Introduction to Curci-Ferrari: Results and open questions

Jan Maelger^{1,2}

In collaboration with: U.Reinosa¹ and J.Serreau²

PRD 97 074027; arXiv:1805.10015

- 1. Centre de Physique Theorique, Ecole Polytechnique
- 2. AstroParticule et Cosmologie, Univ. Paris 7 Diderot

October 19, 2018

Heavy Quark QCD Jan Maelger Dutline

Outline

QCD before CF

QCD with CF

QCD after CF? - conclusions

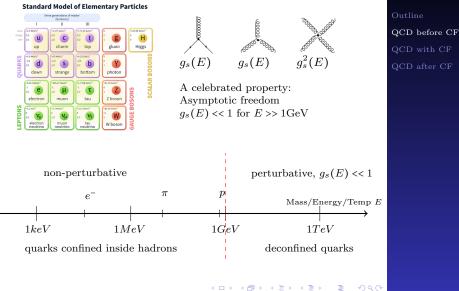
Heavy Quark QCD

Jan Maelger

Outline

QCD before CF

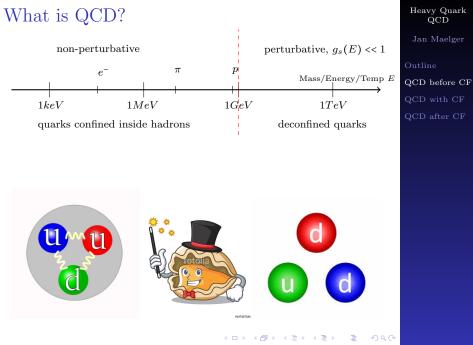
Heavy Quark QCD


Jan Maelger

Outline

QCD before CF QCD with CF QCD after CF

・ロト ・回ト ・ヨト ・ヨト ・ヨー うへで


What is QCD?

4/21

Heavy Quark

QCD Jan Maelger

QCD with CF

Heavy Quark QCD

Outline QCD before CF QCD with CF QCD after CF

Gauge Fixing

$$S = \int_{x} \left\{ \frac{1}{4} (F_{\mu\nu}^{a})^{2} + \bar{\psi}(\mathcal{P} + M + \mu\gamma_{0})\psi \right\}$$

For computations in practice one has to gauge fix!

Heavy Quark QCD Jan Maelger Dutline

QCD with CF

QCD:

$$\left(\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right)^{-1} \quad ??$$

because

$$\Big(\delta_{\mu\nu}-\frac{k_{\mu}k_{\nu}}{k^2}\Big)k_{\nu}=0$$

Gauge Fixing

$$S = \int_x \left\{ \frac{1}{4} (F^a_{\mu\nu})^2 + \bar{\psi} (\mathcal{D} + M + \mu\gamma_0) \psi \right\}$$

For computations in practice one has to gauge fix!

$$\frac{\text{QCD}}{\left(\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right)^{-1}} ??$$

because

$$\left(\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right)k_{\nu} = 0$$

<u>Picture</u>:

$$\left(\begin{array}{cc} 1 & 0 \\ -2 & 0 \end{array}\right)^{-1} \quad \ref{eq:matrix} \text{ as } M\,\underline{v} = 0$$

Hence

$$\left[\left(\begin{array}{cc} 1 & 0 \\ -2 & 0 \end{array} \right) + \frac{\xi}{\xi} \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \right]^{-1}$$

Physics does not depend on the choice of ξ(hopefully)...

Heavy Quark QCD Jan Maelger Outline QCD before CF QCD with CF

QCD after CF

Landau gauge fixing

Fix ξ s.t.

 $\frac{\text{QCD}}{\text{covariant gauge:}}$

 $\partial_{\mu}A_{\mu} = \omega$

Landau gauge:

$$\partial_{\mu}A_{\mu}$$
 = 0

→ leads to Gribov copies due to non-complete gauge fixing. Ie there are several configurations that are "physically degenerate".

Unsolved problem since 1978. [Singer]

 \rightarrow Model via an effective theory!

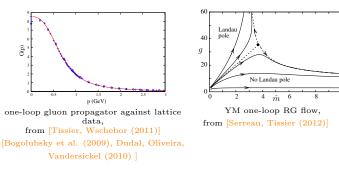
<u>Picture</u>: If

$$\partial_t A = \omega$$
 or $\partial_t A = 0$,

then also

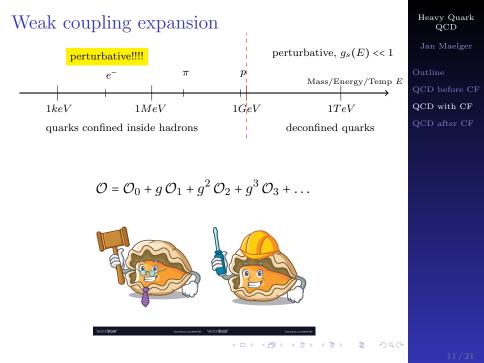
$$\partial_t (A+c) = \omega \quad \text{or} \quad \partial_t (A+c) = 0$$

Therefore A and A + c are "physically degenerate".

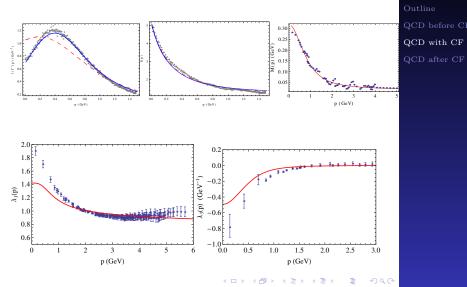

Heavy Quark QCD Jan Maelger Dutline

Curci-Ferrari and gluon mass term

$$S = \int_x \left\{ \frac{1}{4} (F^a_{\mu\nu})^2 + \bar{\psi} (\mathcal{P} + M + \mu\gamma_0) \psi \right\} + S_{FP} + \int_x \left\{ \frac{1}{2} m^2 (A^a_{\mu})^2 \right\}$$

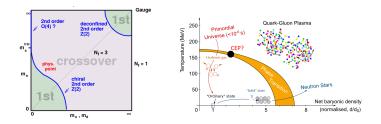

This gluon mass term can be motivated in several ways

- phenomenologically from lattice data of the Landau gauge gluon propagator saturating in the IR
- Residual ambiguity after non-complete gauge-fixing in Fadeev-Popov procedure due to presence of Gribov copies


Heavy Quark QCD Jan Maelger Outline QCD before CF QCD with CF

10

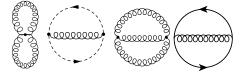
Some YM & QCD Correlation functions


[M. Pelaez, M. Tissier, N. Wschebor]

Heavy Quark

QCD Jan Maelger

QCD Phase Diagram


Several approaches on the market:

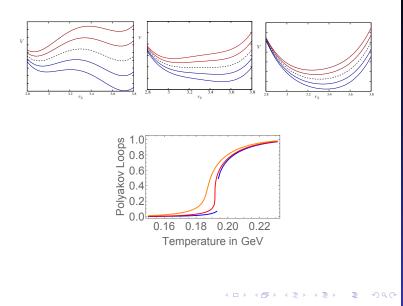
- Lattice QCD [de Forcrand, Philipsen, Rodriguez-Quintero, Mendes, ...]
- Dyson Schwinger Equations [Alkofer, Fischer, Huber, ...]
- Functional Renormalization Group [Pawlowski, Mitter, Schaefer...]
- Variational Approach [Reinhardt, Quandt, ...]
- Gribov-Zwanziger Action [Dudal, Oliveira, Zwanziger...]
- Matrix-, QM-, NJL-Model,... [Pisarski, Dumitru, Schaffner-B., Stiele, ...]
- Curci-Ferrari Model [Reinosa, Serreau, Tissier, Wschebor, ...]

Heavy Quark QCD Jan Maelger

Loop Expansion

$$V(r_3, r_8) = -\operatorname{Tr} \operatorname{Ln} \left(\not \partial + M + \mu \gamma_0 - ig \gamma_0 \bar{A}^k t^k \right) \\ + \frac{3}{2} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 + m^2 \right) - \frac{1}{2} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 \right) \\ +$$

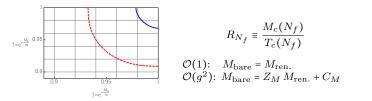
Heavy Quark QCD


Jan Maelger

Outline QCD before CF QCD with CF QCD after CF

VectorStock*

VectorStock.com/20463661


Qualitative Results

Heavy Quark QCD

Jan Maelger

Quantitative Results 1

 \rightarrow hard to compare between different approaches! However, Z_M, C_M are independent of N_f at $\mathcal{O}(g^2)$, and observing

$$\frac{T_c(N_f = 3) - T_c(N_f = 1)}{T_c(N_f = 1)} \approx 0.2\%$$

allows for:

$$\underbrace{\frac{\operatorname{if} C_M = 0}{R_{N_f'}/R_{N_f} \approx M_c(N_f')/M_c(N_f)}}_{W_{N_f} \equiv \frac{R_{N_f} - R_1}{R_2 - R_1}}$$

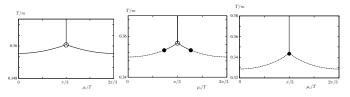
Heavy Quark QCD Jan Maelger Outline QCD before CF QCD with CF QCD after CF

Quantitative Results 2

$\mu = 0$	R_1	R_2	R_3	R_2/R_1	R_{3}/R_{1}	Y_3
Matrix [1]	8.04	8.85	9.33	1.10	1.16	1.59
GZ1 [2]	7.09	7.92	8.40	1.12	1.19	1.58
GZ2 [2]	9.45	10.25	10.72	1.08	1.13	1.58
CF 1-loop [3]	6.74	7.59	8.07	1.13	1.20	1.58
CF 2-loop [2]	7.53	8.40	8.90	1.12	1.18	1.57
Lattice [4]	7.23	7.92	8.33	1.10	1.15	1.59
DSE [5]	1.42	1.83	2.04	1.29	1.43	1.51

Heavy Quark QCD

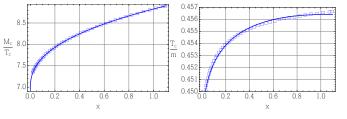
Jan Maelger


Outline

QCD before CF QCD with CF QCD after CF

 \rightarrow The overall good agreement seems to suggest that the underlying dynamics is well-described within (Curci-Ferrari) perturbation theory.

- [1] Kashiwa, Pisarski, Skokov (2012) [2] JM, Reinosa, Serreau (2017+18)
- [3] Reinosa, Serreau, Tissier (2015) [4] Fromm, Langelage, Lottini, Philipsen (2012)
- [5] Fischer, Luecker, Pawlowski (2015)


Imaginary chemical potential $\mu = i\mu_i$

The vicinity of the tricritical point is approximately described by the mean field scaling behavior

$$\frac{M_c(\mu_i)}{T_c(\mu_i)} = \frac{M_{\text{tric.}}}{T_{\text{tric.}}} + K \left[\left(\frac{\pi}{3}\right)^2 - \left(\frac{\mu_i}{T_c}\right)^2 \right]^{\frac{2}{5}}$$

[de Forcrand, Philipsen (2010); Fischer, Luecker, Pawlowski (2015)]

Heavy Quark QCD Jan Maelger Outline QCD before CF QCD with CF QCD after CF

18/21

Imaginary chemical potential $\mu = i\mu_i$

$\mu = i\pi T/3$	R_1	R_2	R_3	R_2/R_1	R_{3}/R_{1}	Y_3
Matrix [1]	5.00	5.90	6.40	1.18	1.28	1.56
GZ1 [2]	5.02	5.92	6.43	1.18	1.28	1.57
GZ2 [2]	7.51	8.34	8.82	1.11	1.17	1.58
CF 1-loop [3]	4.74	5.63	6.15	1.19	1.30	1.57
CF 2-loop [2]	5.47	6.41	6.94	1.17	1.27	1.57
Lattice [4]	5.56	6.25	6.66	1.12	1.20	1.59
DSE [5]	0.41	0.85	1.11	2.07	2.70	1.59

Heavy Quark QCD

Jan Maelger

Outline

QCD before CF QCD with CF QCD after CF

 \longrightarrow The Y₃ values are in overall very good agreement between all cases, one loop models and higher order ones.

- [1] Kashiwa, Pisarski, Skokov (2012) [2] JM, Reinosa, Serreau (2017+18)
- [3] Reinosa, Serreau, Tissier (2015) [4] Fromm, Langelage, Lottini, Philipsen (2012)
- [5] Fischer, Luecker, Pawlowski (2015)

QCD after CF - conclusions

VectorStock" VectorStock.com/20162772

Heavy Quark QCD

Jan Maelger

Outline QCD before CF QCD with CF QCD after CF

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Conclusion

Done:

Implement Curci-Ferrari as an alternative method to non-pert. approaches in IR QCD

- Correlation functions at first orders
- chiral symmetry breaking
- robust perturbative description of the heavy quark phase diagram

۱...

Outlook:

We will keep pushing the model to see where it takes us!!

- chiral phase transition
- transport coefficients
- Off-equilibrium thermodynamics

۰...

Heavy Quark QCD

Jan Maelger

Dutline