AN INTRODUCTION TO HADRONIC PHYSICS

Laure Massacrier Institut de Physique Nucléaire d'Orsay

JRJC 2018, Lege-Cap Ferret, 15-19 october 2018

« Oysters and nuclear physics have a lot in common. When you see an oyster it looks ugly but if you open it it is beautiful. Like the beauty of nuclear physics.» – Lucia Caceres 16/10/2018

This statement also holds for hadronic physics...

□ The structure of matter :

□ Inside the atom : the nucleus is made up of nucleons (protons, neutrons) which are made up of quarks and gluons

• Only few percent of the proton mass comes from the mass of its constituents. The remaining mass comes from interactions.

We are not stardust, we are (virtual) gluons!

THE ELEMENTARY BUILDING BLOCKS OF MATTER

- □ Fermions (spin ½)
 - Divided into three generations of:
 - quarks
 - leptons
 - ◆ First generation : lightest and most stable particles
 → the constituents of all stable matter in the universe
- \Box Gauge Bosons (spin I) \rightarrow the force carriers
- □ Higgs boson (spin 0) → gives mass to elementary particles of the standard model
- □ Antiparticles : same mass as particle but opposite charge

- □ Hadrons are built from the elementary blocks of matters:
 - Mesons : I quark + antiquark (eg. pion)
 - Baryons : 3 quarks (eg. proton, neutron)

Standard Model of Elementary Particles

THE FOUR FUNDAMENTAL FORCES AND THEIR CARRIERS

Gravitational interaction			\sim	Electromagnetic interaction	
Acts on	Mass-Energy	Gravitational force binds the solar syst	Electromagnetic force binds atoms	Acts on	Electric charge
Particles experiencing	All			Particles experiencing	Electrically
Particles mediating	Graviton				charged
	(not yet observed)			Particles mediating	Photon
Strenght at ~ 10 ⁻¹⁷ m	10-41			Strenght at ~ 10 ⁻¹⁷ m	I.
Weak interaction		. 🔪		Strong interaction	
Acts on	flavours	Weak force in radioactive decay		Acts on	Color charge
Particles experiencing	Quarks, leptons			Particles experiencing	Quarks, gluons
Particles mediating	W+/- , Z			Particles mediating	Gluons (8)
Strenght at ~ 10 ⁻¹⁷ m	I 0 ⁻⁴		Strong force binds the nucleus	Strenght at ~ 10 ⁻¹⁷ m	60
			Strong Interaction + Charge Up Quark Proton Up Quark	Down Quark Neutron	Strong Interaction Nucleus Proton Neutron

THE FOUR FUNDAMENTAL FORCES AND THEIR CARRIERS

HADRONIC PHYSICS: FROM QUARKS TO HADRONS

- □ Hadronic physics studies the structure, the properties and the interactions of the hadrons in terms of quarks and gluons
- The underlying theory is Quantum ChromoDynamics (QCD) : the theory of strong interaction between quarks and gluons
- □ The goal is to use our understanding of QCD to qualitatively describe a wide array of hadronic phenomena, ranging from terrestrial nuclear physics to the behaviour of matter in the early universe

A (non exhaustive) list of few key open issues in hadronic physics :

- How does the proton mass arise from its constituents?
- How does the proton spin arise from its constituents ?
- What is our degree of understanding of QCD?

More generally, understand the quark and gluon structure of hadrons based on QCD

- Can we determine precisely the parameters of QCD? (Λ_{QCD} , QCD vaccuum parameter, mass of quarks)
- What is the origin and dynamics of confinement?
- What is the origin and dynamics of chiral symmetry breaking?
- What are the roles of quarks and gluons in nuclei and matter under extreme condition?
 - → From the modification of the quark gluon structure of a nucleon when it is immersed in a nuclear medium within a nucleus to the novel phases and behavior of matter in neutron stars or the early universe

THE BASICS OF QUANTUM CHROMODYNAMICS (QCD)

□ QCD is a quantum field theory with similarity and differences with respect to Quantum ElecroDynamics (QED) describing the electromagnetism interaction

	QED	versus	QCD		
Charge types	+,-	Charge types	3 color charges (red, green, blue)		
Mediator properties	photon, massless, neutral	Mediator properties	8 gluons , massless, color charged		
Interaction with	electrically charged objects	Interaction with	Interaction with color charged objects (quarks, gluons		
Range and strenght of intera	ction weaker and infinite range	Range and strenght o	Range and strenght of interaction stronger and short range		
Fundamental vertices		Fundamental vertices	5		
γ	 Why'd you ignore the guy who list with other photons! With other photons! I do not interact. With other photons! I do not interact. I do not int	g q Analogous to photo	on 3-gluon vertex		
Coupling constant $\alpha = e^2/4\pi$	= 1/137	exchange of QED $\alpha_s = g_s^2/4\pi \sim$	Strong consequences on the theory		

8

IMPORTANT FEATURES OF QCD

□ What is color?

- The fundamental « charge » of QCD
- ✤ A conserved quantum number
- Three colors r, g, b (and three anti-colors r, g, b)
- Solutions carry color charges (naively expect 9 gluons \rightarrow but 8 realised by nature (coulor octet + singlet))
- ↔ Leptons and other gauge bosons (γ , W, Z) → no color charge → don't participate to strong interaction
- ↔ Emission/Absorption of gluons by quarks changes color of quarks : $q_i \rightarrow g_{ij} + q_j$

Color blindness and confinement

- Experimental evidence :
 - We don't observe free quarks in nature
 - Quarks are confined within hadrons (color neutral objects)

Direct consequence of gluon self-interaction

 $4 \alpha_{\rm s}$

 $V_{\rm QCD}(\boldsymbol{r}) = -$

- What happens if you try to separate a $q\bar{q}$ pair?
 - Gluon tube between quarks elongates
 - Strong force get stronger with the distance
 - As soon as there is enough energy in the system a new quark-antiquark pair will be created

Confinement and asymptotic freedom

Confinement :

- For $Q^2 < I$ GeV
- For Distance ~ Ifm (typical size of hadrons)
- Particle we observe in nature are in the regime of non-perturbative QCD

Asymptotic freedom :

- At short distances the effective coupling between quarks decreases logarithmically
- Under such conditions quarks and gluons appear to be quasi-free
- Perturbative QCD regime $Q^2 >> I \text{ GeV}$

□ Perturbative QCD (pQCD)

* In the high-energy (high momentum transfer) regime, perturbative approach is applicable to QCD

- \rightarrow good predicting power for yields, cross sections, kinematic distributions
- ↔ Order by order expansion in α_s with $\alpha_s << 1$, observable f can be written:

$$f = f_1 \alpha_s + f_2 \alpha_s^2 + f_3 \alpha_s^3 + \dots$$

* Where only the first, two or three terms are calculated and the others are assumed to be negligible

The f factors are calculated via Feynman diagrams

□ Factorisation theorem and pQCD

- ✤ Factorisation of a process : hard part ⊗ soft part
- hard part = calculable with perturbative QCD
- Soft part = « universal » distributions (FF, PDF, GPD...)
- → Importance of precise experimental measurements of the universal distributions Ex: determine PDFs in lepton-proton collisions and use them to compute proton-proton cross sections at LHC

Examples for the proton case

Elastic diffusion

Deep Inelastic Scattering ep \rightarrow e'X

Form factor

Parton distributions

ELEMENTS OF QCD : THEORETICAL TOOLS

In the low-energy (low momentum transfer) regime, various approaches to non-perturbative QCD are possible

Lattice QCD

- Quarks and gluons are studied on a discrete space-time lattice
- Fields representing quarks are defined at lattice sites, while gluon fields are links connecting sites
- Only nearest neighbour interactions considered
- ✤ For infinitely large lattice and infinitesimally sites close to each other → QCD vacuum recovered
- Great predictive power: hadron masses, temperature of deconfinement, ...

Phys. Rev. D79 034504 (2008)

□ Effective theories

Approximation to an underlying physical theory at a chosen energy scale. Use of effective Lagrangians equivalent to QCD one.
 Ex : Chiral perturbation theory : interaction of hadrons with pions and kaons (Goldstone bosons of spontaneous chiral symmetry breaking)

→ Jan Maelger « Introduction à Curci-Ferrari : Résultats et questions ouvertes »

ELEMENTS OF QCD : EXPERIMENTAL TOOLS

Test of QCD can be done with different processes:

Electron-Positron annihilation :

- No hadrons in initial state
- Production of multi-jets \rightarrow discovery of the gluon, gluon self-coupling

✤ Deep inelastic scattering :

- Probe the insides of hadrons using electrons, muons and neutrinos
- One hadron in the initial state
- First convincing evidence of the existence of quarks

✤ Hadron-Hadron collisions :

- Two hadrons in initial state
- Rich variety of quantum states available for particle production \rightarrow spectroscopy of hadrons, hadron properties
- \star Heavy quarkonia : ratios of hadronic over radiative decay proportional to α_s

Heavy quarkonia

EXPERIMENTAL VALIDATIONS OF QCD: EVIDENCE FOR GLUONS AND GLUON SELF-COUPLING

□ With Electron-Positron annihilation

 e^+e^- collider, $\sqrt{s} = 12-47$ GeV 3-jet event, JADE detector at PETRA, DESY (1977)

- Quarks radiate gluons
- Because of confinement, fragments hadronises into jets
- Leading order correction to the process $e^+e^- \rightarrow q\overline{q}$ (two-jet final state)
- Experimental signature: 3-jets in the final state

$$\frac{\#3-\text{ jet events}}{\#2-\text{ jet events}} \approx 0.15 \sim \alpha_s$$

4-jet events allow to test the existence of gluon self coupling

 e^+e^- collider, $\sqrt{s} \rightarrow 200$ GeV 4-jet event, ALEPH detector at LEP-I

15

EXPERIMENTAL VALIDATIONS OF QCD: EVIDENCE FOR QUARKS

 $Q^2 = -q^2 = -(k - k')^2$

X(p')

Mass

W

→ proton breaks up

□ With Deep Inelastic Scattering:

→ high Q²

e

Simple idea : look inside the proton using an electron « microscope »

e

e

- * Scattering described by two independent variables (x, Q^2)
- ✤ F₂ → proton structure function gives the probability of finding a quark carrying fraction x of proton momentum (weighted by electric charge of quark)

 $e^{\pm}(k)$

- ✤ F₂(x) depends on x but not on q² → scale invariance
 - ightarrow indicates evidence for point like particles inside proton

 x = fractional momentum of struck quark
 y = Pq/Pk = elasticity, fractional energy transfer in proton rest frame

v = E - E' = energy transfer in lab

$$Q^2 = sxy$$
 s = CMS energy
 $x = \frac{Q^2}{2M_V}$ (Bjorken x)

SLAC, 1972

EXPERIMENTAL VALIDATIONS OF QCD: EVIDENCE FOR COLOR

With Electron-Positron annihilation

But, we measure $e^+e^- \rightarrow hadrons$ not $e^+e^- \rightarrow q\overline{q}$

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 3\sum_q Q_q^2$$

Sum over all quarks flavours (accessible at a given \sqrt{s})

$$R(\sqrt{s} > 2m_{s} \sim 1 \,\text{GeV}) = 3\left(\left(\frac{2}{3}\right)^{2} + \left(\frac{-1}{3}\right)^{2} + \left(\frac{-1}{3}\right)^{2}\right) = 2 \qquad u,d,s$$

$$R(\sqrt{s} > 2m_{c} \sim 3 \,\text{GeV}) = 3\left(\left(\frac{2}{3}\right)^{2} + \left(\frac{-1}{3}\right)^{2} + \left(\frac{-1}{3}\right)^{2} + \left(\frac{2}{3}\right)^{2}\right) = \frac{10}{3} \qquad u,d,s,c$$

$$R(\sqrt{s} > 2m_{b} \sim 10 \,\text{GeV}) = 3\left(\left(\frac{2}{3}\right)^{2} + \left(\frac{-1}{3}\right)^{2} + \left(\frac{-1}{3}\right)^{2} + \left(\frac{2}{3}\right)^{2} + \left(\frac{-1}{3}\right)^{2}\right) = \frac{11}{3} \qquad u,d,s,c,b$$

For a single quark flavour

Fig. 11.3 Ratio R of (11.6) as a function of the total e^-e^+ center-of-mass energy. (The sharp peaks correspond to the production of narrow 1^- resonances just below or near the flavor thresholds.)

MEASURING « UNIVERSAL » DISTRIBUTIONS

- □ Example : Measure pdf with Deep Inelastic Scattering:
- Factorisation hypothesis

- ✤ 15 years of measurements at HERA (DESY)
- Good precisions for u, d quarks, gluons
- But still many unknown:
 - parton distributions at very low x
 - modification of pdf in nuclear matter
 - generalised descriptions (GPDs, TMDs)

Structure of the proton – simple view - HERA ! Quark splits into quarks into quarks

DEEPER IN THE UNDERSTANDING OF THE NUCLEON STRUCTURE

□ The example of the experiments conducted at Jefferson Lab (USA)

- ✤ e⁻ beam at 12 GeV (4 experimental hall A, B, C, D)
- ✤ 3D spatial maps of the nucleons :
 - With Generalised parton distributions (GPDs)
 - Accessed through Deeply Virtual Compton Scattering (DVCS) : ep \rightarrow e'p' γ

Hard part: photon-quark interaction and reemission of real photon

Soft part: GPDs

3D SPATIAL MAPS OF THE NUCLEONS: THE GPDs

Proton tomography

Faster quarks (valence) at the core of the nucleon. Slower quarks (sea) at its periphery

Quark longitudinal momentum

STUDY QCD UNDER EXTREME CONDITIONS WITH ULTRA-RELATIVISTIC HEAVY ION COLLISIONS

□ The example of the ALICE experiment at CERN

 Study of the Quark Gluon Plasma (GQP) in Pb-Pb collisions

- ◆ QGP : Deconfined state of nuclear matter
 → quarks and gluons evolve freely during a short amount of time
- ✤ High temperature and pressure needed!
- Conditions similar to the early universe

ULTRA-RELATIVISTIC HI COLLISIONS TO RECREATE THE CONDITIONS OF THE EARLY UNIVERSE

- In the early stages of the Universe (few µs after Big Bang), quarks and gluons were evolving freely due to the large temperature and energy density
- As the universe cooled down, they were confined inside the hadrons
- ✤ To study confinement → recreate this stage of matter in the lab
- ★ From lattice QCD → T_c ~ 170 MeV (10⁵ times t° inside sun) → ε_c ~ 1 GeV/fm³ (5 times ordinary matter)

How to reach those conditions in lab?

Collisions of High-Energy Ultra-Relativistic Heavy Nuclei

 \rightarrow Vary type of nuclei and energy to explore different regions of the phase diagramme of nuclear matter

THE PHASE DIAGRAMME OF NUCLEAR MATTER

- What is the state of QCD matter under specific conditions of temperature and baryon density?
- What is the nature of the phase transition? Is there a critical point?
- \diamond Can we write down the EoS of nuclear matter? \rightarrow interesting for astrophysics

HOW TO CHARACTERISE THE QGP EXPERIMENTALLY?

- QGP not « directly » accessible to observation (last only few fm/c!)
- Need a combination of several probes and a good reference system (without QGP formation)
- Also need probes unaffected by the QGP to serve as reference for other probes (Z, Drell-Yan)

Energy loss by quarks, gluons and other particles

Suppression of quarkonia

HOW TO CHARACTERISE THE QGP EXPERIMENTALLY? THE EXAMPLE OF CHARMONIA (cc̄)

- Heavy quarks created early in the collision (before the QGP is formed)
- * While going through the QGP (depending on its temperature) the less bound charmonia will be suppressed by color screening
- ◆ If chamonium yields in PbPb collisions are suppressed with respect to the «scaled» yield from pp collisions → evidence for QGP formation
- ↔ Unfortunatelly not so clear (other mechanisms at play \rightarrow regeneration of charmonium at LHC energies)

* Important to well understand charmonium formation and production rates in « simplier » systems (not so simple in fact!)

Hadronization

HOW TO CHARACTERISE THE QGP EXPERIMENTALLY? THE EXAMPLE OF CHARMONIA (cc̄)

Important to well understand charmonium formation and production rates in « simplier » systems : the short story

A tool to study Cold Nuclear Matter Effects

Understand charmonium production rated in «normal» nuclear matter (without QGP formation)

Various CNM effects at play: gluon shadowing, coherent energy loss, nuclear absorption...

Experimental tools : nuclear modification factor (compare pPb to pp)

A tool to study deconfinement

Understand charmonium suppression and recombination in the QGP

Experimental tools: nuclear modification factor (compare PbPb to pp), elliptic flow...

HADRON STUCTURE AND SPECTROSCOPY : THE EXAMPLE OF THE COMPASS EXPERIMENT

COMPASS (Common Muon Proton Apparatus for Stucture and Spectroscopy) located at SPS (CERN)
 ★ High intensity muon and hadron beams (160 – 200 GeV) on target (target can be polarised! → spin physics measurements)
 ★ Set of measurements to study the structure of hadrons (DVCS, SIDIS, Polarized Drell-Yan)

Artistic view of the 60 m long COMPASS two-stage spectrometer. The two dipole magnets are indicated in red.

♦ COMPASS can also study Cold Nuclear Matter effect at low energy with nuclear target
 → Charles-Joseph Naïm « Cold Nuclear Matter effects in Drell-Yan process and charmonium production »

CONCLUSIONS

Hadronic physics is a (vast!) domain which studies the structure, the properties and the interactions of the hadrons in terms of quarks and gluons

□ In this afternoon session you will have a partial « aperçu » of the domain

14:00		
	Introduction à la physique hadronique	Laure MASSACRIER
	VVF Villages Lège-Cap-Ferret	14:30 - 15:00
15:00	Introduction à Curci-Ferrari : Résultats et questions ouvertes	Jan Maelger
	VVF Villages Lège-Cap-Ferret	15:00 - 15:30
	Coffee break	
	VVF Villages Lège-Cap-Ferret	15:30 - 16:00
16:00	Cold nuclear matter effects in Drell-Yan process and charmonium production	Charles-Joseph Naïm
	VVF Villages Lège-Cap-Ferret	16:00 - 16:30

HADRON STUCTURE AND SPECTROSCOPY : THE EXAMPLE OF THE COMPASS EXPERIMENT

* The proton spin puzzle (quarks do not carry all the nucleon spin, in fact they carry only a small fraction)

