A High Granularity Timing Detector for the Phase II upgrade of the ATLAS detector system

Christina Agapopoulou - LAL

Journées de Rencontres Jeunes Chercheurs 2018

The High Luminosity LHC

HL-LHC:

- Scheduled to start at 2026
- $\bullet~\times$ 5-7 increase in instantaneous luminosity
- One of the main challenges of the HL-LHC will be pile-up interactions

Pile-up: all interactions happening around the interaction of interest

- Now: 60 PU interactions/crossing
- HL-LHC: 200!

the ATLAS experiment has to maintain tracking and vertexing performance under these harsh conditions!

At the HL-LHC:

- x3 more PU interactions/event
- average vertex density increases from 0.4 to 1.5 vertices/mm
- vertex density can reach up to 4 vertices/mm

Tracking performance:

- $\bullet\,$ track matching degrades with $\eta\,$
- merged vertices
- ambiguites in the track to vertex association

Motivation for time measurement

Time information is complementary to space information. It can be used to:

- mitigate pile-up by rejecting out-of-time tracks
- Improve jet reconstruction, lepton isolation, b-tagging, Vertex ID and track to vertex association

At HL-LHC: vertex spread in time $\sim 180~ps.$ Time resolution of 30 ps can greatly help disentangle merged-in-space vertices

What is the HGTD?

High Granularity Timnig Detector: planar, disk-like detector that provides timing information for forward objects

Detector overview

- Parameters
 - $2.4 < |\eta| < 4$
 - thickness in z = 125mm
 - 354M channels
- Requirements
 - Time resolution = 30 ps
 - Withstand radiation up to 4.5 $10^{15}\ n_{eq}/cm^2$ and 4.5 MGy
 - Occupancy < 10%
 - operation at -30°C
- Design:
 - 4 Si sensor layers based on each side of 2 cooling plates
 - 2-3 hits per particle
 - 1.3×1.3 mm² silicon pixels to minimize occupancy and detector capacitance

$$\sigma_t^2 = \sigma_{\text{sensor}}^2 + \sigma_{\text{electronics}}^2$$

• Sensor:

- Landau fluctuations due to non-uniformity in the energy deposition
- Signal variation due to spatial non-uniformity of the field
- Landau term is dominant in our case

Contributions of the electronics to the time resolution:

$$\sigma_{elec}^{2} = \sigma_{jitter}^{2} + \sigma_{TimeWalk}^{2} + \sigma_{digitization}^{2}$$

- Jitter: Noise contribution to the signal proportional to:
 - Detector Capacitance
 - Noise
 - Rise time

$$\sigma_{jitter} = \frac{N}{\frac{dV}{dt}} \sim \frac{t_{rise}}{\frac{S}{N}}$$

Electronics contribution to the time resolution

- Time Walk: large signals cross a constant threshold faster than small ones biasing the time measurement
 - can be corrected with a Time Over Threshold (TOT) measurement (offline).
 - Expecting < 10ps contribution after correction

• Digitization: Error due to the binning of the measurement digitization

- Fine digitization 20-40 ps
- negligible contribution

Sensor technology: Low Gain Avalanche Detectors

Low Gain Avalanche Detector (LGAD): n-on-p Si detector with extra doped p-layer

Gain = Charge in LGAD / Charge in p-n diode without amplification layer

- Internal amplififcation
 - Low gain \approx (10-50)
 - Increased S/N ratio
 - Excellent timing

Signal formation:

- Primary + gain (e,h) pairs
- I_{max} only depends on gain
- ${\, \bullet \,}$ rise time \propto sensor thickness

Electronics for the HGTD

• Requirements:

- Keep excellent LGAD time resolution
- Radiation hardness
- Operation in cold temperature
- low power consumption
- cope with HL-LHC bunch crossing and trigger rate
- Design:
 - LGAD time information is first measured and digitized by the "front-end" on-sensor electronics
 - Digital information is transfered to the periphery of the detector and later to the ATLAS central DAQ system (back-end)

Front End Electronics

A timing detector from the electronics point of view

• Sensor: seen as a current source in parallel with a "detector capacitance"

- C_d crucial to the electronics timing performance
- Should be as small as possible

Front End Electronics

• Preamplifier: amplifies and shapes the sensor signal

 $\bullet\,$ the preamplifier design impacts the rise time and S/N

Front End Electronics

• Constant threshold discriminator

- Measures the time the signal crosses a constant threshold
- Time of Arrival (TOA), Falling time (TOE), Time over Threshold (TOT)
- Signal digitization and sampling

ALTIROC ASIC

ALTIROC: 225 channel 2x2cm² ASIC to convert the LGAD signal into a time measurement

- Main analog components:
 - Preamplifier for signal amplification
 - Discriminator for the time measurement

- Main digital components:
 - Time-to-digital converters for digitization of the TOA and TOT signals
 - Buffers for signal storage until trigger reception

ALTIROC0: an analog prototype

Simplified version of the final ASIC

- only analog part (preamplifier + discriminator)
- 4 channels
- 2 design iterations

Testing configurations:

- Different preamplifier speeds (V1 and V2)
- Different preamplifier types (Voltage and transimpedance)
- ASIC alone or with a sensor
- calibration/testbeam

ALTIROC0 testing: Preamplifier Jitter

Jitter measurement:

- $\bullet\,$ First iteration of preaplifier (V1) found to be too slow
- $\bullet\,$ Second iteration with optimized preamplifier (V2) $\rightarrow\,35\%$ improvement
- TZ performs slightly worse than VPA

ALTIROC0 testing: Time Walk Correction

Time Walk Correction:

- Time-Over-Threshold (TOT) correction applied to the Time of Arrival (TOA)
- $\bullet\,$ Expected contribution to the time resolution < 10 ps after correction
- Voltage (VPA) and transimpedance (TZ) were studied

After correction, in both types of preamplifiers $\Delta \text{Residual}_{RMS}$ =10ps

ALTIROC0 testing: Testbeam

Testbeam measurements to estimate performance in more realistic conditions

- September 2017 and June 2018 at CERN
- 120 GeV pions
- Time resolution = convolution of sensor + electronics contributions

$$\sigma_t^2 = \sigma_{\textit{sensor}}^2 + \sigma_{\textit{elec}}^2$$

After correcting for the time walk, $\sigma_t \sim 40 \text{ ps}$

- The **HGTD** is a timing detector that can significantly improve the reconstruction of all physics objects and the selection of events of interest by mitigating **pile-up** interactions
- Its requirements to be radiation hard, compact and highly granular are well met with Si sensors, while the LGAD technology meets the time resolution requirements
- the ALTIROC ASIC integrates electronic components designed to measure time while keeping the excellent LGAD timing resolution
 - A first analog prototype has been fabricated
 - Various types of preamplifiers have been tested
 - Tests of the electronics alone show good performance in jitter and time walk correction
 - Testbeam campaigns with electronics+sensors \rightarrow 40 ps time resolution

LGAD characteristics

- 3 key parameters: rise time, signal/noise and power
 - Gain?
 - $\bullet~$ low gain $\rightarrow~$ less noise and power consumption
 - high gain → higher signal
 - optimized gain pprox 20
 - Sensor thickness?
 - thin sensors \rightarrow faster rise time and minimum Landau contributions
 - ${\ensuremath{\, \bullet }}$ thin sensors \rightarrow larger detector capacitance
 - optimized thickness 35-50 μm

Sensor Testing

- Time resolution decreases with gain
- Time resolution improves for lower temperatures
- Position specific measurements show fairly uniform behaviour

Sensor Testing: after irradiation

Sensors were irradiated by neutrons at the JSI research reactor in Ljubljana up to $6\times10^{15}~\rm n_eq/cm^2$ fluence

- $\bullet~$ Reduction of gain because dopants are removed $\rightarrow~$ need to operate at higher V bias
- $\bullet\,$ Increase of leakage current \rightarrow need to operate at T=-20-30 C
- \bullet electrically active defects in the bulk (area around amplification region) \rightarrow high fields in the bulk

