

Journée Rencontre des Jeunes Chercheurs 2018

Quentin Piel

- The Gamma-Ray Burst phenom
 - What is a GRB ?
 - A released energy boundary ?
- Current GRB observations with H.E.S.S.
 - The H.E.S.S. array
 - GRB observations with H.E.S.S.
- Future of GRB observation with CTA
 - The Large Size Telescope (LST) as a GRB finder
 - Estimation of GRB detection with CTA

An unexpected discovery in 1962...

First GRB detection with VELA

Picture of VELA satellite

...Classified until 1973

Short Bursts: NS-NS (NS-BH) merger

- NS-NS (NS-BH) in a binary system will loose energy through gravitational waves
- The 2 objects will get closer until tidal forces rip the NS apart and matter falls into a BH.
- merging has ms timescale

Projenitors

Long bursts: Collapsar of a massive (> 40 Msun), rotating, lowmetallicity star:

- Massive for a core-collapse forming a BH
- Rotating to drive a pair of jet along the rotation axis
- •located in star forming region (irregular galaxies, arms of spiral galaxies) were massive stars are always found

The Gamma-Ray Burst phenom

- Tremendous isotropic-equivalent energy:
 - 10⁵⁰ -10⁵⁴ ergs released in a short time scale (ms) only in the form of gamma-rays.

(sun: 10³³ erg/s; supernova: 10⁵¹ erg on a month time scale)

- The internal model could explain observations (but still not perfect)
- GRBs have been observed up to z ~ 6.3 (belong to the furthest detected objects)
- -> hope to use GRB as cosmological tool (similar as Type Ia supernovae)
- GeV emission is delayed of 5-10s from keV one. Why ?
- How such an energy is released ?
- What are the conversion processes ?
- What are the processes inside jets ?
- •

A boundary energy ?

Instrument (Domain in energy)	Number of detection per year
Swift (X)	> 100
FERMI-LAT (gamma basse énergie)	10
Réseau de télescopes Cherenkov (gamma haute énergie)	0

The Extra-galactic background light

H.E.S.S. II era

Alert system

- GRB position and moment are (for the moment) unpredictible
- H.E.S.S. FOV diameter = 5°

Several ways to improve the GRB detection with H.E.S.S.

GRB observations with H.E.S.S.

- 41 GRBs observed since 2012
- Current rate is 1/month

Only a small fraction is shown here

GRB observations with H.E.S.S.

- Ongoing effort (new observations every month)
- Example for GRB 131030

No detection until now (empty sky maps) Only upper limits on the maximum emitted flux (Constraint on physical parameters)

Another exemple

The GW170817 case

- First detection with GW and EM
- Neutron star merging

First H.E.S.S. observation

Long-term Monitoring (75h of observation)

Can put some constraint on the magnetic field inside the jet

Future of GRB observation with CTA

Crutial energy domain for GRB detection

- X10 sensitivity
- Energy range: 15GeV 100TeV

Fast slewing capabilities

The Large Size Telescope

- Telescope dedicated to GRB detection
- Repoint any position in the sky in less than 20s
- First LST prototype under construction on La Palma island (see picture)

Expectation of GRB detection with CTA

Considering 1 observable GRB/month

Prompt : LSTs for both sites (20s delay: standard expected delay)

2.0±1.0 GRB/year x 2 sites

Afterglow : Entire North and South array (10min delay: standard afterglow delay)

8.3± GRB/year x 2 sites

CTA should detect GRBs during its first years of operation

Conclusion

H.E.S.S. did not detect anything yet... ...But we are getting better

CTA will (hopefully) detect the first GRBs above 100 GeV

The Extragalactic Background light

JRJC

- Simulate the telescope's behavior for different movements during different weather conditions (Matlab/simulink simulation)
- Bending model

Drive system (telescope movements)

Backup

•Extra galactic background light:

- •Estimate the effects of EBL at VHE
- •GRB090423 z >8
- •Quantum gravity:
 - test for possible energy dependence of the speed of light
 - 13.2 GeV photon detected 16.5 sec after trigger
 - Conservative lower limit on the quantum gravity mass (assuming linear energy scaling): M_{QG} > (1.50 +/- 0.20) x 10¹⁸ GeV/c²
 - Cosmic rays at Ultra High Energy GRB is one of the leading candidate for the production of Ultra-relativistic CR (>10¹⁸ eV-10²⁰ eV)

Compton Gamma-Ray Observatory (CGRO)

- BATSE (20 keV-1 MeV):
 - extremely sensitive gamma-ray detector (scintillator)
- EGRET (20 MeV-30 GeV):
 Pair production detector
- · looked at the whole sky
- GRB detection rate ~ 1 GRB/day
- thousands of GRBs detected

over the whole mission

2704 BATSE Gamma-Ray Burst

GRB 970228 X-ray afterglow at 8 hours (left) and 3 days (right) after the Gamma-ray

Isotropic distribution

-> rules out most galactic model

- BeppoSAX: GRB 970228
- 1st X-ray/Optical afterglows detected
- Host galaxy was identified at z ~ 0.7

They are extragalactic !