

Study of cosmological biases induced by Type Ia Supernovae new variabilities

Florian Mondon PHD advisor: Emmanuel Gangler

October 15, 2018

Type la Supernovae

- Type Ia Supernovae: explosion of a white dwarf in a binary system
- Their brightness is very similar from one SNIa to another

SNIa can be used as standard candles for a cosmological analysis

Type la Supernovae

Florian Mondon

Study of cosmological biases induced by Type Ia Supernovae new variabilities

Type la Supernovae

Florian Mondon

Study of cosmological biases induced by Type Ia Supernovae new variabilities

Cosmology with SNIa

• Hubble Diagram: Betoule et al.(2014)

Observations

• Spectra

Classification, much information but long acquisition time compare to photometry

SNIa standardization

- Standardization:
 - $\rightarrow X_1$: Stretch parameter
 - \rightarrow C: Color parameter
- Fit of this parameter by SALT2 (Spectral adaptative Light-curve Template 2) Guy et al.(2007)

Limit of SALT2 standardization

 After standardization intrinsic scatter and a correlation of Hubble residuals with host properties show that SALT2 miss some variabilities

How to improve the standardization?

How to improve the standardization?

The Nearby Supernova Factory

- Measure nearby Snla
- Snla search with a 1.2m telescop in Palomar Mountain
- Spectrograph used : SNIFS
- 2.2 Telescop in Hawaii University

Spectral features to describe SNIa variability

• SNIa spectra

• Pseudo-equivalent width

Supernova Useful Generator And Reconstructor (SUGAR)

- SED model done by Pierre-François Léget during his Ph.D. in 2016 based on spectral features (paper in prep.).
- SUGAR model:

$$M_{t,\lambda} = M_{t,\lambda,0} + \sum_{i=1}^{3} q_i \alpha_{t,\lambda,i} + A_V \left(\alpha_\lambda + \frac{1}{R_V} \beta_\lambda \right) + \Delta M_{grey}$$

SUGAR model Build the model

SUGAR model

- q1 correlated with pseudo-equivalent widths
- q2 mostly correlated with velocities lines
- q3 is strongly correlated with one pEWSi II

• q1 and q3 are correlated with strech

Fit with SUGAR and spectroscopic data

Study of cosmological biases induced by Type Ia Supernovae new variabilities

SUGAR model

• Will this model allow to decrease the dispersion in the Hubble diagram fit?

Spectral fit with SUGAR

- 103 Supernovae from SNFactory data set
- Hubble fit with :

$$\mu = M_{gr} - cst - \sum_{i=1}^{3} \alpha_i q_i - \beta A_v$$

• Sugar doesn't have an error model (SALT2 has one)

	Salt2 Sncosmo	SUGAR
	No error model	Spectro
$\sigma_{\textit{int}}$	0.1270	0.1173
wrms	$0.139 \pm \hspace{0.15cm} 0.010$	$0.125\pm~0.009$

LSST: Next generation of cosmological survey

- 8.4 m mirror
- · Cerro Pachon (Chili),
 - alt = 2682 m
- Large fields (9.6 square degrees)
- Will visit 20,000 square degrees of the sky
- Start of observations: 2020

How to improve the standardization?

Study of cosmological biases induced by Type Ia Supernovae new variabilities

Strategy of light curves fitting

- Sncosmo
- 100 Supernovae from simulated data
- 103 Supernovae from SNFactory data set
- Bands used : BVR

Strategy of light curves fitting Exemple of fit

Simulation Test of the fit with simulated light curves

Fit these light curves with SUGAR and check if we can find the initial parameters

Florian Mondon

Data quality Problem of SNF phase

• Results with simulated data / Comparison simulated parameters vs fitted parameters

- Bad reconstruction of q2
- Spread of 2 days in t0 reconstruction

Reconstruction of SUGAR parameters with photometric data

 Results with SNF data / Comparaison with fit spectro

- Bad reconstruction of q2 like in simulation
- q1, q3, Av, Mgrey photo close to spectro

Hubble fit with sugar parameters Results with 103 SN

	No error model	Spectro	
σ_{int}	0.127	0.117	0.122
wrms	$0.139\pm$ 0.010	0.125 ± 0.009	0.132 ± 0.010

Contribution of the I and U bands Simulated data with SNF phase

• Fit without U and I band

• Fit with U and I band

- SUGAR reduces the value of the wrms
 - with spectroscopic data
 - Almost as good with photometric data (3 bands)
- Ongoing work:
 - Use I and U bands