

Caractérisation du système de lecture du CCD dans DAMIC

Latifa KHALIL

Introduction générale sur DAMIC

- DAMIC « DArk Matter In CCDs » (Détecter la matière noire):
 - Experience de detection directe de matière noire avec des CCD épais refroidis.
 - Expérience située à Snolab, CANADA, Ontario
 - Institutions Principales : LPNHE, Université de CHICAGO et FERMILAB
 - Damic M (Modane) : financé à partir de fin 2018 pour 5 ans
 - tout en restant relativement bref (5/7 ans au total) analyse et publications comprises

DAMIC M

- 50 CCDs (cible1kg) au LSM
- CCD : 6K x 6K x 1 mm, masse 20 g
- Skipper readout pour un bruit **sub-eV**
 - Mesure non-destructive de la charge
 - Mesure rapide (élimine le bruit en 1/f) mesure N fois (élimine le bruit thermique ≈ 1/√N)
- La résultat de bruit de cette expérience doit être divisée par 20 par rapport aux résultats d'avant

Intérêt du CCD

- Une pixellisation importante
- Une grande gamme dynamique
- Une bonne linéarité
- Un bruit relativement faible
- Seuil en énergie bas = 50 eV

premier CCD DAMIC de DECam!

CCD : Principe de fonctionnement

- On peut le caractériser par 4 opérations :
 - Détection des interactions
 - Génération de paires électron-trou
 - Accumulation des charges
 - Capacité MOS (métal-oxydesemiconducteur)
 - Transfert des charges vers circuit de lecture
 - Transfert de proche en proche
 - Lecture de l'information
 - Génération d'une tension au niveau du CCD puis transfert vers électronique externe et digitalisation

Mon projet de thèse

- Mesure de bruit et caractériser le prochain ASIC de lecture
- Conception, développement et test d'une électronique intégrée de lecture et de contrôle des CCD
- Optimisation du rapport signal à bruit par le biais de filtrage numérique

Système Utilisé(Paris)

Aspic : Flex

- c'est un circuit de lecture de CCD
- Differential output
- Amplificateur de tension (déterminer le gain)
- Deux trous métalliques mécaniques reliés à la terre seront implémentés sur le PCB afin d'amener le froid à Aspic à travers du plan de masse

BEB3

- Il est conçu pour l'ASPIC
- Numérise la sortie différentielle analogique de l'ASPIC et il transfert les donnée au FPGA
- Il contient :
 - ADC 18 bits (4 canaux)

FPGA

- contrôle tous les signaux entrants et sortants de la carte et génère une séquence temporelle pour l'ASPIC.
- Il contient une mémoire FIFO pour enregistrer les données

Fonctionnement

- Un trigger déclenche la séquence des horloges envoyées à l'ASPIC
- les signaux analogiques différentiels sont numérisés en un mot de 18 bits.
- À l'intérieur du FPGA, les bits sont fusionnés en mots et stockés dans un FIFO à deux canaux
- Lorsque la mémoire est pleine, l'acquisition du système s'arrête et les données numériques sont extraites par Ethernet.
- Les Fifo sont vidés et un nouveau cycle de lecture peut commencer. 11

Cryostat

Etage de lecture

Mode de lecture : Clamp & Sample(Transparent)

Mode DSI(Dual Slope Integrator)

• DSI combine le double échantillonnage corrélé avec l'intégration de signal de CCD

Mesure de Gain

- Entrée : pulse d'amplitude = 100 mV
- Mode : transparent

signal

Conv

Clamp

Latifa KHALIL

Setting	Gain	S.Dev adu
AF1	1	1.05
0000	1.6	0.36
0001	1.95	0.67
0010	2.31	0.58
0011	2,43	0.56
0100	2.89	0.51
0101	3,06	0.52
0110	3,37	0.47
0111	4.1	0.46
1000	4.87	0.45
1001	5,12	0.44
1010	5,37	0.43
1011	5,57	0.44
1100	5,81	0.43
1101	6,12	0.42
1110	6.23	0.417
1111	6,42	0.413

Variation du bruit en fonction du gain(Mode transparent)

Bruit ramené à l'entree

Setting	Gain	RC 1111 / RMS (adu)
AF1	8	2.38
0000	12.8	1.9
0001	15.6	1.96
0010	18.48	1.98
0011	19.44	2.17
0100	23.12	2.04
0101	24.48	2.19
0110	26.96	2.188
0111	32.8	2
1000	38.96	1.81
1001	41.68	1.99
1010	42.96	1.98
1011	44.56	1.99
1100	46.48	2
1101	48.96	2.04
1110	49.76	2.46
1111	51.3	2.64

Mode DSI : Mesure de bruit

Freq= 33 khz Mode : (Af1 / Gain max) RC = 1111(251 ns) $T \underline{RU} = 1 \mu s$ RD 10^{3} Gain total : $G_T = 2 * GAIN * \frac{T_{RU,RD}}{RC}$. 10 Af1 :G = 8 FFT Gain max = 51,3 10°

FFT

Fuite en fonction de Gain

- On a un but de mesurer le bruit à basse fréquence, on sort le Clamp de la séquence .
- On a remarqué qu'il y a une fuite au niveau des capacité dans de l'ASPIC
- Cette fuite diminue avec le gain

19

• Au Mode AF1 :la fuite est nulle

La fuite a un effet important pour la stabilité du détecteur mais pas pour le bruit, parce qu'on va lire sur des échelle de temps de 1-10 µs.

gain	F = 50 khz fuite en μv	F = 10 khz /sec
0000	140.94	71.89
0001	135.81	69.08
0010	132.43	67.26
0011	127.18	64.71
0100	112.13	56.92
0101	106.59	54.22
0110	103.2	52.78
0111	98.42	49.89
1000	73.94	37.03
1001	68.02	34.13
1010	64.98	32.57
1011	59.69	30.05
1100	44.53	22.46
1101	39.52	19.88
1110	36.12	18.14
1111	30.98	15.69
AF1	0.022	0.000014

Mesure de bruit (1)

- Mode Transparent
- Entrée liée à la masse
- On remarque que:
 - au début de chaque signal il y a une oscillation
 - Il y a un pic à f = 10 khz avec le FLEX et un pic à f = 5 khz sans le flex

Mesure de bruit (3)

- Mode Transparent
- Entrée liée à la masse
- Fréquence de lecture : 100 kHz
- Durée de TS = 1.8µs
- Augmentation de la capacité de découplage(ADC)

Clamp sur chaque pixel

Etudes des ADC

Conversion analogique numérique

- Pourquoi convertir ?
 - Pour qu'on puisse envoyer les données lus par le CCD au PC via FPGA
- C'est quoi la conversion ?
 - Echantillonnage
 - Consiste à discrétiser le temps
 - Conséquences:
 - Périodisation de l'espace de fréquence → repliement/Shannon
 - Bruit de gigue d'horloge: Un gigue sur le signal d'horloge entraine une incertitude sur l'instant d'échantillonnage et par conséquent une erreur sur la valeur du signal échantillonné

- Quantification
 - Consiste à discretiser l'amplitude
 - Conséquences:
 - Erreur de quantification
 - Bruit de quantification: Le bruit de quantification quant à lui est obtenu à partir du signal temporel généré par la simulation

Sur-échantillonnage : à quoi sert ?

• C'est une méthode consiste à échantillonner le signal à une fréquence très élevée, beaucoup plus que ne l'exigerait le Théorème de Shannon

- Le sur-échantillonnage répartit la puissance de bruit de quantification sur un domaine spectral plus grand ce qui a pour effet direct une diminution de la densité spectrale de puissance
- C'est une bonne solution pour diminuer le bruit de conversion car il permet d'éloigner la fréquence de signal de la fréquence d'échantillonnage 24

Carte d'evaluation de l'ADC

- ADC 18 bits 15 Ms/s (LTC2387-18)
 - oversampling : 150 à 50 khz (vitesse actuelle)
 - Entrée différentielle

Cette carte fonctionne seulement avec une vitesse max égale à 5.5 Mhz

Carte d'evaluation de l'ADC (2)

• <u>Mesure du bruit : entrée liée au Vréf Fabriqué par l'ADC</u> (2.046V)

Fréquence	RMS(adu)	RMS(µV)
500 KHz	1.43	44,33
1 Mhz	1.43	44,33
1.5 Mhz	1.43	44,33
2 Mhz	1.43	44,33
2.5 Mhz	1.43	44,33
3 Mhz	1.43	44,33
3.5 Mhz	1.43	44,33
4 Mhz	1.43	44,33
4.5 Mhz	1.43	44,33
5 Mhz	1.43	44,33
5.5 Mhz	1.43	44,33

Carte d'evaluation de l'ADC (3)

- Régression sinusoïdale (à refaire avec la carte son):
 - Entrée : sinus F=500Hz, Amp=1vpp (générateur)

Future ...

- Implémenter le système avec le CCD actuel et faire la mesure de bruit et acquisition des images
- Par rapport à DAMIC–M on veut :
 - Optimiser le rapport signal/bruit avec le nouvel ASIC (diviser par 20)
 - Une lecture sur échantillonnage filtrage numérique avec un ADC rapide 15 MSPS
 - Implémenter le nouveau Système de Lecture avec un CCD Skipper