Searching for $0\nu\beta\beta$ decay with the SuperNEMO demonstrator A sensitivity study

Cloé Girard-Carillo

Laboratoire de l'Accélérateur Linéaire

JRCJ 2018, 16 octobre 2018

collaboration

< ロ > < 同 > < 回 > < 回

- 2 Standard Model
- Beyond the Standard Model
- The SuperNEMO experiment
- 5 The main backgrounds for the SuperNEMO experiment
- 6 Which limit on 0
 uetaeta half life for SuperNEMO?

イロト イヨト イヨト イ

The discovery of neutrino through β decay

"I have done a terrible thing, I have postulated a particle that cannot be detected." Pauli, 1930.

- H.Becquerel 1896 : Discovery of radioactivity Only electron observed \rightarrow non conservation of total energy
- <u>W.Pauli 1930</u> : Solution to conserve total energy \Rightarrow "Neutrino"
 - \rightarrow neutral
 - \rightarrow spin 1/2
 - \rightarrow small or null mass
 - \rightarrow small interaction probability
- E.Fermi 1934 : Effective theory : foundation stone of weak interaction
- C.Cowan & F.Reines 1956 : Neutrino discovery

Historical introduction

2 Standard Model

Beyond the Standard Model

The SuperNEMO experiment

5 The main backgrounds for the SuperNEMO experiment

6 Which limit on 0
uetaeta half life for SuperNEMO?

イロト イヨト イヨト イ

The Standard Model of Particle Physics

Succeeds to describe particles and interactions

$SM \rightarrow$ neutrinos are massless

C. Girard-Carillo (LAL)

Neutrino masses are not described by the SM

Pontecorvo, 1957 : neutrino oscillations? Oscillation probability (2 flavours) :

$$\mathcal{P}_{e \to \mu}(t) = \sin^2 2\theta \sin^2 \frac{\Delta m^2}{2E} L$$

• possible only if neutrinos are massive particles

SuperKamiokande, 1998

Observation of neutrino oscillations

• considering three flavours : at least 2 massive neutrinos

Illustration: O Johan Jamestad/The Royal Swedish Academy of Sciences

Historical introduction

- 2 Standard Model
- Beyond the Standard Model
- 4 The SuperNEMO experiment
- 5 The main backgrounds for the SuperNEMO experiment
- 6 Which limit on 0
 uetaeta half life for SuperNEMO?

イロト イポト イヨト イ

Proof of massive neutrinos lead to extentions of SM

Which mechanism for the mass generation?

ightarrow depends on neutrino nature

Dirac particles

Same mass mechanism as other fermions : Higgs field coupling : $g_{Hf\overline{f}} \propto \frac{m_f}{v}$ Neutrino Dirac mass term in the Lagrangian :

$$\mathcal{L}_l^{mass} = -\frac{v}{\sqrt{2}} \bar{l}_L Y^l l_R + h.c.$$

< ロト < 同ト < 三ト <

SM extended with right-handed neutrino

Proof of massive neutrinos lead to extentions of SM

Which mechanism for the mass generation?

 \rightarrow depends on neutrino nature

 $m_{\nu} \ll m_l \Rightarrow$ origin of neutrino masses different from those of charged fermions?

Majorana particles : The neutrino is its own antiparticle

Majorana mass term in the Lagrangian with no extra particle

- \bullet leads to Lepton Number Violation (LNV) with $\Delta L=2$ (forbidden in the SM)
 - \rightarrow could explain matter/antimatter asymmetry in the universe
- \bullet Seesaw mechanisms : heavy ν_R mixes with ν_L and generates light Majorana masses for the observed active neutrinos
 - \rightarrow could explain smallness of neurino masses

Probe : Neutrinoless double beta decay

イロト 不得 トイヨト イヨト ヨヨ ろくや

Double beta decay = 2 simultaneous neutron decays inside the nucleus

- Allowed in SM
- Has been observed in several isotopes • $\tau_{1/2}^{2\nu\beta\beta} \sim 10^{18} - 10^{21}$ years

- Forbidden in SM
- Possible only if neutrinos are Majorana partciles

イロト イポト イヨト イヨ

•
$$\tau_{1/2}^{0
uetaeta} > 10^{24} - 10^{26}$$
 years

Historical introduction

- 2 Standard Model
- Beyond the Standard Model

The SuperNEMO experiment

- 5 The main backgrounds for the SuperNEMO experiment
- 6 Which limit on 0
 uetaeta half life for SuperNEMO?

< ロト < 同ト < 三ト <

The SuperNEMO experiment SuperNEMO demonstrator in installation at LSM

Charged particle trajectory Particle individual energy and TOF 2B vertex ß-591mented caomete BB SOULE FOIL Taching negrete feel

The SuperNEMO demonstrator :

- Searching for $0\nu\beta\beta$ decay
- Tracker + calorimeter
 - \Rightarrow unique experiment : reconstruction of the tracks of the particles AND measurement of the deposited energies
- $\bullet~{\rm Magnetic}$ field $25~{\rm G}$

< 17 ▶

• High $Q_{\beta\beta}$ to reduce natural radioactivity background $Q_{\beta\beta}>2.615~{\rm MeV}$

•
$$(T_{1/2}^{0\nu})^{-1} = g_A^4 G^{0\nu} |M^{0\nu}|^2 \left| \frac{m_{\beta\beta}}{m_e} \right|$$

High phase space factor $G^{0\nu}$ and matrix elements $M^{0\nu}$ to minimise $0\nu\beta\beta$ half life

Isotopic abundance

...

• Highest $T_{1/2}^{2\nu}$ to reduce the $2\nu\beta\beta$ background contribution

2

Isotope	Q_{etaeta} (MeV)	$G_{0\nu} (10^{-15} \text{ y}^{-1})$	$T_{1/2}^{2\nu}$ (y)	η (%)
⁴⁸ Ca	4.273	24.81	6.37×10^{19}	0.187
⁷⁶ Ge	2.039	2.363	1.926×10^{21}	7.8
⁸² Se	2.995	10.16	9.6×10^{19}	9.2
⁹⁶ Zr	3.350	20.58	2.35×10^{19}	2.8
¹⁰⁰ Mo	3.035	15.92	6.93×10^{18}	9.6
¹¹⁶ Cd	2.809	16.70	2.8×10^{19}	7.6
¹³⁰ Te	2.530	14.22	6.9×10^{20}	34.5
¹³⁶ Xe	2.458	14.58	2.165×10^{21}	8.9
¹⁵⁰ Nd	3.367	63.03	9.11×10^{18}	5.6

イロト 不得 トイヨト イヨト ヨヨ ろくや

The SuperNEMO demonstrator

Production of source foils

LAPP style foils

- $^{82}\mathrm{Se}~6.23~\mathrm{kg}$ in thin source foils
- Expected sensitivity $\tau_{1/2}^{0\nu\beta\beta} > 5 \times 10^{24}$ years
- ~ 7 kg of $^{82}{\rm Se}$ for ~ 2.5 years taking data (= 17.5 kg.y exposure)

The SuperNEMO demonstrator

Source foils installed !!

Historical introduction

- 2 Standard Model
- Beyond the Standard Model
- The SuperNEMO experiment
- 5 The main backgrounds for the SuperNEMO experiment
- \bigcirc Which limit on 0
 uetaeta half life for SuperNEMO ?

イロト イヨト イヨト イ

Main backgrounds for the SuperNEMO experiment

- $\bullet\,$ External γ from natural radioactivity
 - Origin : detector PMs
 - $\bullet ~ E_{\gamma} < 2.6 ~ {\rm MeV}$
- Internal contamination of Radon in the tracker
- Internal contamination in the source foils
 - ²⁰⁸TI from ²³²Th decay chain
 - ²¹⁴Bi from ²³⁸U decay chain

Main backgrounds for the SuperNEMO experiment

Ultra-low background specifications :

 $\leq 2\mu \mathsf{Bq/kg}$ $\begin{array}{ll} \mathcal{A}(^{214}\mathsf{Bi}) & \leq 10\mu\mathsf{Bq/kg} \\ \mathcal{A}(^{222}\mathsf{Rn}) & \leq 0.15 \ \mathsf{mBq/m^3} \end{array}$

Goal

Study the sensitivity of SuperNEMO to the half life of the $0\nu\beta\beta$ decay and influence of internal backgrounds

三日 のへの

< ロ > < 同 > < 回 > < 回

Main backgrounds for the SuperNEMO experiment

Ultra-low background specifications :

 $\leq 2\mu \mathsf{Bq/kg}$ $\leq 10 \mu \text{Bq/kg}$ $\leq 0.15 \text{ mBq/m}^3$ ²¹⁴Bi) ²²²Rn)

< ロ > < 同 > < 回 > < 回

Goal

Study the sensitivity of SuperNEMO to the half life of the $0\nu\beta\beta$ decay and influence of internal backgrounds

Historical introduction

- 2 Standard Model
- 3 Beyond the Standard Model
- The SuperNEMO experiment
- The main backgrounds for the SuperNEMO experiment
- **6** Which limit on $0\nu\beta\beta$ half life for SuperNEMO?

< ロト < 同ト < 三ト <

Event simulations & reconstruction with the Falaise software

Event simulation & reconstruction :

- Simulate particles through the detector (GEANT4)
- Record and write informations in an output file
- Reconstruct events (energy and time resolutions, tracker response, ...)

Simulation of internal backgrounds :

 $0\nu\beta\beta,\,2\nu\beta\beta,\,^{208}{\rm TI},\,^{214}{\rm Bi}$ in the source foils

Selection of 2e topologies

- $1 \ {\rm electron}$ is defined as :
 - Vertex on source foil
 - 1 calorimeter + 1 tracker trajectory
 - 1 negative curve

ELE NOR

イロト イポト イヨト イヨト

$$T_{1/2}^{0\nu} > \frac{N_A \ln 2}{W} \times \frac{\epsilon \times M \times T}{N_{exclus}}$$

 ϵ - selection efficiency of $0\nu\beta\beta$ events

 N_{exclus} - number of excluded signal events calculated with $N_{background}$

< 🗇 🕨

Selection efficiency and expected number of background events

Selection efficiencies for $0\nu\beta\beta$ and backgrounds :

$$\epsilon(E_{\rm inf}, E_{\rm sup}) = \frac{1}{N} \int_{E_{\rm inf}}^{E_{\rm sup}} \frac{\partial E}{\partial N} dE$$

Expected number of background events in the correponding ROI :

$$N_{2\nu} = \frac{N_A \ln 2}{W} \frac{\epsilon_{2\nu} \times M \times T}{T_{1/2}^{2\nu}}$$
$$N_{208\text{TI}} = A_{208\text{TI}} \times \epsilon_{208\text{TI}} \times M \times T$$
$$N_{214\text{Bi}} = A_{214\text{Bi}} \times \epsilon_{214\text{Bi}} \times M \times T$$

Sensitivity of SuperNEMO on the half life with E_{inf} and E_{sup}

 $T_{1/2}^{0\nu}$ depends on $[E_{\rm inf}, E_{\rm sup}]$

Exposure 17.5 kg.ySource foils material : 82Se

Background specifications

C. Girard-Carillo (LAL)

-

The complete sensitivity study

- Source material : ⁸²Se or ¹⁵⁰Nd
- Magnetic field
- Background specifications
- HyperNEMO : 500 kg.y

Neutrino effective masses

$$(T_{1/2}^{0\nu})^{-1} = g_A^4 G^{0\nu} |M^{0\nu}|^2 \left| \frac{m_{\beta\beta}}{m_e} \right|^2$$

		82 Se source foils :	
17.5 kg.y		$\mathbf{B} = 25 \ \mathbf{G}$	$\mathbf{B} = 0 \mathbf{G}$
	Nominal background	[0.23 - 0.46] eV	[0.20 - 0.41] eV
	Measured background	[0.37 - 0.70] eV	[0.28 - 0.52] eV
	No internal background	[0.23 - 0.46] eV	[0.20 - 0.41] eV
500 kg.y	Nominal background	[0.08 - 0.16] eV	[0.06 - 0.13] eV

		150 Nd source foi	ls :	
17.5 kg.y		B = 25 G	B = 0 G	
	Nominal background	[0.15 - 0.50] eV	[0.13 - 0.44] eV	
	Measured background	[0.15 - 0.50] eV	[0.20 - 0.65] eV	
	No internal background	[0.15 - 0.50] eV	[0.13 - 0.44] eV	
500 kg.y	Nominal background	[0.046 - 0.15] eV	[0.04 - 0.14] eV	
				- 4

3

三日 のへで

SuperNEMO in installation at LSM

- Neutrinoless double beta decay is the best known process to probe LNV
- $\bullet\,$ SuperNEMO is a tracko-calorimeter detector searching for $0\nu\beta\beta$
- Source foils installed and tracker closed !!
- First data early 2019

PhD work

- $\bullet\,$ Continue the sensitivity study with $2^{\rm nd}$ order cuts
- Study influence of external background

Back up

三日 のへで

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Convolution of an exponential and a gaussian function :

$$f(x, \mu, \sigma) = \frac{\lambda}{2} \exp^{\frac{\lambda}{2}(2\mu + \lambda\sigma^2 - 2x)} \operatorname{erfc}(\frac{\mu + \lambda\sigma^2 - x}{\sqrt{2}\sigma})$$
with $\mu = 0, \sigma = \sqrt{\sigma_t^2 + \sigma_{(\frac{L}{\beta c})}^2 + \sigma_T^2}$ and $\tau = 294 \text{ps}$

 Δt

イロト イヨト イヨト イヨト

三日 のへで

Background scheme for external gammas and Radon

External gamma background :

Internal Radon background :

< 🗇 🕨

- ∢ ⊒ ▶

The most precise measurements of the number of light neutrino types come from studies of Z production in e^+e^- collisioners.

 $N_{\nu} = 2,984 \pm 0,012$ light neutrinos

< □ > < 同 >

(Pour Laurent : je voudrais mettre ici un tableau comparatif NEMO3/SuperNEMO, est-ce que tu aurais ça quelque part en stock ?)

ELE NOR

イロト イポト イヨト イヨト

Neutrinoless double beta decay sensitivity :

$$\tau_{1/2}^{0\nu\beta\beta}\propto \frac{a\epsilon}{m_{\rm mol}}\sqrt{\frac{M\times t}{N_{bkg}\times\Delta E}}$$

a - abundance of isotope ϵ - efficiency of the detector $M \times t$ - exposure N_{bkg} - the background rate (counts.keV⁻¹.kg⁻¹.y⁻¹) ΔE - energy resolution

To have a better sensitivity :

- High detection efficiency
- Long period data taking
- Big quantity of isotope
- Low background level

JI DOC

イロト イポト イヨト

Gas proportions chosen to have the wire chamber functioning at optimal performances

- 95% He : low atomic number \Rightarrow low energy losses for incoming particles (1 MeV electron : 50 keV energy loss)
- $\bullet~4\%$ ethanol : absorption of UV photons generated by Geiger plasma
- $\bullet~1\%~{\rm Ar}$: ionisable \Rightarrow ease the Geiger plasma propagation

Neutrino mass ordering

三日 のへで

・ロト ・回 ト ・ ヨト ・

Weinberg operator :

$$egin{aligned} \mathcal{L}_W &= rac{1}{2} rac{g_{eff} v^2}{\mathcal{M}} ar{
u}_L^c
u_L + ext{h.c.} \ \end{aligned}$$
 with $m_
u &= rac{g_{eff} v^2}{\mathcal{M}}$

New physics

三日 のへで