

Calibration of XENON1T for the search of new physics

DARK MATTER AND MORE

17/10/2018

Outlook

XENON Project

- I) Dark Matter
- II) Detector principle and background
- III) Dark matter search with XENON1T
 - I) Calibration at low energies using a ^{83m}Kr source
 - II) XENON1T : 1 ton x year results
- IV) Neutrinoless Double β decay :
 - I) Expected signal
 - II) Energy reconstruction at high energy

Dark matter interaction

Dark matter halo around galaxies = WIMP wind

 \rightarrow WIMP (χ)—Nucleus Scattering (Nuclear Recoil (NR))

Dark matter interaction

Dark matter halo around galaxies = WIMP wind

 \rightarrow WIMP (χ)—Nucleus Scattering (Nuclear Recoil (NR))

$$E_{nr} = \frac{m_{\chi}v^2}{2} \frac{4m_{\chi}m_N}{(m_{\chi} + m_N)^2} \cos^2 \theta$$

If: $m_N = 131 u$; $\theta = 0$;
 $v = 230 \ km/s$; $m_{\chi} = 200 \ GeV/c^2$
Then: $E_{nr}^{MAX} = 55 \ keV$
Low energy

Dark matter direct detection

Rare interaction with low energy signal!

Dark matter direct detection

Rare interaction with low energy signal! + several background sources

Background

Main background for dark matter search:

- Cosmic rays
- Ambient radioactivity
 - from the laboratory
 - from the detector itself !
- Intrinsic radioactivity
 - ⁸⁵Kr
 - daughter of ²²²Rn (emanation from material detector)

17/10/2018

Background

Main background for dark matter search:

- Cosmic rays
- Ambient radioactivity
 - from the laboratory
 - from the detector itself !
- Intrinsic radioactivity
 - ⁸⁵Kr
 - daughter of ²²²Rn (emanation from material detector)

ER

Background

Main background for dark matter search:

- Cosmic rays
- Ambient radioactivity
 - from the laboratory
 - from the detector itself !
- Intrinsic radioactivity
 - ⁸⁵Kr
 - daughter of ²²²Rn (emanation from material detector)

17/10/2018

Dark matter direct detection

Rare interaction with low energy signal! + several background sources

17/10/2018

Why using liquid xenon?

WIMP-nucleus interaction probability increase:

- \circ Large mass number A ($\sigma^{WIMP-nucleus} \propto A^2$)
- High density
- Liquid = scalable to large mass

Low energy event detection :

Efficient scintillator (178 nm UV)

Reducing the background :

- No intrinsic radioactivity (except ¹³⁶Xe long half-live)
- High stopping power (= self-shielding)
- + 3D position = fiducial volume
- Simultaneous measurement of scintillation and ionization = NR/ER discrimination

17/10/2018

Background reduction

Cosmic rays : Underground laboratory

Laboratory of Gran Sasso (Italy)

- 3 200 m water equivalent
- $\,\circ\,$ Reduction of a factor 10^3 of the muon flux

Muon veto

• Water shield + PMTs

17/10/2018

Background reduction

Ambient radioactivity:

Water shield

Material radioactivity:

- Careful screening and characterization of materials
- Fiducial volume
- NR/ER discrimination

⁸⁵Kr:

Distillation column to remove

ER background rate = ~ 80 event/t.y.keV (in the ROI for dark matter search) Lowest background ever achieved in dark matter direct detection experiment

17/10/2018

Detector Principle

XENON = dual phase (liquid – gas) TPC filed with LXe

GXe

LXe

time

drift time (depth)

Eextraction

Edrift

XENON Project

	XENON10	XENON100	XENON1T - Actual	XENONnT
Total mass	25 kg	162 kg	3.2 t	8 t
Active target	14 kg	62 kg	2 t	6 t
Dimension	H ~ 15 cm ø ~ 20 cm	H ~ 30 cm ø ~ 30 cm	H ~ 1m ø ~ 1m	H ~ 1.5 m ø ~ 1.4 m

Dark Matter Search with XENON1T

Calibration:

- LED \rightarrow PMT gain monitoring
- ^{83m}Kr → Corrections, detector stability monitoring
- ²²⁰Rn \rightarrow Low energy electronic recoils: ER-bands
- ²⁴¹AmBe and NG \rightarrow Signal response: NR-bands

Characteristics	Advantages		
Internal	Homogeneous		
Short Half-life of 1.83h	Quick restart of dark matter search		
2 decays at low energies	Close to the dark matter search region		
Short time between the two decays	Identification		

17/10/2018

Electron Lifetime correction using ^{83m}Kr calibration

Electronegative impurities in LXe capture electrons during their drift

- Reduced measured S2
- Need ultra pure xenon to detect S2 = exploitable signal
- Monitoring of the impurity concentration $\propto \frac{1}{\tau}$

Correction of S2 signals with : $S2 = S2_0 \cdot e^{-\Delta t/\tau}$

S1 and S2 monitoring using ^{83m}Kr calibration

Stable operation during more than one year

17/10/2018

XENON1T results on dark matter search

 \circ New results since May 2018

Phys. Rev. Lett. **121**, 111302

- First Dark Matter experiment with an exposure of 1 ton x year
 - Largest exposure ever achieved with liquid xenon TPC
- Lowest background achieved in direct dark matter detection
- Most Stringent limit on Spin Independent WIMPnucleon cross-section for $m_{\chi} > 6 \text{ GeV/c}^2$
- 7 times more sensitive compared to previous experiments (LUX, PandaX-II)

Key Numbers

1 ton x year exposure

Fiducial mass of 1.3 t

ER background rate: $(82^{+5}_{-3 sys} \pm 3_{stat})$ events/(t x yr x keVee)

Lowest limits on the SI WIMP-Nucleus cross section: $\sigma_{SI} = 4.1 \times 10^{-47} \text{ cm}^2$ for a WIMP of 30 GeV/c²

17/10/2018

XENON1T results on dark matter search

New results since May 2018

o Phys. Rev. Lett. **121**, 111302

- First Dark Matter experiment with an exposure of 1 ton x year
 - Largest exposure ever achieved with liquid xenon TPC

Lowest background achieved in direct dark matter detection

- \odot Most Stringent limit on Spin Independent WIMPnucleon cross-section for m_{\chi} > 6 GeV/c^2
- 7 times more sensitive compared to previous experiments (LUX, PandaX-II)

Allow for the search for other rare physics processes that required low background conditions: E.g. Neutrinoless double β decay

Same data for two analysis

Kinetic Energy of β -particles

17/10/2018

17/10/2018

17/10/2018

Energy deposit \rightarrow S1 and S2 \rightarrow Anti-correlation

17/10/2018

Energy deposit \rightarrow S1 and S2 \rightarrow Anti-correlation :

- Combination of S1 and S2 :
 - Allow to improve the energy resolution
 - Need to take into account the repartition of S1 and S2 :
 - Scintillation gain g1
 - Ionization gain g2

17/10/2018

Energy deposit \rightarrow S1 and S2 \rightarrow Anti-correlation :

 \odot Combination of S1 and S2 :

 $\ensuremath{\circ}$ Allow to improve the energy resolution

 \odot Need to take into account the repartition of S1 and S2 :

- Scintillation gain g1
- o lonization gain g2

To determine g1 and g2 \rightarrow Calibration :

 \circ With known energies \rightarrow light and charge yield

$$Ly = S1/E$$
$$Q = S2/E$$

• Linear correlation

At high energy, no internal source are available so we use lines coming from material radioactive elements

$$E = W\left(\frac{cS1}{g1(z)} + \frac{cS2b}{g2(z)}\right)$$

With W = 13.7 eV (mean energy needed to produce one photon or electron)

$$E = W\left(\frac{cS1}{g1(z)} + \frac{cS2b}{g2(z)}\right)$$

With W = 13.7 eV (mean energy needed to produce one photon or electron)

Conclusion

• XENON1T is the most sensitive direct dark matter experiment with the lowest background ever achieved.

$\,\circ\,$ Stable operation over more than one calendar year

- Regular ^{83m}Kr calibration (24 calibration campaigns for SR1)
 - $\,\circ\,$ Monitoring of S1 and S2 signals
 - Monitoring of the electron lifetime
 - $\,\circ\,$ Monitoring of the xenon purity
 - \circ S2 correction \rightarrow Crucial for all analysis

\circ ^{83m}Kr is an excellent internal source for large xenon TPC

- Hard to use external source (because of LXe self-shielding)
- \circ Proof that it could be used for future experiments \rightarrow XENON-nT (construction starting soon) and other large LXe TPC
- Thanks to the ultra-low background : neutrinoless double ß decay search
 - New analysis need to adapt our analysis to this all new energy region

Backup

17/10/2018

XENON1T

Total mass	3.2 t
Active target	2 t
Dimension	H ~ 1m / ø ~ 1m

Other detector medium ?

	Neon	Argon	Krypton	Xenon
Atomic Number	10	18	36	54
Density	1.2	1.4	2.4	3
Scintillation (y/keV)	30	40	25	42
Wavelength (nm)	85	128	150	178
Decay Time (ns)	15400	6.3, 1500	2, 91	2.2, 27, 45
Ionization (e-/keV)	46	42	49	64
Boiling Point (K)	27.1	87.3	119.8	165.0
Radioactivity	No	³⁹ Ar 1Bq/kg (1mBq/kg)	Yes	¹³⁶ Xe / Kr can be removed to ppt level
Price	\$\$	\$ (\$\$\$)	\$\$\$	\$\$\$\$

Event in XENON1T

17/10/2018

• β^{-} decay : $(Z, A) \rightarrow (Z + 1, A) + e^{-} + \overline{v_e}$

• Isobaric decay (A = cte), possible if : $E_b^{f} < E_B^{i}$

$$E_{B} = a_{v}A - a_{s}A^{\frac{2}{3}} - a_{c}\frac{Z(Z-1)}{A^{\frac{1}{3}}} - a_{A}\frac{(A-2Z)^{2}}{A} + \delta(A,Z)$$

$$\delta(A,Z) = \begin{cases} +\delta_{0} \text{ if } Z, N \text{ even} \\ 0 \text{ if } A \text{ odd} \\ -\delta_{0} \text{ if } Z, N \text{ odd} \end{cases}$$

- If A = even, 2 parabolic mass curves : possibility of having an E-E nucleus more stable than it Z+1 O-O neighbour = β^{-} decay is forbidden
- But double β^- decay is possible !
- Observed in several nuclei

Isotope	nat. abund.	Q-value	$T_{1/2}^{2\nu}$	Experiment
	(%)	(keV)	$(10^{20} yrs)$	
⁴⁸ Ca	0.187	4272 ± 4	$0.44^{+0.06}_{-0.05}$	CANDLES
⁷⁶ Ge	7.8	2039.006 ± 0.050	15 ± 1	GERDA, MAJORANA
⁸² Se	9.2	2995.5 ± 1.9	0.92 ± 0.07	SuperNEMO, LUCIFER
⁹⁶ Zr	2.8	3347.7 ± 2.2	0.23 ± 0.02	-
¹⁰⁰ Mo	9.6	3034.40 ± 0.17	0.071 ± 0.004	AMoRE
¹¹⁰ Pd	11.8	2017.85 ± 0.64	-	-
¹¹⁶ Cd	7.5	2813.50 ± 0.13	0.28 ± 0.02	COBRA, CdWO ₄
124 Sn	5.64	2287.8 ± 1.5	-	_
¹³⁰ Te	34.5	2527.518 ± 0.013	$6.8^{+1.2}_{-1.1}$	CUORE
¹³⁶ Xe	8.9	2457.83 ± 0.37	21.1 ± 2.5	EXO, NEXT
				KamLAND-Zen
¹⁵⁰ Nd	5.6	3371.38 ± 0.20	0.082 ± 0.009	SNO+, DCBA