-type quark	ϕ_2	ϕ_1	ϕ_1	ϕ_2
Leptons	ϕ_2	ϕ_1	ϕ_2	ϕ_1

All fermions of a given electric charge couple to at most one Higgs doublet. These couplings can occur in different ways

Signal Strength

PhotonID : photon identification

GOAL : REJECT REDUCIBLE BACKGROUND

VertexID: vertex identification

GOAL : IDENTIFY DIPHOTON VERTEX INTERACTION

Variables discriminantes du BDT diphoton : cas standard

FIGURE 26 – distribution des événements pour le signal (en bleu) et le bruit de fond (en rouge) pour l'ensemble des variables discriminantes du BDT diphoton : cas standard.

Variables discriminantes du BDT diphoton : cas standard

FIGURE 27 – distribution des événements pour le signal (en bleu) et le bruit de fond (en rouge) pour l'ensemble des variables discriminantes du BDT diphoton : cas standard.

Présélection standard

Présélection des photons

	R ₉	H/E	$\sigma_{\eta\eta}$	\mathcal{I}_{ph}	\mathcal{I}_{tk}
Barrel	[0.5, 0.85]	< 0.08	< 0.015	< 4.0	< 6.0
	> 0.85	< 0.08	-	-	-
Endcaps	[0.8, 0.90]	< 0.08	< 0.035	< 4.0	< 6.0
	> 0.90	< 0.08	_	-	_

Chemins de déclenchement

Trigger selection for HLT_Diphoton30_18_R9Id_OR_IsoCaloId_AND_HE_R9Id_Mass90.

	H/E	$\sigma_{i\eta i\eta}$ (5x5)	R ₉ (5x5)	ECAL PF cluster iso.	Track iso.		
EB; $R_9 > 0.85$	< 0.12	-	> 0.5	-//	-		
EB; $R_9 \le 0.85$	< 0.12	< 0.015	> 0.5	$< (6.0 + 0.012E_T)$	$< (6.0 + 0.002E_T)$		
EE; $R_9 > 0.90$	< 0.1	\leq	> 0.8	24	-		
EE; $R_9 \leq 0.90$	< 0.1	< 0.035	> 0.8	$< (6.0 + 0.012E_T)$	$< (6.0 + 0.002E_T)$		
Other trigger requirements							
HLT seeded $E_T > 30 \text{ GeV}$ HLT			ded $E_T > 18 \text{GeV}$	$m_{\gamma\gamma} > 90 \text{GeV}$			

Présélection basse masse

Table 6: Preselection cuts.

		R9 (5x5)	HoE	$\sigma_{i\eta i\eta}$ (5x5)	pfPhoIso	TrackerIso
Both photons in barrel	Barrel	> 0.5	< 0.07	< 0.0105	< 4 GeV	< 6 GeV
At least one in endcap	Barrel	> 0.85	< 0.07	< 0.0105	< 4 GeV	< 6 GeV
At least one in endcap	Endcap	> 0.9	< 0.035	< 0.0275	< 4 GeV	< 6 GeV

HLT_Diphoton30PV_18PV_R9Id_AND_IsoCaloId_AND_HE_R9Id_DoublePixelVeto_Mass55_v7

	ET	Low $R_9 >$	H/E <	high $R_9 >$	$\sigma_{i\eta i\eta} <$	ECAL PF cluster iso <	Track iso<
Seeded leg		///			~~~		
Photons in EB	30 GeV	0.5	0.1	0.85	0.015	$6.0 + 0.12E_T$	-
Photons in EE	30 GeV	0.8	0.1	0.9	0.035	$6.0 + 0.12E_T$	-
Unseeded leg							
Photons in EB	18 GeV	0.5	0.1	0.85	0.015	$6.0 + 0.12E_T$	$6+0.002E_T$
Photons in EE	18 GeV	0.8	0.1	0.9	0.035	$6.0 + 0.12E_T$	$6+0.002E_T$
		111	Other to	rigger require	ments		
Pixel veto				$m_{\gamma\gamma} > 55 \text{ GeV}$			

HLT_Diphoton30EB_18EB_R9Id_OR_IsoCaloId_AND_HE_R9Id_DoublePixelVeto_Mass55_v7

	E_T	Low $R_9 >$	H/E <	high $R_9 >$	$\sigma_{i\eta i\eta} <$	ECAL PF cluster iso <	Track iso <	
Seeded leg	30 GeV	0.5	0.1	0.85	0.015	$6.0 + 0.12E_T$	-	
Unseeded leg	18 GeV	0.5	0.1	0.85	0.015	$6.0 + 0.12E_T$	$6+0.002E_T$	
Other trigger requirements								
Pixel veto			$m_{\gamma\gamma} > 55 \text{ GeV}$					