Boosted Decision Trees and *b*-jet Trigger Calibration Studies for $t\bar{t}H(b\bar{b})$ Fully Hadronic Analysis

Bartolini Giovanni

CPPM University of Aix-Marseille

October 18, 2018

Outline

Introduction

- The Standard Model of Particle Phisics
- The ATLAS experiment at LHC
- Higgs Boson and Top Yukawa coupling

2 Fully Hadronic ttH Analysis Strategy

3 BDT studies

- Reconstruction BDT Step
- Classification BDT Step

4 b-jet Trigger Calibration with tt Dilepton Events

5 Conclusion

Introduction

The Standard Model of Particle Phisics

- The **Standard Model** (SM) of Particle Physics is a gauge theory that classifies all known elementary particle and describes 3 of the 4 known interaction forces: Strong, Weak and Electromagnetic
- Discovery of **Higgs** boson in 2012 completed the set of predicted elementary particle
- Very successful and predictive theory, but has still many shortcomings:
 - inclusion of gravity
 - neutrino masses and oscillations
 - matter/anti-matter asymmetry
 - evidence of dark matter existence
- Strong chase for New Physics
 - direct search of new particles
 - indirect evidence trough deviations in SM predictions

Standard Model of Elementary Particles

The ATLAS experiment at LHC

- The ATLAS experiment is placed in one of the 4 interaction point of LHC
- Almost at the end of Run 2:
 - ▶ already collected ~130 fb⁻¹

Higgs Boson and Top Yukawa Coupling

- The discovery of the **Higgs** boson in 2012 started an effort on the precise measure of its properties
- The top quark is the heaviest elementary particle
 - has the highest Yukawa coupling: Y_t
- Anomalous values for *Y_t* are predicted by many *Beyond the Standard Model* (BSM) theories
- Associated production $(t\bar{t}H)$ only way to directly measure Y_t
 - many accessible final states: γγ, multi-lepton, lepton+jets, all hadronic
- ATLAS first *ttH* observation recently published using Run 1 and Run 2 data*
 - with observed(expected) significance of 6.3(5.1)

arXiv:1806.00425 [hep-ex]

Fully Hadronic ttH Analysis Strategy

$t\bar{t}H$ Production in Fully Hadronic Final State

- Most abundant final state
 - ▶ \sim 33% of total $t\bar{t}H$ production
- No neutrino
 - full event reconstruction
- Ideal for differential analysis
 - explore the CP nature of Y_t
- Challenging experimental signature:
 - ▶ 8 quarks, 4 *b*-quarks
 - Large QCD background
 - irreducible $t\bar{t} + b\bar{b}$ background
- First analysis published in Run 1^{*}: $\mu_{t\bar{t}H} = 1.6 \pm 2.6$
 - ► brought 10% improvement on the significance of the $t\bar{t}H(H \rightarrow b\bar{b})$ combination

arXiv:1604.03812 [hep-ex]

Jets as Quark objects

- The nature of the strong interaction does not allow to quarks to be available as free particles
 - How can we see quarks as final state particles?
- Quarks and gluons that are produced from a collision will *hadronize* producing a collimated flow of hadronic particles
 - a specific algorithm is used to reconstruct this flow as a single object, called JET
- Jets coming from *b* quarks have particolar properties that allow them to be distinguished from other jets
 - ▶ the identification of a jet as coming from a *b* quark is called *b*-tagging

Event Selection and Categorization

- Multijet trigger
 - ▶ ≥4 jets with p_T > 100 GeV (120 GeV for 2017 data) and $|\eta| < 2.5$
- Lepton veto
 - to avoid overlap with other channels
- Offline selection:
 - same as the trigger + ≥ 2 additional jets with p_T > 25 GeV and |η| < 2.5</p>
 - ≥ 2 jets b-tagged
- Categorization in jet and *b*-jets multiplicity
 - ▶ 6, 7, 8 or ≥9 jets
 - ▶ 2, 3 or ≥4 *b*-jets

ATLAS (s = 13 TeV allhad	Internal	[]fi+lig][fi+V []fi+≥][Jii+≥1b []Single[]CβCD	ATLAS 15 = 13 TeV, 36.1 f alhad	Internal b ⁻¹
fije Stor	6je 40		6 is 3be 5 5 - 0.1%	6 (e 4b) 50 = 0.3% 57 = 0.5
7/e 500	Tye 4b		() () () () () () () () () ()	7)e 4bi sn = 0.6%
Eje Ste	51+ 4b		Bie 3be se = 0.5% 0 0.5	Bije 4bi 55 = 1.0%
59.50e	59-46i		(m) $\overline{0}$ 0.5	9(j 4b) 50 = 1.5% 50 0.5

data 15+16	8j,3b	8j,≥4b	≥9j,3b	≥9j,≥4b
ttH	50.9 ± 0.3	13.9 ± 0.2	76.4 ± 0.4	24.5 ± 0.2
ttb	1033.7 ± 25.4	149.3 ± 9.6	1502.6 ± 30.8	281.9 ± 12.8
ttc	360.4 ± 15.8	10.1 ± 2.7	437.9 ± 17.5	17.6 ± 3.6
ttl	505.0 ± 19.0	8.0 ± 2.5	431.3 ± 17.6	4.3 ± 1.8
ttV	30.9 ± 1.0	5.2 ± 0.4	45.2 ± 1.5	10.2 ± 0.7
singletop	63.5 ± 4.2	6.5 ± 1.4	57.3 ± 3.9	6.3 ± 1.3
QCD	8946.1 ± 35.6	1203.9 ± 5.1	7238.9 ± 34.9	1196.9 ± 5.9
Total Background	10940 ± 50	1373 ± 12	9713 ± 53	1518 ± 15

Event Selection and Categorization

- Multijet trigger
 - ▶ ≥4 jets with p_T > 100 GeV (120 GeV for 2017 data) and $|\eta| < 2.5$
- Lepton veto
 - to avoid overlap with other channels
- Offline selection:
 - same as the trigger + ≥ 2 additional jets with p_T > 25 GeV and |η| < 2.5</p>
 - ≥ 2 jets b-tagged
- Categorization in jet and *b*-jets multiplicity
 - ▶ 6, 7, 8 or ≥9 jets
 - ▶ 2, 3 or ≥4 *b*-jets

ATLAS (s = 13 TeV alltad	Internal	[]tī+ko]]tī+∀ []tī+≥[]tī+≥1b []Singko]]CβCD	ATLAS 15 = 13 TeV, 36.1 fb althad	Internal -1
fije Stor	6je 45		(g) 0:5-0.1%	(0) (0) (0) (0) (0) (0) (0) (0)
7/e 3be	7/0 451		(2) 300 50 = 0.3% 6 0.5	(0) (0) (0) (0) (0) (0) (0) (0)
Sie Ste	× 44		(g) (g) (g) (g) (g) (g) (g) (g) (g) (g)	Bio 4bi 56 = 1.0% 0 0.5
9/34	9i 4bi		(g) $\overline{0}$ 0.5	99 461 50 - 1.6%

data 17	8j,3b	8j,≥4b	≥9j,3b	≥9j,≥4b
ttH	36.0 ± 0.4	9.4 ± 0.2	63.0 ± 0.5	19.8 ± 0.3
ttb	594.9 ± 22.1	75.8 ± 6.6	1023.2 ± 29.7	178.8 ± 11.6
ttc	197.2 ± 12.9	9.2 ± 4.1	321.1 ± 17.3	7.0 ± 2.0
ttl	278.1 ± 16.6	5.4 ± 2.7	278.1 ± 16.7	4.7 ± 1.9
ttV	20.6 ± 1.1	3.6 ± 0.5	32.6 ± 1.6	5.8 ± 0.7
singletop	46.2 ± 4.2	1.7 ± 0.6	45.7 ± 4.1	4.7 ± 1.0
QCD	5748.7 ± 28.5	763.6 ± 4.0	5279.2 ± 30.2	859.1 ± 5.1
Total Background	6886 ± 42	859 ± 9	6980 ± 49	1060 ± 13

Analysis Strategy

- QCD multijet is main background, but really hard to reproduce in simulation
 - estimation with data-driven method: Tag Rate Function Multijet (TRF_{MJ})
- Signal vs background discrimination
 - with Multivariate Analysis (MVA) method called Boosted Decision Tree (BDT)
- Maximum likelihood fit
 - to extract the final results

BDT studies

Multivariate Analysis for Fully Hadronic $t\bar{t}H$

Reconstruction BDT Step

- **Goal**: find the best association between jets reconstructed in the detector and the final state partons
- \bullet Large mutliplicites \rightarrow large combinatorics
 - For 36 up to thousands possible ways to reconstruct the $t\bar{t}H$ system

Reconstruction BDT Step

- 2 different BDTs using reconstructed resonances and angular correlations between jets
 - recoBDT: tries to reconstruct only tī system
 - \rightarrow no bias on the Higgs candidate mass
 - recoBDT_withHiggs: full tTH system reconstruction
 - \rightarrow higher reconstruction efficiency
- Trained using $t\bar{t}H$ simulation
 - signal: correct quarks-jets association
 - background: all other possible associations

Reconstruction BDT Step

 Higgs boson candidate properly reconstructed 57% and 75% of times and full event properly assigned 41% and 53% respectively in events with full matching available

Classification BDT Step

- Goal: perform signal vs background discrimination
- Combines reconstruction results from previuos step with global event kinematics
- Optimization against 2 different main background sources:
 - irreducible $tar{t} + bar{b}
 ightarrow$ need more simulation
 - QCD multijet, using data-driven simulation from TRF_{MJ}

Classification BDT Step

- Variables optimization performed separately in each signal region with a recursive method
 - From a preselected set of variables takes the one with the highest s/b separation
 - Adds recursively the variable that brings the biggest improvement
 - stops when the improvement from the addiction of a new variable is less than 1%

Classification BDT Step

- Variables optimization performed separately in each signal region with a recursive method
 - From a preselected set of variables takes the one with the highest s/b separation
 - Adds recursively the variable that brings the biggest improvement
 - stops when the improvement from the addiction of a new variable is less than 1%

b-jet Trigger Calibration with tt Dilepton Events

b-jet Trigger Calibration

- trigger-level *b*-tagging improved with respect to Run 1, now close in performance to offline algorithms
- ullet Use of b-jet trigger results on an increase of signal efficiency of a factor ${\sim}3$

- Data/MC Scale factors are used to calibrate online algorithms
 - SFs are derived for different jet flavors
- b-tagging used both at trigger level and at recostruction level
 - combined online + offline calibration
 - Geometrical association between online and offline jet objects

b-jet Trigger Calibration with $t\bar{t}$ Events

- Event selection:
 - activate one Lepton + boffperf trigger
 - exactly 2 leptons with $p_T > 28$ GeV and opposite charge
 - exactly 2 jets with $p_T > 35$ GeV
 - eµ channel
 - *m*_{lj} cuts
 - both jets matched

Lepton + boffperf prescaled triggers

b-tagging algorithm will run for each jet without taking decisions

m_{lj} cuts

- Idea: improve bb-purity by finding Jet + lepton combinations which corresponds to the top quarks.
- For *b*-Jets the invariant mass of the combination should be smaller then the top mass.
- The combination we found which seems to be the most promising in reducing background is the one which minimizes the sum of the squared invariant mass of both possible "Ij-combinations" in the event.

lj-Combination, invariant Mass

- Veto events with one $m_{
m lj}$ > 175GeV (pprox top-mass), or constrain flavor fractions

b-jet Trigger Calibration with $t\bar{t}$ Events

• b-jet content extracted using likelihood method

$$\mathcal{L}_{\rm E}(\boldsymbol{\rho}_{\rm T,1}, \boldsymbol{\rho}_{\rm T,2}, w_1, w_2 | \mathcal{P}_{\rm b}(w | \boldsymbol{\rho}_{\rm T})) = [f_{\rm bb}(\boldsymbol{\rho}_{\rm T,1}, \boldsymbol{\rho}_{\rm T,2}) \mathcal{P}_{\rm b}(w_1 | \boldsymbol{\rho}_{\rm T,1}) \mathcal{P}_{\rm b}(w_2 | \boldsymbol{\rho}_{\rm T,2}) \\ + f_{\rm bl}(\boldsymbol{\rho}_{\rm T,1}, \boldsymbol{\rho}_{\rm T,2}) \mathcal{P}_{\rm b}(w_1 | \boldsymbol{\rho}_{\rm T,1}) \mathcal{P}_{\rm l}(w_2 | \boldsymbol{\rho}_{\rm T,2}) \\ + f_{\rm lb}(\boldsymbol{\rho}_{\rm T,1}, \boldsymbol{\rho}_{\rm T,2}) \mathcal{P}_{\rm l}(w_1 | \boldsymbol{\rho}_{\rm T,1}) \mathcal{P}_{\rm b}(w_2 | \boldsymbol{\rho}_{\rm T,2}) \\ + f_{\rm ll}(\boldsymbol{\rho}_{\rm T,1}, \boldsymbol{\rho}_{\rm T,2}) \mathcal{P}_{\rm l}(w_1 | \boldsymbol{\rho}_{\rm T,1}) \mathcal{P}_{\rm l}(w_2 | \boldsymbol{\rho}_{\rm T,2})$$
(1)

$$\begin{split} &f_{f_1,f_2}(\rho_{\Gamma,1},\rho_{\Gamma,2}) = \text{fraction of flavour combination } [f_1,f_2]. \text{ (Extracted from Simulation)} \\ &\mathcal{P}_f(w_1|\rho_{\Gamma,1}) = \text{pdf for a b-tagging weight } w \text{ of jet with flavour } f \text{ and a given } \rho T, 1. \end{split}$$

$$\mathcal{L}(\mathcal{P}_{\mathrm{b}}(w|p_{\mathrm{T}})) = \prod_{\mathrm{data}} \mathcal{L}_{\mathrm{E}}(\mathrm{data}|\mathcal{P}_{\mathrm{b}}(w|p_{\mathrm{T}}))$$
(2)

$$\epsilon_{\rm b}(\boldsymbol{p}_{\rm T}) = \int_{w_{\rm cut}}^{\infty} dw' \mathcal{P}_{\rm b}(w_{\rm f}|\boldsymbol{p}_{\rm T}) \tag{3}$$

Calibration Results: Online only

Calibration Results: Combined

SF Stability Studies

- Studied SF dependency to different possible source of sistematic uncertainties:
 - η , pile-up and data period

85% WP

• SF seems to be robust to all of them

Conclusion

Conclusion

- Fully hadronic $t\bar{t}H$ channel:
 - Large BR, but dominated by QCD multi-jet production
 - Large statistic available and event fully reconstructable

- My contribution to improve the analysis:
 - Calibration of trigger b-tagging efficiency
 - ★ replace multijet trigger with *b*-jet trigger to increase by a factor ~3 the signal selection efficiency
 - Implementing a 2 steps strategy for MVA based signal/background discrimination
 - * Reconstruction step to resolve combinatorics
 - * Classification step with optimization for QCD background discrimination

END

Thanks for the attention!