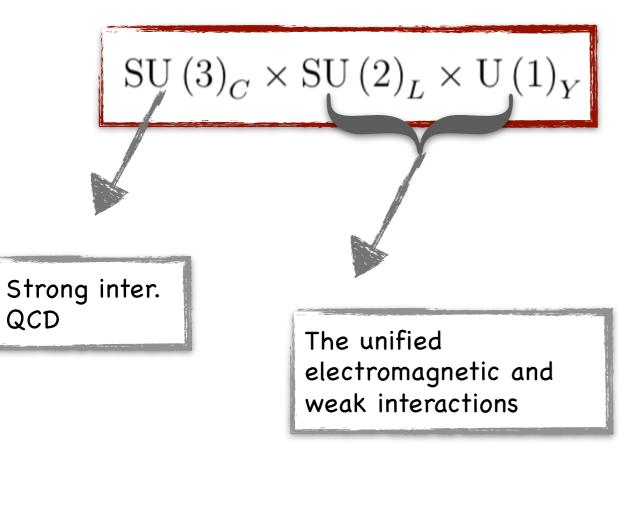


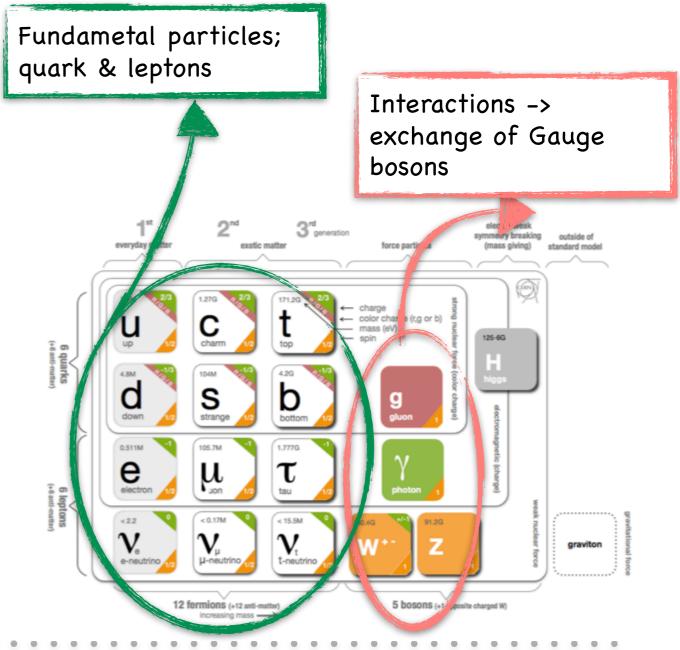
NIVERSITÉ Clermont Auvergne Auvergne MEASUREMENT OF THE TOP YUKAWA COUPLING WITH THE ATLAS DETECTOR AT LHC

Merve Nazlim AGARAS Supervisor: Djamel BOUMEDIENE

JRJC, 18 Oct, 2018

Outline

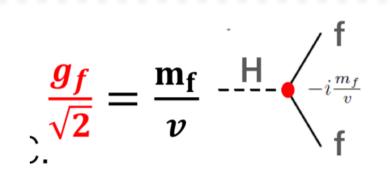

° Motivation

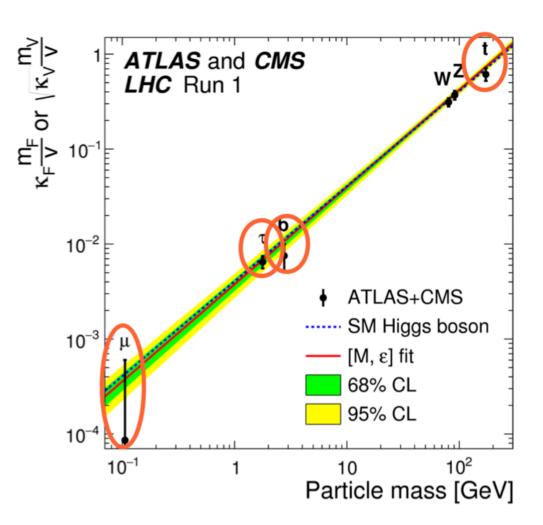

- ° Signatures
- ° 2LSS signature
 - Selection and background
 - Background estimation
 - BDT discriminant
- Fit
- Results
- •MEM on going study

Standard Model

•The Standard Model (SM) of particle interactions describes the structure of ordinary matter and the fundamental interactions of nature

- Re-normalisable, Lorentz inv QFT build upon local gauge symmetries of the Lagrangian
- The internal symmetries of the symmetry group

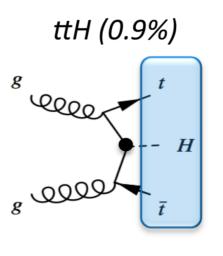




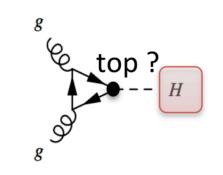
Higgs Couplings

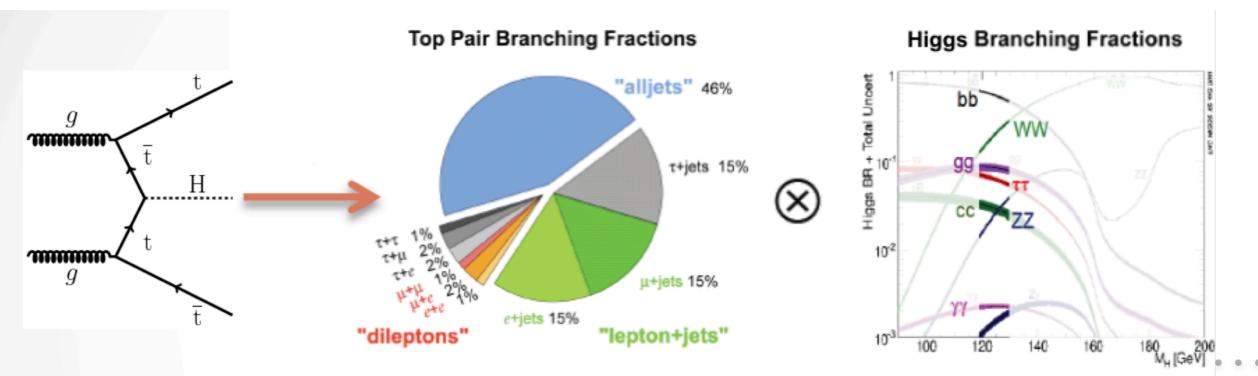
 To give gauge boson masses in the SM without losing gauge invariance in the weak interactions, a complex scalar field is introduced (4 dof)

- fermions can also couple to the scalar field and acquire mass in a way which preserves gauge invariance in the weak interaction
 - Yukawa interaction, describe the strength of the coupling of the fermion to the Higgs field
 - proportional to the mass of the fermion
 - arbitrary and can only be measured from experiments


Top Yukawa Coupling at LHC

 Higgs-Top quark Yukawa coupling has a strong impact on the Theory, eg. Predicted Vacuum Stability or Instability depends strongly on y_t

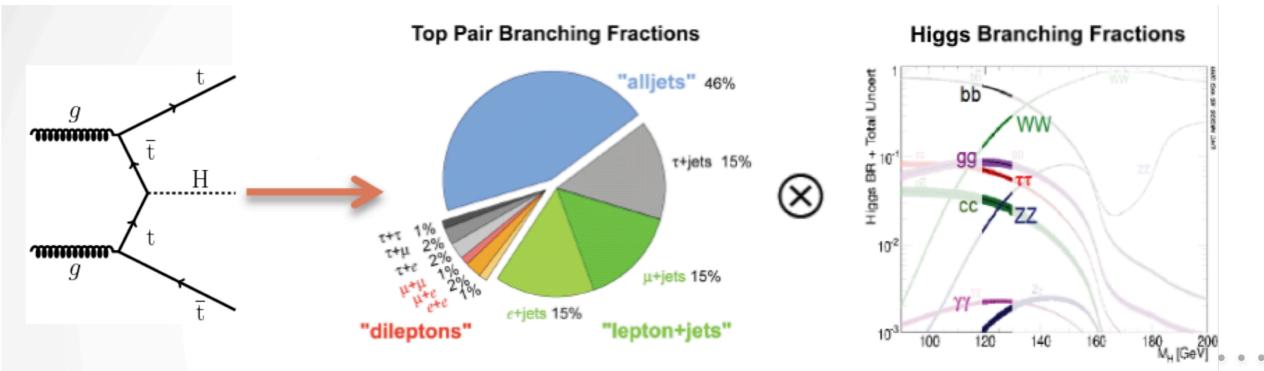

•Can be determined:


Indirectly obtained through measurement of top quark mass or observed through SM Higgs decaying in two photons and production of Higgs by gluon-gluon fusion

Direct measurement possible through ttH production by calculating the x-section of the process

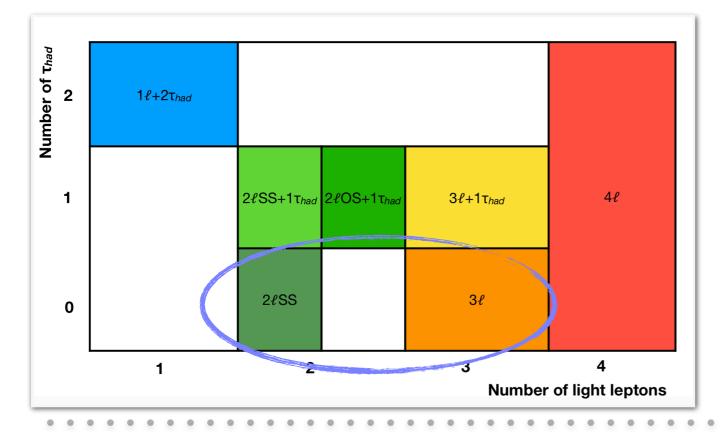
Gluon fusion (88% @13TeV pp)

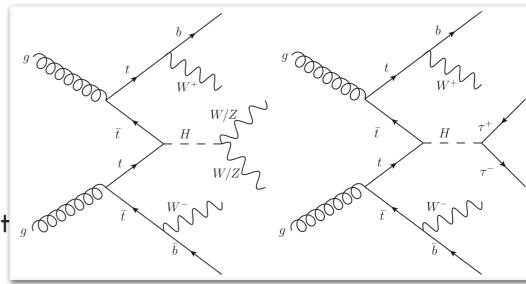
Top Yukawa Coupling at LHC

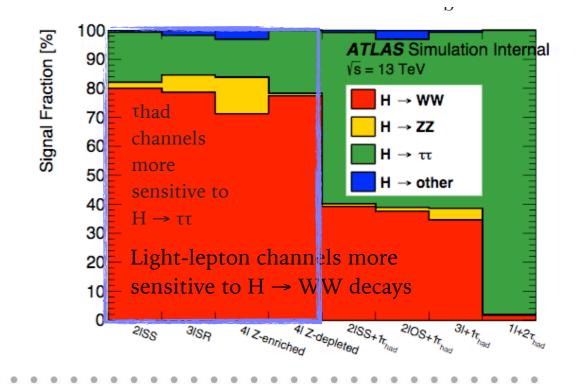

•Complex final states, with many objects: jets, b-jets, light leptons (l), hadronic taus (τhad), photons

<code>ottH</code> final state combines top pair decay signature and Higgs decay signature \rightarrow large number of possible final states

▷H → bb⁻: 4b + 2W ->Final state with largest BR from Higgs but with very large background contribution (t⁻t +jets)


 $H \rightarrow WW, \tau\tau, ZZ : 2b + multileptons ->Less background contamination$

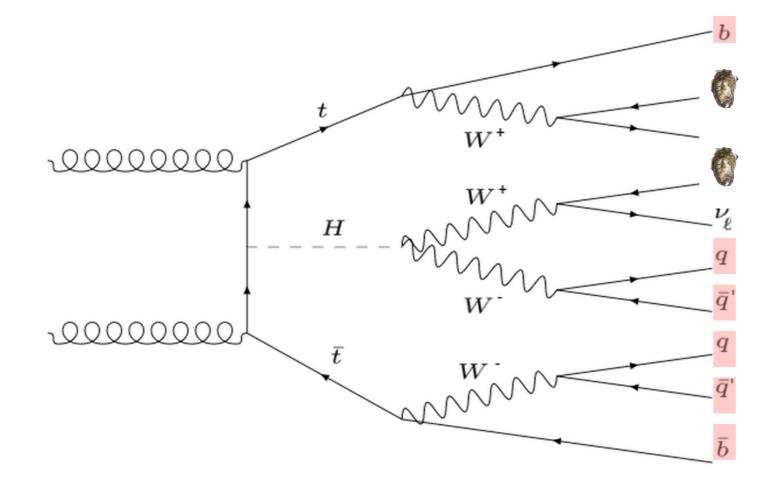

 ${}^{\scriptscriptstyle \triangleright} H \to \gamma \gamma$: 2b + 2 γ –>Very rare decay but very pure signal



ttH-Multilepton

- Targets Higgs decays to WW, ZZ and $\tau\tau$ with ≥ 2 (1light) lepton in their final state
- ° Analysis channels are defined wrt light leptons (l) and hadronic taus (τ_{had}) multiplicity (7 orthogonal channels)
- High lepton multiplicity and charge requirements are chosen to suppress backgrounds
- •MVA (multivariate analysis techniques) in lepton definitions to reject good fakes/non-prompt lepton
- °Event classified in the different regions using MVA

Personal Contributions

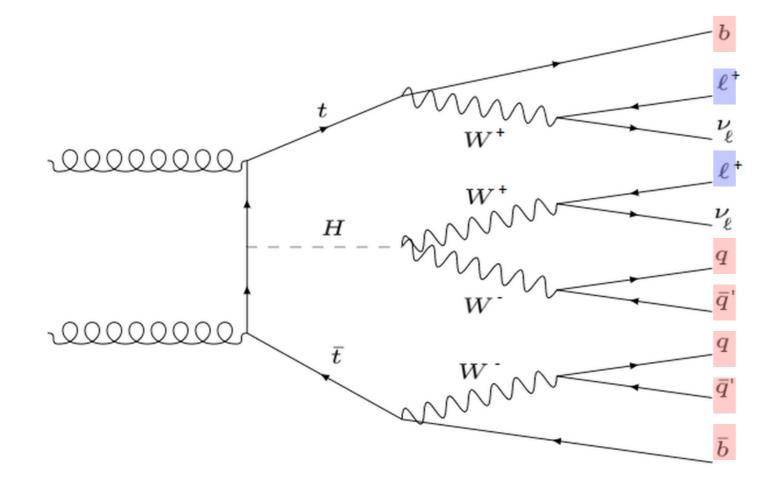

Coordinator of productions of the reconstructed data/MC samples to the group See backup slides...

- •Fit contact of the team
- Contributions to 2LSS analysis
 - ▶ Fakes group
 - Developing a new method to discriminate the signal from background (MEM)

2L same-sign channel

• Two reconstructed light leptons with the same electric charge

o 4 jets 2 b-jets 2 leptons

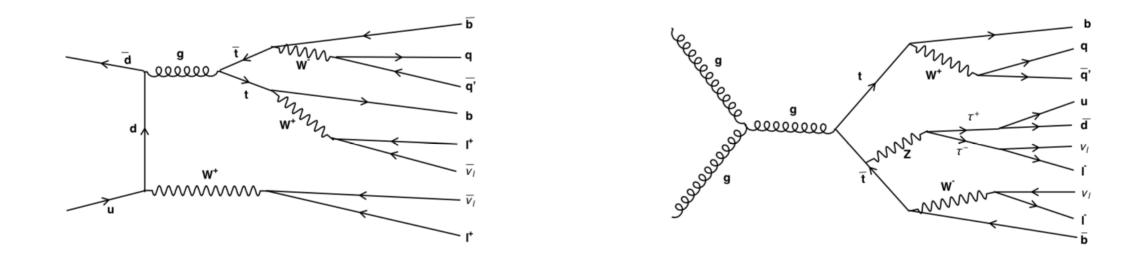


- + Irreducible backgrounds:
 - ➡ From MC (with dedicated CRs)
 - ttW, ttZ, diboson
- Reducible backgrounds;
 - ➡ Data driven
 - Fake/Non-prompt leptons
 - Fake hadronic
 - Electron charge misidentification

2L same-sign channel

• Two reconstructed light leptons with the same electric charge

o 4 jets 2 b-jets 2 leptons

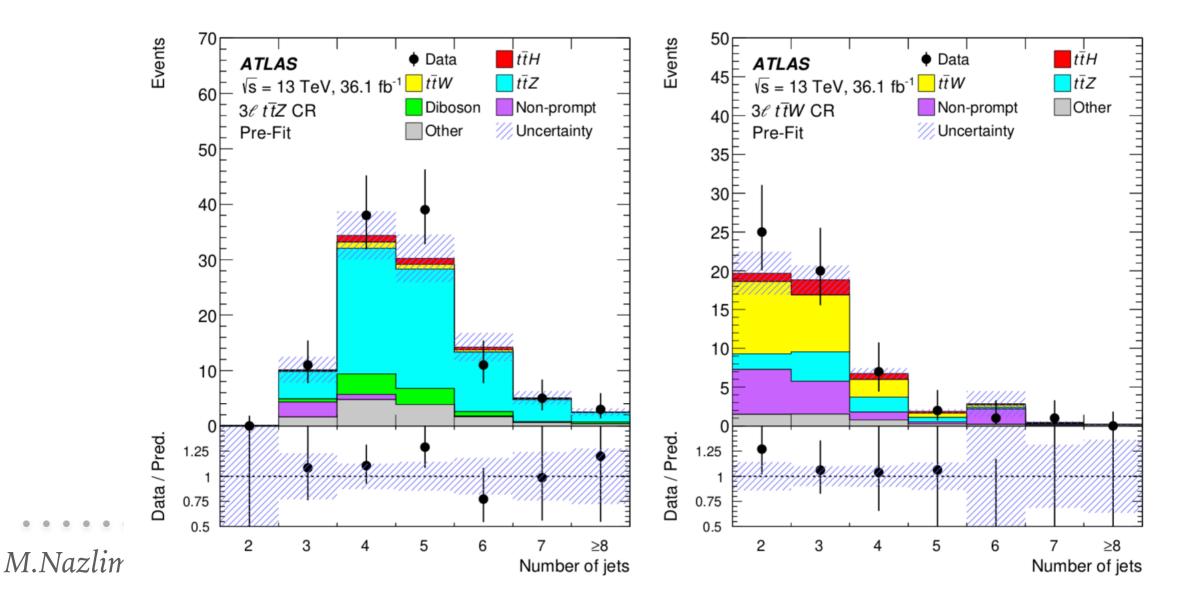


- + Irreducible backgrounds:
 - ➡ From MC (with dedicated CRs)
 - ttW, ttZ, diboson
- Reducible backgrounds;
 - ➡ Data driven
 - Fake/Non-prompt leptons
 - Fake hadronic
 - Electron charge misidentification

Irreducible Backgrounds

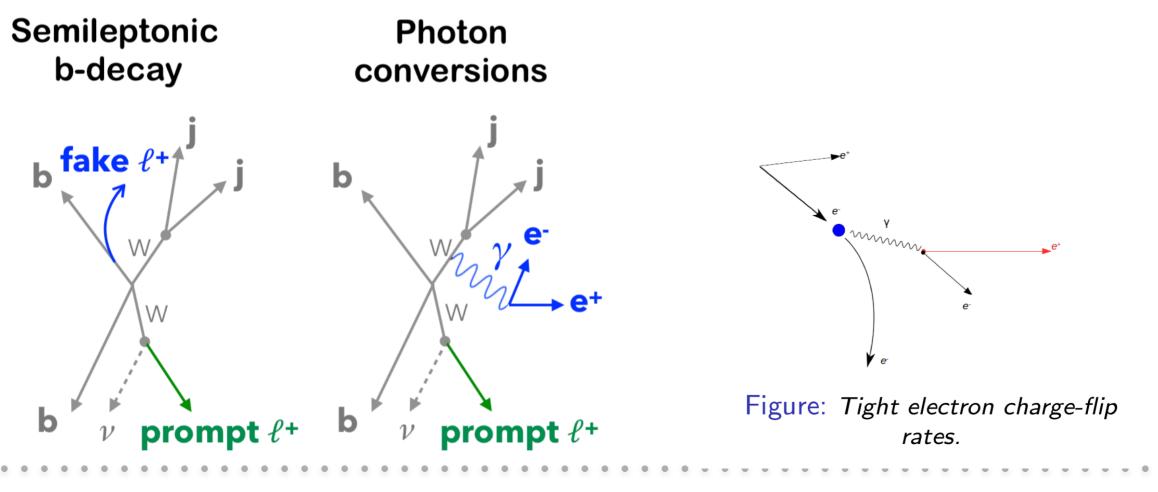
•Few SM processes with similar signatures

- True physical same-sign background: ttW , ttZ , VV estimated from MC simulation
- These background estimates are a crucial part of the analysis, because their final state and kinematics are similar to the signal

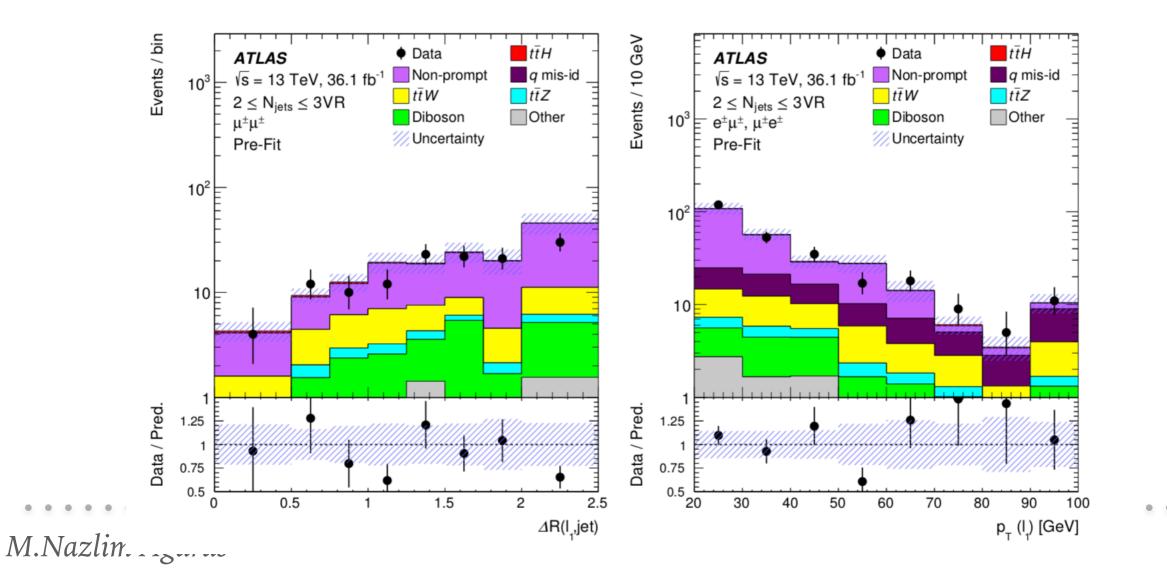

• $t\bar{t}W$ process

Irreducible Backgrounds

•Few SM processes with similar signatures

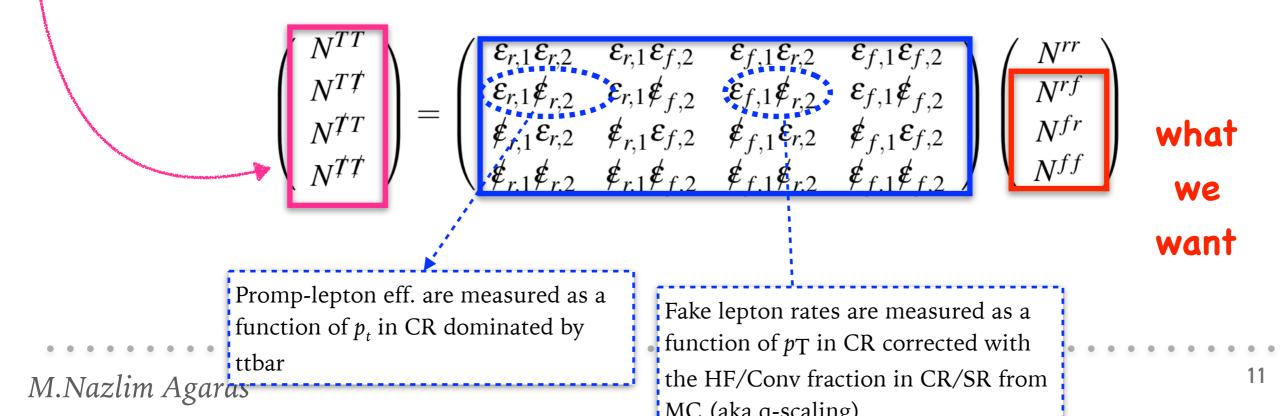

- True physical same-sign background: ttW , ttZ , VV estimated from MC simulation
- These background estimates are a crucial part of the analysis, because their final state and kinematics are similar to the signal

9


Reducible Backgrounds

- Data-driven methods are used to estimate the backgrounds with non-prompt light leptons, defining control regions enriched in such backgrounds and extrapolating the observed yields to the signal regions
- The non-prompt lepton background in the 2LSS channel is a mixture of leptons from semileptonic HF decays, conversions and charge mis-identification of electrons

Reducible Backgrounds


- Data-driven methods are used to estimate the backgrounds with non-prompt light leptons, defining control regions enriched in such backgrounds and extrapolating the observed yields to the signal regions
- The non-prompt lepton background in the 2ISS channel is a mixture of leptons from semileptonic HF decays, conversions and charge mis-identification of electrons

Fake Estimates

• A data-driven method, called matrix method(MM)

- estimates the number of non-prompt leptons in the signal region
 - splitting the events in four orthogonal categories (tight/anti-tight)
- The probabilities for both the loose prompt and nonprompt leptons to be tight are measured in control regions independent from SR
- These are used to estimate the number of non-prompt events in the signal regions (at least one fake lepton)

Tight

Loose

Fake Estimates

• A data-driven method, called matrix method(MM)

- estimates the number of non-prompt leptons in the signal region
 - splitting the events in four orthogonal categories (tight/anti-tight)
- The probabilities for both the loose prompt and nonprompt leptons to be tight are measured in control regions independent from SR
- These are used to estimate the number of non-prompt events in the signal regions (at least one fake lepton)

Systematic Uncertainties

 Uncertainties of the subtracted background in the CRs

Loose

- Truth Closure
- Difference in the in the fraction of conversions from CR to SR

leptons passing the tight and loose-but-not-tight lepton selections

$$N_{TT}^{f} = w_{TT}N^{TT} + w_{TT}N^{TT} + w_{TT}N^{TT} + w_{TT}N^{TT}$$

Depend on the measured prompt and non-prompt lepton efficiencies

Charge mis-identification estimation

• Electron charge-flip in SS dilepton final states introduces background from OS events

- Two main mechanisms:
 - ▶ Trident process with an electron radiating a photon converting to a pair of electrons
 - Mis-reconstructed electron track in the Inner Detector. Becomes dominant at large pt
- ° Rate of QMisid computed from $Z \rightarrow e^+e^-$ mass peak region and used to reweight OS data using 3D likelihood method [pT, η , Tight/Loose]
- The contamination in the SR is estimated from the reconstructed OS data events passing SR criteria (except the SS requirement).

Likelihood:

$$L(\vec{\epsilon}) = \prod_{i=1}^{N_{bins}} \prod_{j=1}^{N_{bins}} Poisson(N_{Z,ij}^{ss}, (\epsilon_i + \epsilon_j - 2\epsilon_i\epsilon_j) \cdot N_{Z,ij}^{ss+os})$$

where:

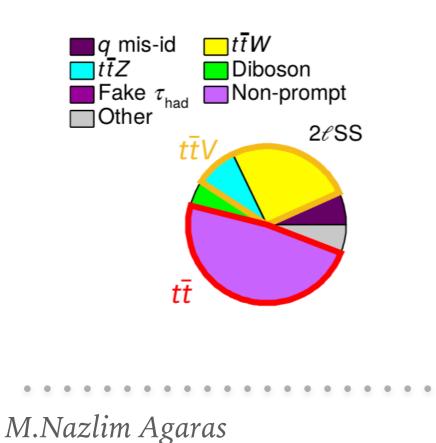
$$\epsilon_i \cdot (1 - \epsilon_j) + \epsilon_j \cdot (1 - \epsilon_i) = \epsilon_i + \epsilon_j - 2 \epsilon_i \cdot \epsilon_j$$

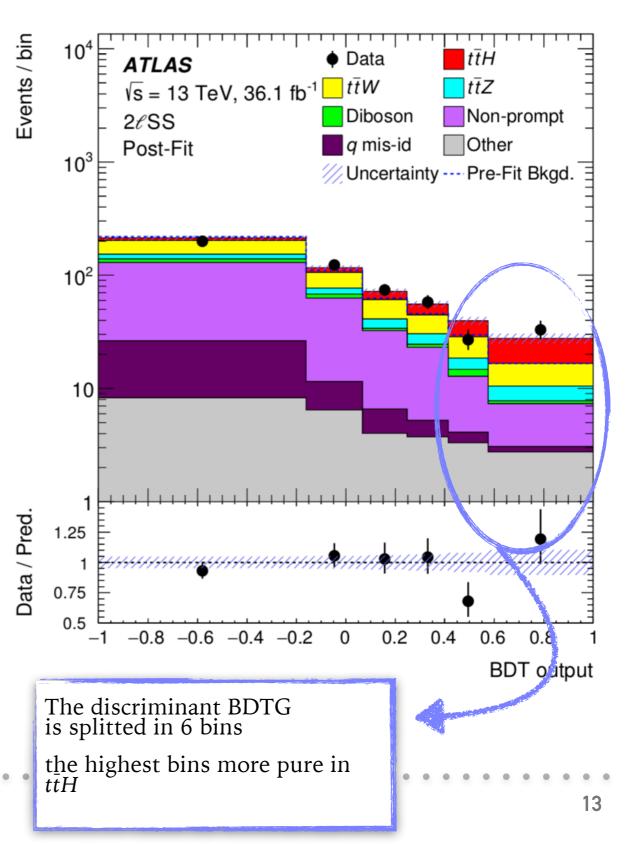
is the probability that the charge of exactly one electron is mis-identified.

Uncertainties:

- statistical errors (LH);
- definition of Z mass window;
- truth closure;

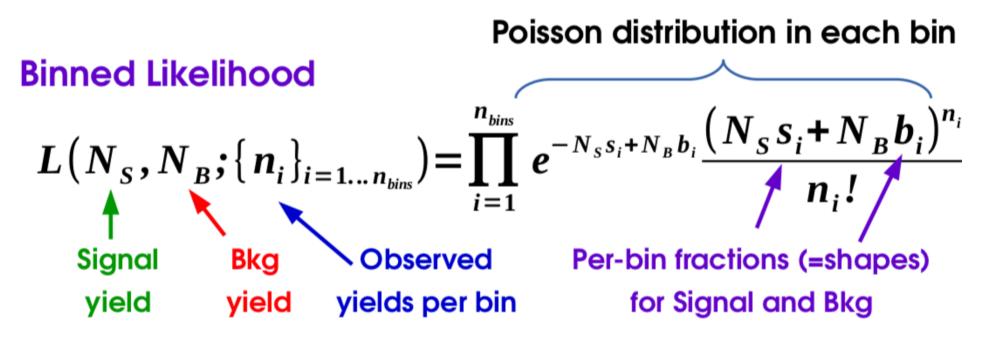
2LSS Channel


 Use two independent event BDTs tth vs ttv vs ttbar with input variables (average of the two BDTs is used)


Lepton properties

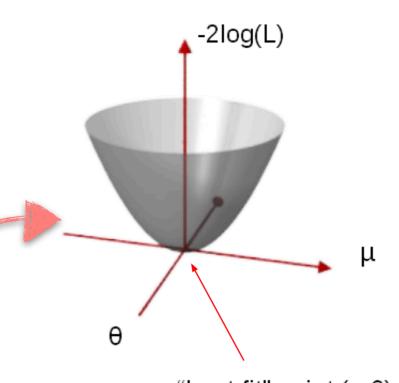
▶Jet and b-tagged jet multiplies

▷Angular distances

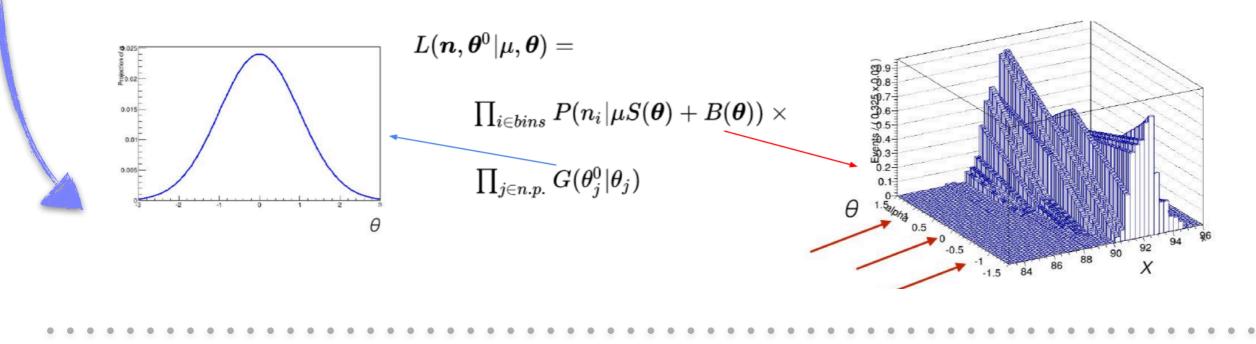

▶MET

Statistical Model

- •A maximum-likelihood fit is performed on twelve categories (8 SR, 4 CR) simultaneously to extract the ttH signal strength (free parameter) $\mu_{t\bar{t}H} = \sigma/\sigma_{SM}$
- The statistical analysis of the data uses a binned likelihood function L(μ, θ), which is constructed from a product of Poisson probability distribution (the number of observed events in a given bin (n))

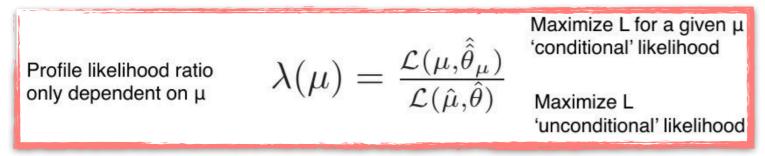

Systematics and Profile Likelihood

 Nuisance parameters (NPs), which encode all the uncertainties on quantities that can affect the model for signal and background


 NP probability density functions (Gaussian) are constrained by the auxiliary measurements of the parameters (unlike μ)

▶eg.

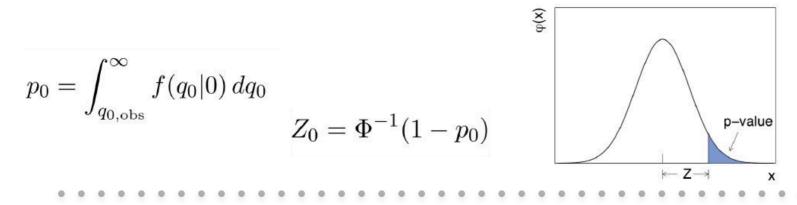
•N-dimensional likelihood maximisation (or negativelog-likelihood minimisation)


"best-fit" point (μ,θ)

Testing Model

- ° What values to use when defining the hypotheses ? \rightarrow H(µ=0, θ =?) Answer: let the data choose the best-fit values

• Significance is given by the profile-likelihood ratio:

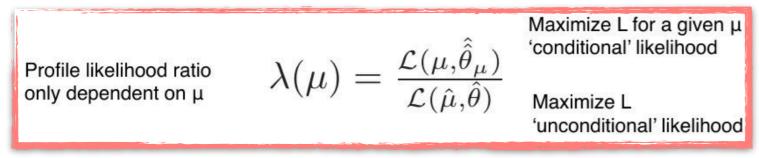


 Construct Test statistics by using effective mu(how well the observed data agrees with the background-only hypothesis)

$$q_0 = \left\{ \begin{array}{ll} -2ln\lambda(0) & \hat{\mu} \geq 0 \\ 0 & \hat{\mu} < 0 \end{array} \right. \mbox{ reject background-only }$$

increasing level of incompatibility

In particle physics, the rejection of the background-only hypothesis to claim for a discovery is conventionally achieved for a significance of Z ≥ 5, corresponding to p ≤ 2.87 × 10⁻⁷

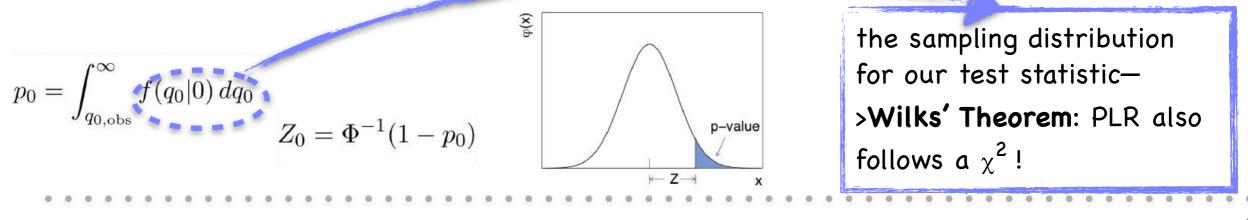


M.Nazlim Agaras

Testing Model

- ° What values to use when defining the hypotheses ? \rightarrow H(µ=0, θ =?) Answer: let the data choose the best-fit values

• Significance is given by the profile-likelihood ratio:



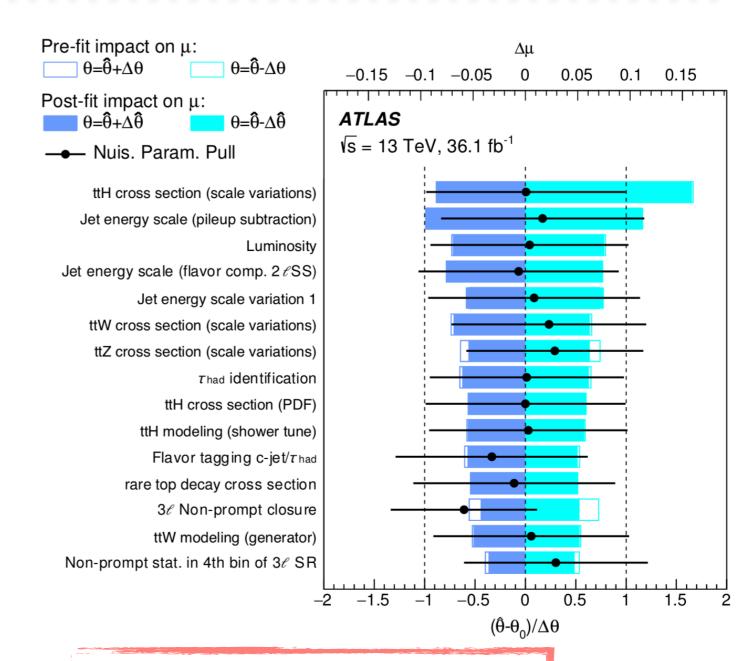
 Construct Test statistics by using effective mu(how well the observed data agrees with the background-only hypothesis)

$$q_0 = \left\{ \begin{array}{ll} -2ln\lambda(0) & \hat{\mu} \geq 0 \\ 0 & \hat{\mu} < 0 \end{array} \right. \mbox{ reject background-only }$$

increasing level of incompatibility

In particle physics, the rejection of the background-only hypothesis to claim for a discovery is conventionally achieved for a significance of Z ≥ 5, corresponding to p ≤ 2.87 × 10⁻⁷

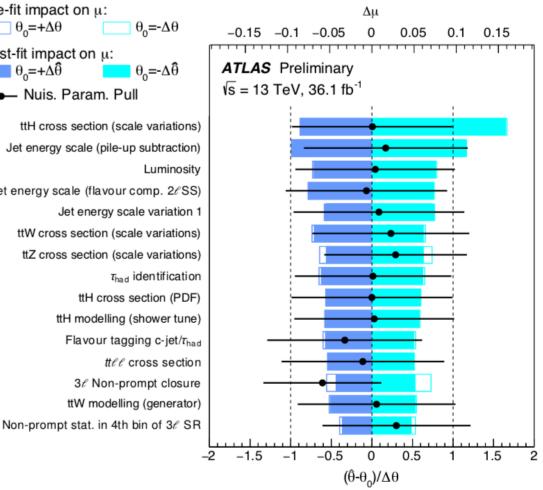
Pull/Impact Plot


Nominally systematics
 NPs have:

- Central value = 0 : i.e. the pre-fit expectation
- Uncertainty = 1 : NPs normalized to the value of the systematic

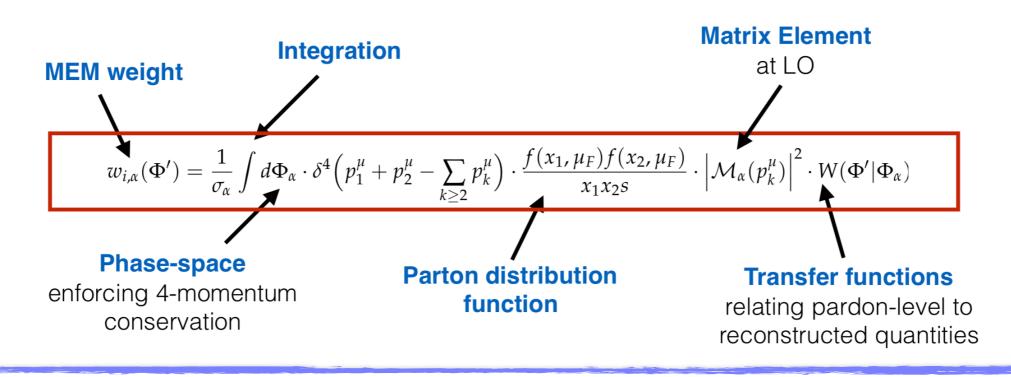
• From fit results:

▶ If central value /= 0:


it indicates the fit is correcting for a biased initial prediction of that parameter

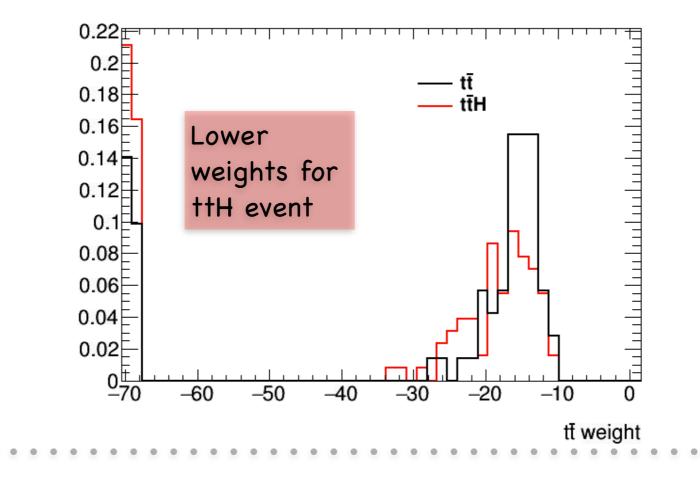
the fit can constrain the estimated uncertainty —> more statistical sensitivity than the auxiliary measurement used to determine its prior uncertainty

Results

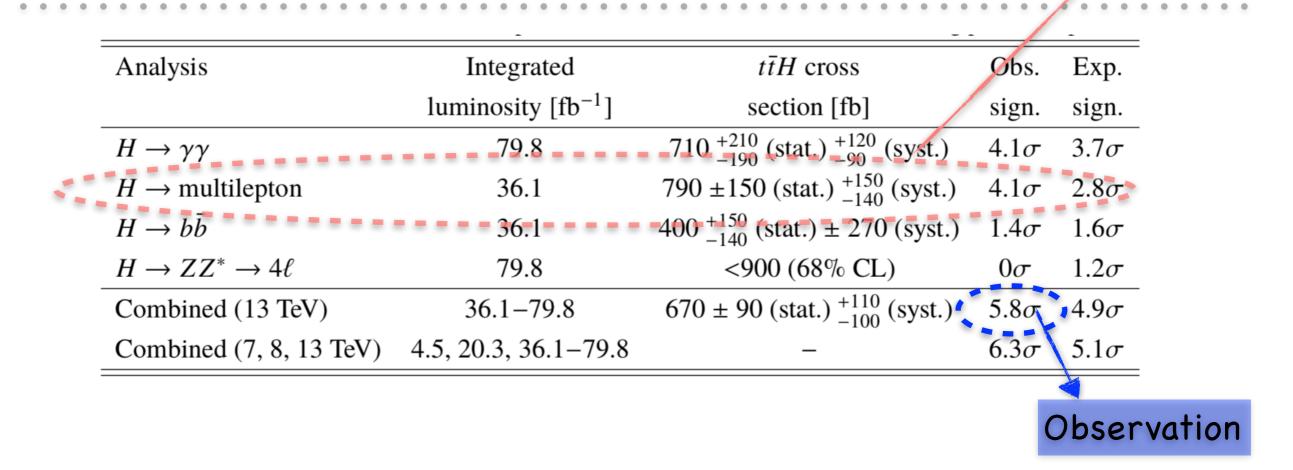

Pre-fit impact on u: **Uncertainty Source** $\Delta \mu$ $\theta_0 = +\Delta \theta$ +0.20Post-fit impact on u: $t\bar{t}H$ modelling (cross section) -0.09 $\theta_0 = +\Delta \hat{\theta}$ Jet energy scale and resolution +0.18-0.15Non-prompt light-lepton estimates +0.15-0.13Jet flavour tagging and au_{had} identification +0.11-0.09 $t\bar{t}W$ modelling +0.10-0.09Jet energy scale (flavour comp. 2 lSS) -0.07 $t\bar{t}Z$ modelling +0.08Other background modelling +0.08-0.07Luminosity +0.08-0.06 $t\bar{t}H$ modelling (acceptance) +0.08-0.04-0.07Fake τ_{had} estimates +0.07Other experimental uncertainties +0.05-0.04-0.04Simulation statistics +0.04-0.01Charge misassignment +0.01Total systematic uncertainty +0.39-0.30

- Most relevant uncertainties on the signal strength:
 - Signal modelling (dominated by scale uncertainties)
 - Jet energy scale and resolution
 - \circ Non-prompt ℓ estimation (with large contribution from limited CR statistics)

- The matrix element method (MEM) provides a way to calculate the likelihood that an event originates from a given production mechanism —> assign probability density value based on theory
- Use smart phase-space mappings to align peaks of integrand with coordinate axes (the structure of the integrand can be very complicated: integrand peaks coming from ME and TFs, and there can be many)
 - The phase-space can be organized in pieces or subsets of variables (blocks)


Interpretation: The MEM weight is the cross section, for a given hypothesis, evaluated at the phase space point of the event, convolved with the transfer functions

Studies on MEM


 MEM can be used to identify the process : Takes as input a set of kinematic observables associated to the diagram and calculates the weight for each event, can be calculated;

▷ for all permutations of the selected objects or,

▶ for the reconstructed particles (eg. by BDT).

Conclusion

 This year, the studies are on going to improve the ttH-Multilepton results

• Paper with 80/fb results for ttH-ML

|--|--|

• •

• •

.

• •

•

.

•

.

٠

Process	Event generator	ME order	Parton Shower	PDF	Tune
tĪH	MG5_AMC	NLO	Pythia 8	NNPDF 3.0 NLO [70]	A14
	(MG5_AMC)	(NLO)	(Herwig++)	(CT10 [71])	(UE-EE-5)
tHqb	MG5_AMC	LO	Pythia 8	CT10	A14
tHW	MG5_AMC	NLO	Herwig++	CT10	UE-EE-5
$t\bar{t}W$	MG5_AMC	NLO	Pythia 8	NNPDF 3.0 NLO	A14
	(Sherpa 2.1.1)	(LO multileg)	(Sherpa)	(NNPDF 3.0 NLO)	(SHERPA default)
$t\bar{t}(Z/\gamma^* \to ll)$	MG5_AMC	NLO	Pythia 8	NNPDF 3.0 NLO	A14
	(Sherpa 2.1.1)	(LO multileg)	(Sherpa)	(NNPDF 3.0 NLO)	(SHERPA default)
tΖ	MG5_AMC	LO	Рутніа б	CTEQ6L1	Perugia2012
tWZ	MG5_AMC	NLO	Pythia 8	NNPDF 2.3 LO	A14
$t\bar{t}t, t\bar{t}t\bar{t}$	MG5_AMC	LO	Pythia 8	NNPDF 2.3 LO	A14
$t\bar{t}W^+W^-$	MG5_AMC	LO	Pythia 8	NNPDF 2.3 LO	A14
tī	Powheg-BOX v2 [72]	NLO	Pythia 8	NNPDF 3.0 NLO	A14
$t\bar{t}\gamma$	MG5_AMC	LO	Pythia 8	NNPDF 2.3 LO	A14
s-, t-channel,	Powheg-BOX v1 [73–75]	NLO	Рутніа б	CT10	Perugia2012
Wt single top					
$VV(\rightarrow llXX),$	Sherpa 2.1.1	MEPS NLO	Sherpa	CT10	Sherpa default
qqVV, VVV					
$Z \rightarrow l^+ l^-$	Sherpa 2.2.1	MEPS NLO	Sherpa	NNPDF 3.0 NLO	Sherpa default

•

•

• •

.

• •

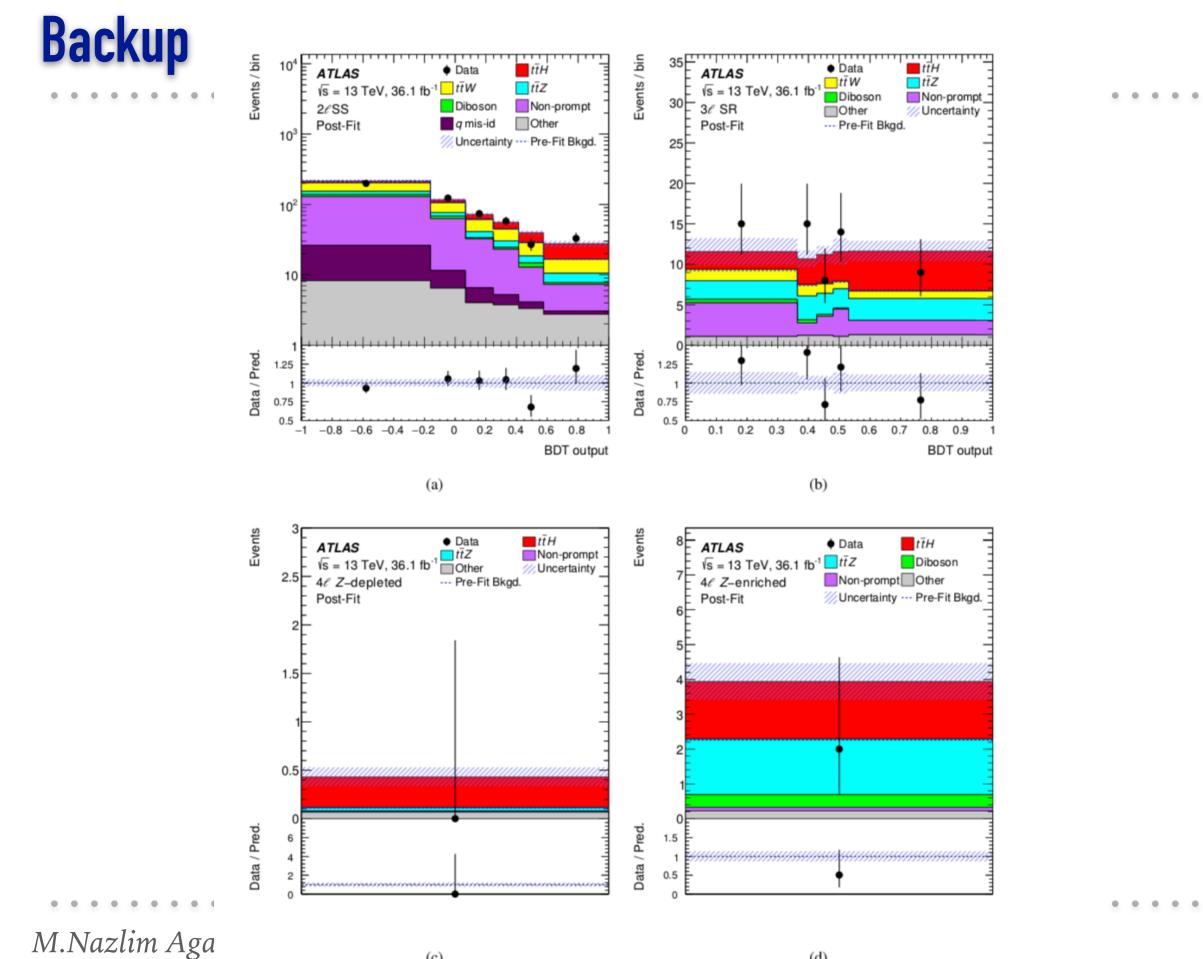
.

.

.

.

.

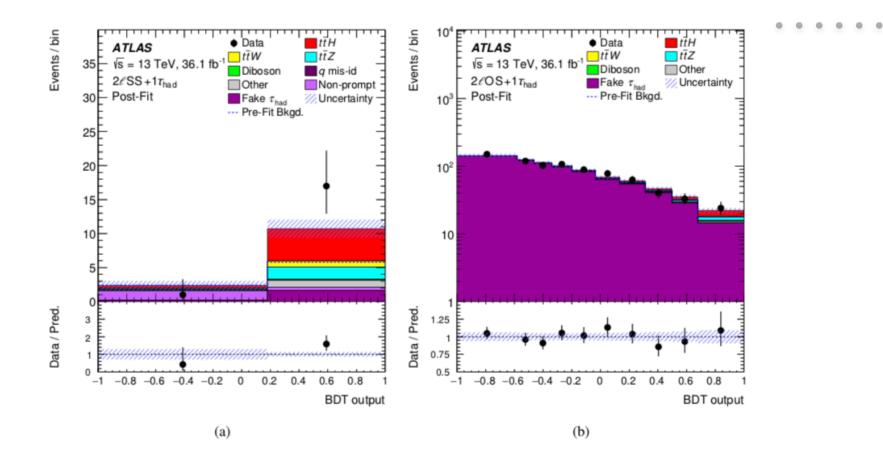

• •

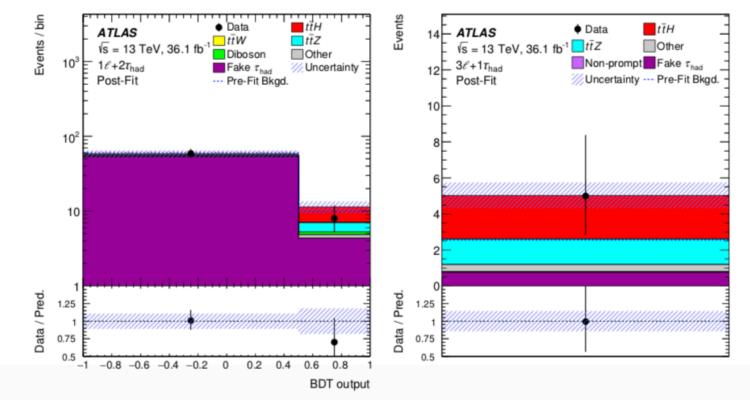
•

. . .

M.Nazlim Agaras

•


24


.

(c)

(d)

Backup

.

. . .

Channel	Selection criteria	
Common	$N_{\text{jets}} \ge 2 \text{ and } N_{b-\text{jets}} \ge 1$	
2ℓSS	Two very tight light leptons with $p_{\rm T} > 20 \text{ GeV}$	
2000	Same-charge light leptons	
	Zero medium τ_{had} candidates	
	$N_{\text{jets}} \ge 4 \text{ and } N_{b-\text{jets}} < 3$	
3ℓ	Three light leptons with $p_{\rm T} > 10$ GeV; sum of light-lepton charges ± 1	
	Two same-charge leptons must be very tight and have $p_{\rm T} > 15$ GeV	
	The opposite-charge lepton must be loose, isolated and pass the non-prompt BDT	
	Zero medium τ_{had} candidates	
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV > 10 GeV for all SFOC pairs	
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$	
4 <i>l</i>	Four light leptons; sum of light-lepton charges 0	
	Third and fourth leading leptons must be tight	
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV > 10 GeV for all SFOC pairs	
	$ m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$	
	Split 2 categories: Z-depleted (0 SFOC pairs) and Z-enriched (2 or 4 SFOC pairs)	
$1\ell + 2\tau_{had}$	One tight light lepton with $p_{\rm T} > 27 \text{GeV}$	
	Two medium τ_{had} candidates of opposite charge, at least one being tight	
	$N_{\rm jets} \ge 3$	
$2\ell SS+1\tau_{had}$	Two very tight light leptons with $p_{\rm T} > 15 \text{ GeV}$	
	Same-charge light leptons	
	One medium τ_{had} candidate, with charge opposite to that of the light leptons	
	$N_{\rm jets} \ge 4$	
	m(ee) - 91.2 GeV > 10 GeV for <i>ee</i> events	
$2\ell OS+1\tau_{had}$	Two loose and isolated light leptons with $p_{\rm T} > 25$, 15 GeV	
	One medium τ_{had} candidate	
	Opposite-charge light leptons	
	One medium τ_{had} candidate	
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV > 10 GeV for the SFOC pair	
	$N_{\rm jets} \ge 3$	
$3\ell + 1\tau_{had}$	3ℓ selection, except:	
	One medium τ_{had} candidate, with charge opposite to the total charge of the light leptons	
	The two same-charge light leptons must be tight and have $p_{\rm T} > 10 \text{ GeV}$	
	The opposite-charge light lepton must be loose and isolated	
		0

.

•

Backup

Electrons			
	Loose (baseline)	Tight	
Minimum p_T	10 GeV		
$ \eta $	≤ 1.37		
$ d_0^{sig} $	5		
$ z_0 \sin \theta $	0.5 mm		
Isolation	Loose	FixedCutTight	
Electron ID	LooseLH	TightLH	
	Muons		
	Loose (baseline)	Tight	
Minimum p_T	10 GeV		
$ \eta $	\leq 2.5		
$ d_0^{sig} $	3		
$ z_0 \sin \theta $	0.5 mm		
Isolation	Loose	FixedCutTightTrackOnly	
Quality	Loose		

 Table 97: Definition of leptons for the efficiency measurement.

	Real CR	Fake CR
	2,3,4 jets	2,3,4 jets
	\geq 1 b-tagged jet	\geq 1 b-tagged jet
Selection	2 LL OS leptons	2 LL SS leptons
	\geq 1 trigger-matched lepton	\geq 1 trigger-matched lepton
	$\min(p_T^\ell) \ge 10 \text{ GeV}$	$\min(p_T^\ell) \ge 10 \text{ GeV}$
	OF leptons	$\mu\mu$ for ε_{μ} , inclusive flavour for ε_{e}
		$ m(\ell\ell) - m_Z \ge 7.5 \text{ GeV} \text{ (for } ee)$
		$m(\ell \ell) \ge 20 \text{ GeV}$ (for same flavour)

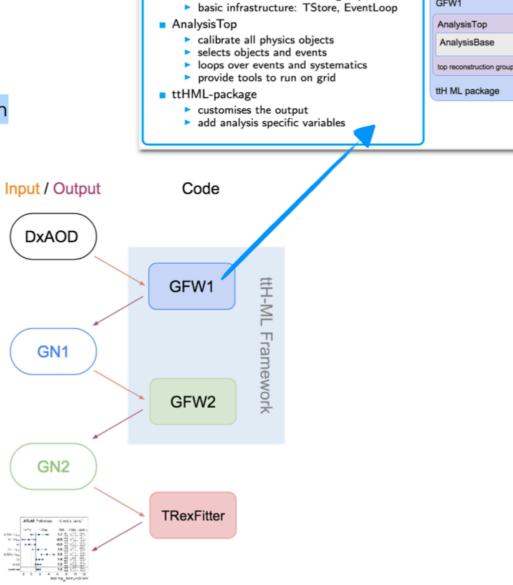
Table 94: Definition of the control regions used for measuring the real and fake efficiencies.

. . . .

.

ttH-ML analysis workflow = two main group frameworks + statistical tool framework

- * Other FW used for:
 - Tau fake estimates [TBC]
 - Matrix Method efficiencies calculation


- get sample with calibrated objects
 - perform data-driven of background estimations
 - train MVA optimisations
- apply selection criteria on data and MC
 - inputs to statistical interpretations

GroupFrameWork

- **GFW1**:
 - Processes DxAODs, create large ntuples: GN1 - few TB

GFW2:

Produce fit input ntuples: GN2 - few GB

Components

AnalyisBase

recommendations from CP groups

GFW1

Backup

Systematic uncertainty	Туре	Components
Luminosity	N	1
Pileup reweighting	SN	1
Physics Objects		
Electron	SN	6
Muon	SN	15
$ au_{ m had}$	SN	10
Jet energy scale and resolution	SN	28
Jet vertex fraction	SN	1
Jet flavor tagging	SN	126
$E_{\rm T}^{\rm miss}$	SN	3
Total (Experimental)	-	191
Data-driven non-prompt/fake leptons and charge misass	signment	
Control region statistics	SN	38
Light-lepton efficiencies	SN	22
Non-prompt light-lepton estimates: non-closure	Ν	4
γ -conversion fraction	Ν	4
Fake τ_{had} estimates	N/SN	12
Electron charge misassignment	SN	1
Total (Data-driven reducible background)	_	83

. . . .

• •

M.Nazlim Agaras

• •

.

. . .

. . .

•

• •

.

.

Backup

		-
Total (Data-driven reducible background)	_	83
t <i>t</i> H modeling		
Cross section	Ν	2
Renormalization and factorization scales	S	3
Parton shower and hadronization model	SN	1
Higgs boson branching fraction	Ν	4
Shower tune	SN	1
$t\bar{t}W$ modeling		
Cross section	Ν	2
Renormalization and factorization scales	S	3
Matrix-element MC event generator	SN	1
Shower tune	SN	1
$t\bar{t}Z$ modeling		
Cross section	Ν	2
Renormalization and factorization scales	S	3
Matrix-element MC event generator	SN	1
Shower tune	SN	1
Other background modeling		
Cross section	Ν	15
Shower tune	SN	1
Total (Signal and background modeling)	_	41
Total (Overall)	_	315

M.Nazlim Agaras

.

• •

•

•

•

• •

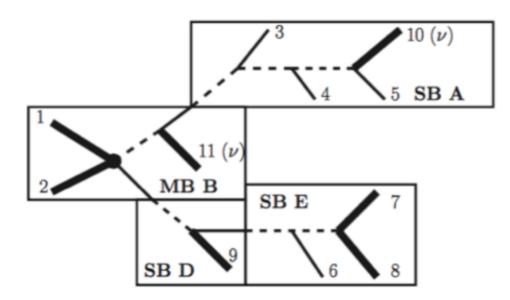
• •

• •

• •

•

.



• The method consists in the calculation of an integral, where:

- ▷ PDF \rightarrow available from several collaborations (eg. LHAPDF)
- ▶ Matrix Element \rightarrow from MC (eg. MadGraph)
- $^{\triangleright}$ Transfer Functions \rightarrow can be parametrized from MC
- ▷ Once you have all the terms, integrate! (eg. VEGAS, Cuba)

•Use smart phase-space mappings to align peaks of integrand with coordinate axes (the structure of the integrand can be very complicated: integrand peaks coming from ME and TFs, and there can be many)

▶ The phase-space can be organized in pieces or subsets of variables (blocks)

 $p_1 \rightarrow p_2 p_3 \iff dE_2 \ d\phi_2 \ dE_3 \ d\phi_3 \ d\phi_3$, where particle3 is a neutrino

Apply change of variables to align the ME propagator:

- \implies $dE_2 \ d\theta_2 \ d\phi_2 \ ds_1 \ d\theta_3 \ d\phi_3 \times jac.$
- \implies Propagator for p_1 aligned with grid!

Standard phase-space parametrization:

$$d\Phi(y) \propto \prod_i rac{|p_i|^2 d|p_i| d\phi_i sin heta_i d heta_i}{2E_i} \delta^4(P_{in} - P_{fin})$$