Electromagnetic showers shapes and data-driven corrections

Mykola Khandoga

CEA Saclay

Journées de Rencontre des Jeunes Chercheurs 2018, Lège-Cap-Ferret

October $18^{\text {th }}, 2018$

The ATLAS detector

ATLAS detector systems

Particle ID

photons

electrons
\longrightarrow
muons
protons Kaons pions
neutrons $\underline{\mathrm{K}_{\mathrm{L}}^{0}}$
innermost layer tracking electromagnetichadronic muon system calorimeter calorimeter system

C. Lippmann - 2003

EM Showers

EM Calorimeter structure

Electron reconstruction challenges

- It is possible that the reconstructed electrons are not signal electrons, but come from hadronic jets, converted photons, heavy flavour decays etc.
- Discriminating signal electrons is crucial for analysis.
- For electron ID the MVA analysis is applied with >20 variables using information from the inner detector, EM calorimeter and hadronic calorimeter.
- Electron ID algorithm is very sensitive to information about shower shapes from the 2nd layer of EM calorimeter.
- We would like ID efficiency for Data and MC to be as close as possible (scale factors close to 1).

Second layer energy profile

EP_715

Second layer energy profile

Energy_Profile2D

Eta energy profile - 7 cells

Phi energy profile - 11 cells

Energy profiling conclusions

- The shower shapes are η-dependent, so 14 slices in η were considered in the range of $|\eta|=0-2.4$
- The barrel $|\eta|=0-1.37$ and the endcap $|\eta|=1.52-2.4$ regions demonstrate different behavior.
- MC-modelled shower is wider than the data in ϕ and narrower in η.
- The discrepancy is higher in the barrel for ϕ profile and in the endcap for η.

Energy profiling conclusions

- The shower shapes are η-dependent, so 14 slices in η were considered in the range of $|\eta|=0-2.4$
- The barrel $|\eta|=0-1.37$ and the endcap $|\eta|=1.52-2.4$ regions demonstrate different behavior.
- MC-modelled shower is wider than the data in ϕ and narrower in η.
- The discrepancy is higher in the barrel for ϕ profile and in the endcap for " η.

Quantifying shower shapes: 2nd layer variables

- Lateral shower width $W_{\eta^{2}}=\sqrt{\sum\left(E_{i} \eta_{i}^{2}\right)-\left(\sum\left(E_{i} \eta_{i}\right) / \sum\left(E_{i}\right)\right)^{2}}$ calculated within a window of 3×5 cells
- R_{ϕ} - ratio of the energy in 3×3 cells over the energy in 3×7 cells centered at the electron cluster position.
- R_{η} - ratio of the energy in 3×7 cells over the energy in 7×7 cells centered at the electron cluster position.

R_{φ}

R_{η}

Simulation plots

R_{η} in 4 different eta bins - Data vs MC

Namene:

R_{ϕ} in 4 different eta bins - Data vs MC

Rphi_Eta_1.60_1.80

Rphi_Eta_1.00_1.20

Rphi_Eta_2.00_2.20

$W_{\eta^{2}}$ in 4 different eta bins - Data vs MC

Weta2_Eta_2.00_2.20

Reweighting procedure

Reweighting is performed in two steps:

- Calculation of the 2D correction matrix containing cluster cell corrections for each η slice

$$
E_{i}^{\text {Correction }}=\frac{E_{i}^{\text {Data }}}{\sum E^{\text {Data }}}-\frac{E_{i}^{M C}}{\Sigma E^{M C}}
$$

where i is the number of the cell. The integral of the correction matrix is the re-scaled to 1 .

- Calculation of the reweighted energy for electron cluster cells in every MC event

$$
E_{i}^{\text {Reweighted }}=E_{i}^{\text {Non-reweighted }}\left(1+E_{i}^{\text {Correction }}\right)
$$

The total energy is then rescaled to ensure that it remains the same after reweighting.

Reweighted Eta profile in 4 eta bins - Data vs MC

etaProfile_Eta_2.00_2.20

Reweighted Phi profile in 4 eta bins - Data vs MC

Reweighted Reta

Reweighted Rphi

Rphi_Eta_2.00_2.20

Reweighted Weta2

Weta2_Eta_0.40_0.60

Weta2_Eta_1.60_1.80

Weta2_Eta_1.00_1.20

Conclusions

- The developed method is aimed to make the ID efficiency in MC as close as possible to the data.
- This would allow to decrease the systematic uncertainty, imposed by using the highly pT -dependent scale factors.
- The method was successfully tested in Athena release 21 framework.
- To be presented for approval as a part of an official Athena release.

BACKUP

- BACKUP SLIDES

Samples used

- a slightly modified EGAM1 derivation was used in order to extract the calorimeter cell data usable within the AnalysisBase framework
- data17_13TeV.00337176.physics_Main.merge.AOD.r10258_p3399 10258 means "Reprocessing tag with for after first event and no HLT monitoring"
- mc16_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1 _Zee.merge.AOD.e3601_s3126_r9781_r9778

Event selection

- Z->ee process considered
- event was required to have two electrons one of which has $p_{T}>25 \mathrm{GeV}$
- gradient isolation
- Tag and probe, no ID
- Z invariant mass window 80-120 GeV
- electron triggers: HLT_e26_Ihtight_nod0_ivarloose, HLT_e60_Ihmedium_nod0, HLT_e140_Ihloose_nod0,HLT_e300_etcut
- no pile-up reweighting

Excerpt from the previous study $-R_{\eta}$ and $W_{\eta^{2}}$

- Layer2 η related variables comparison bf/af reweighting in barrel and end-cap.

Phi profile - charge asymmetry, Data

Schematic energy profile

The hatched region is taken in order to obtain a brem-free profile hence same reweighting function for $\mathrm{e}+$ and e -.

