Monte Carlo track structure simulation for radiation microdosimetry and targeted alpha therapy

M.E. Alcocer-Ávila¹, M. A. Quinto², J. M. Monti², R. D. Rivarola² and C. Champion¹

¹ Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), Talence, France ² Instituto de Física Rosario, CONICET, Universidad Nacional de Rosario, Rosario, Argentina

JOURNÉES DE RENCONTRE DES JEUNES CHERCHEURS 2018 SOCIÉTÉ FRANÇAISE DE PHYSIQUE 14 - 20 OCTOBER 2018, LÈGE-CAP-FERRET, FRANCE

Outline

- Introduction / Context
- Overview of Monte Carlo track-structure codes
- The *TILDA-V* Monte Carlo code
 - Processes
 - Description of media
 - Theoretical supports for the description of the inelastic processes
 - Stopping power and range for protons
- Ongoing work: cellular dosimetry
 - Interest for targeted alpha therapy
 - Previous studies for electron emitters
- Summary and conclusions

Context

- A detailed understanding of the radiation induced interactions in living matter at the finest scale is of great importance
 - in **radiobiology**: to identify the DNA critical lesions
 - in **radiotherapy**: to adapt/improve the treatment protocols
- Monte Carlo (MC) simulations are powerful tools to describe the slowing-down of charged particles in biological media
- Among existing MC codes, only the so called "trackstructure" approaches are appropriate for microdosimetry because they describe the history collision by collision

Monte Carlo track-structure codes

Code	Particle Energy range e [−] ≥10 eV−100 eV e [−]		Cross-section database ^a	Reference Terrissol and Beaudre, 1990		
CPA100 ^{b, c}			Wat. (1)			
DELTA ^c	e-	≥10 eV-10 keV e ⁻	Wat. (v)	Zaider et al. (1983)		
ETRACK ^c	e ⁻ , p, α	≥ 10 eV-10 keV e ⁻	Wat. (v)	Ito (1987)		
KURBUC ^c	e-	≥10 eV-10 MeV e ⁻	Wat. (v)	Uehara et al. (1993)		
LEEPS	e ⁻ , e ⁺	0.1-100 keV	Many materials	Fernandez-Varea et al. (1996)		
LEPHIST	р	≥1 keV−1 MeV	Wat. (v)	Uehara et al. (1993)		
LEAHIST ^c	α	$\geq 1 \text{ keV}/u-2 \text{ MeV}/u$	Wat. (v)	Uehara and Nikjoo (2002a)		
MC4	e ⁻ , ions	$\geq 10 \text{ eV e}^-$, ions $\geq 0.3 \text{ MeV}/u$	Wat. (v,l)	Emfietzoglou et al. (2003)		
NOTRE DAME ^c	e ⁻ , ions	$\geq 10 \text{ eV e}^-$, ions $\geq 0.3 \text{ MeV}/u$	Wat. (v,l)	Pimblott et al. (1990)		
OREC ^c	e ⁻ , ions	$\geq 10 \text{ eV e}^-$, ions $\geq 0.3 \text{ MeV}/u$	Wat. (v,l)	Turner et al. (1983)		
PARTRAC ^{b, c}	e ⁻ , ions	$\geq 10 \text{ eV e}^-$, ions $\geq 0.3 \text{ MeV}/u$	Wat. (v,l)	Friedland et al. (2003)		
PITS04 ^b	e ⁻ , ions	$\geq 10 \text{ eV e}^-$, ions $\geq 0.3 \text{ MeV}/u$	Wat. (1)	Wilson et al. (2004)		
PITS99 ^c	e ⁻ , ions	$\geq 10 \text{ eV e}^-$, ions $\geq 0.3 \text{ MeV}/u$	Wat. (v)	Wilson and Nikjoo (1999)		
SHERBROOKE ^c	e ⁻ , ions	$\geq 10 \text{ eV e}^-$, ions $\geq 0.3 \text{ MeV}/u$	Wat. (v,l)	Cobut et al. (2004)		
STBRGEN ^c	e ⁻ , ions	$\geq 10 \text{ eV e}^-$, ions $\geq 0.3 \text{ MeV}/u$	Wat. (v,l)	Chatterjee and Holley (1993)		
TRION	e ⁻ , ions	$\geq 10 \text{ eV e}^-$, ions $\geq 0.3 \text{ MeV}/u$	Wat. (v,l)	Lappa et al. (1993)		
TRACEL ^c	e ⁻ , ions	$\geq 10 \text{ eV e}^-$, ions $\geq 0.3 \text{ MeV}/u$	Wat. (v,l)	Tomita et al. (1997)		

Taken from H. Nikjoo et al., Radiation Measurements 41, 1052–1074 (2006)

• In these codes the reliability of the results strongly depends on the cross sections given as input and describing each physical process.

TILDA-V: Transport d'Ions Lourds Dans l'Aqua & Vivo

- Monte Carlo track-structure code based on quantum-mechanical and semi-empirical models
- Includes a complete set of multipledifferential and total cross sections
- Describes all the physical processes induced by electrons, protons, hydrogen and alpha particles in the energy range from 10 keV to 100 MeV
- Water and DNA molecules as targets

TILDA-V: Details of the charged particle tracking

TILDA-V: List of processes in the current version

Water vapor	DNA components					
Proton						
Ionization: <i>prior</i> CDW-EIS, FBA-CB1 Rudd, Rutherford, HKS, Miller and Green	Ionization: prior CDW-EIS, FBA-CB1 Rudd, HKS					
Capture: prior CDW-EIS, CDW Rudd, Dingfelder, Green and McNeal, Miller and Green	Capture: prior CDW-EIS, CDW					
Excitation: Miller and Green	Excitation: Miller and Green					
Neutral hydrogen						
Ionization: <i>prior</i> CDW-EIS, FBA-CB1 Green and McNeal	Ionization : prior CDW-EIS					
Excitation: Miller and Green	Excitation: curve fitting					
Electron loss: Dingfelder, Miller and Green	Electron loss: curve fitting					
Electron						
Ionization: DWBA, BEB	Ionization: DWBA, BEB					
Excitation: Olivero	Excitation: fitting of experimental data					
Elastic scattering: partial wave formalism	Elastic scattering: partial wave formalism					
He ²⁺ , He ⁺ , He ⁰ (future developments)						
Ionization: prior CDW-EIS, FBA-CB1	Ionization: prior CDW-EIS, FBA-CB1					
Capture: prior CDW-EIS, CDW2	Capture: prior CDW-EIS, CDW2					

TILDA-V: Description of the biological media

- DNA: two nucleotides (nucleobases (A-T or C-G) and two sugar phosphate groups) (de Vera *et al.*, 2013)
- DNA : 58% (Adenine + Thymine) + 42% (Cytosine Guanine)

(Tan et al., Nucl. Instr. and Meth. in Phys. Res. B 248 (2006))

Dry DNA: 58% (Adenine + Thymine) + 42% (Cytosine - Guanine) + 2 sugar phosphate groups $\rho = 1.407 \text{ g cm}^{-3}$

Hydrated DNA: 58% (Adenine + Thymine) + 42% (Cytosine - Guanine) + 2 sugar phosphate groups + 18 H_2O molecules (*Birnie et al., Biochim. Biophys. Acta 331, 283 (1973)*) $\rho = 1.29 \text{ g cm}^{-3}$

TILDA-V: Theoretical support for the proton-induced ionization: **DDCS**

Galassi et al. Phys. Med. Biol. 57, 2081 (2012)

TILDA-V: Theoretical support for the proton- and α particle-induced ionization: **SDCS**

Quinto et al. Eur Phys J D 71, 35 (2017)

Champion et al., Phys. Med. Biol. 60, 7805 (2015)

11

TILDA-V: Theoretical support for the proton-induced electron capture: **TCS**

TILDA-V: Stopping power of protons in water vapor

→ GOOD AGREEMENT WITH EXISTING DATA

TILDA-V: Stopping power of protons in hydrated DNA

Comparison with other calculations

DNA vs water vapor

Quinto et al., Eur Phys J D 71, 130 (2017)

TILDA-V: Range of protons in water and DNA

TILDA-V: Range of protons in water and DNA

17

Ongoing work: cellular dosimetry

Protons and alpha particles

Dose calculation for single cells considering: various geometries (spherical/ellipsoidal)
various heterogeneities
specific initial localization of the source

(cell compartments)

Ongoing work: cellular dosimetry

Protons and alpha particles

Dose calculation for single cells considering: various geometries (spherical/ellipsoidal)
various heterogeneities

✓ specific initial localization of the source (cell compartments)

Targeted alpha therapy (TAT)

- TAT is the use of alpha emitting radionuclides to kill cancer cells
- Alpha particles have a **very short range** in matter and are **high LET** radiation, i.e., they can effectively destroy malignant cells without compromising surrounding healthy tissue
- Considered an appropriate technique to fight micrometastases and residual disease
- Only a few alpha emitters are currently being considered for TAT because of constraints mainly related to half-life and production costs: ²²³Ra, ²¹¹At, ²¹²Pb/²¹²Bi, ²²⁵Ac, ²¹³Bi

The capabilities of TILDA-V to simulate the transport of alpha particles will be exploited to compare the **potential therapeutical advantages** of several alpha-emitting radionuclides.

Radionuclide	Properties	Production routes	Potential applications	otential applications Current status		
²²³ Ra	Half-life of 11.4 days. ≈ 28 MeV of total energy per decay with ≈ 96% released as alpha particles.	Obtained from a ²²⁷ Ac generator. ²²⁷ Ac decays to either ²²⁷ Th or ²²³ Fr, which in turn decay to ²²³ Ra.	Castration-resistant prostate cancer with symptomatic bone metastases but no visceral disease	Approved since 2013 by the U.S. FDA and currently approved in over 40 countries. Ongoing trials to determine how to combine it with chemotherapy.	Its use is limited to the treatment of bone metastases.	
²¹¹ At	Half-life of 7.2 hours. One alpha particle per decay of E \approx 7.5 MeV	209 Bi(α , 2n) ²¹¹ At reaction at a cyclotron.	Ovarian cancer, brain tumors, breast cancer.	Two clinical trials (phases I & II) have been completed. Further clinical evaluation is warranted.	Limited availability. Poor knowledge of the chemical behavior of astatine.	
²¹² Pb/ ²¹² Bi	Half-lives: ²¹² Pb 10.6 h; ²¹² Bi 60 min. $E_{\alpha} \approx 8.8 \text{ MeV}$	²²⁸ Th/ ²²⁴ Ra generator, via the decay chain: ²²⁸ Th \rightarrow ²²⁴ Ra \rightarrow ²²⁰ Rn \rightarrow ²¹⁶ Po \rightarrow ²¹² Pb	Ovarian cancer with peritoneal metastases.	Ongoing research. A phase I clinical trial involving the intraperitoneal infusion of ²¹² Pb- TCMC-trastuzumab has been carried out with encouraging results.	Radiation safety concerns due to the high-energy (2.6 MeV) γ-ray emitted by ²⁰⁸ Tl, one of the daughters of ²¹² Bi.	
²²⁵ Ac	Half-life of ≈10 days. 4 alpha particles per decay with a total energy of 28 MeV	Obtained through the decay of long-lived ²²⁹ Th ($T_{1/2}$ = 7880 years). Alternative production by means of the high-energy proton irradiation of ²³² Th.	Castration-resistant prostate cancer; leukemia.	Ongoing research. A phase I/II clinical trial of ²²⁵ Ac-lintuzumab in older patients with acute myeloid leukemia is under way.	Only 3 main sources worldwide of ²²⁹ Th to produce relevant quantities of ²²⁵ Ac. Toxicity issues due to the recoil energy of the daughters.	
²¹³ Bi	Half-life of 46 min. One alpha particle per decay of E ≈ 8.3 MeV	²²⁵ Ac/ ²¹³ Bi generator.	Ovarian cancer, brain tumors, melanomas, non-Hodgkin lymphoma and leukemia.	A phase I/II clinical trial has been carried out with ²¹³ Bi-lintuzumab in patients with leukemia, concluding it may help to reduce small-volume disease.	Its very short physical half-life does not allow infusion into tumors. Low availability and high cost, since it is obtained from ²²⁵ Ac	

Beta and Auger electron emitters

Beta and Auger electron emitters

- Calculation of intracellular S-values ($R_c = 7 \ \mu m$ and $R_n = 5 \ \mu m$)
- Results for some radionuclides and comparison with *Goddu et al.*, *J Nucl Med 35:303-316 (1994)* (all values are in Gy/(Bq·s)):

	Nucleus	← Nucleus	Nucleus «	– Cytoplasm	Nucleus ←	- Cell surface	Cell ←	Cell surface	Cell	← Cell
Radionuclide	Our value	Goddu et al.	Our value	Goddu et al.	Our value	Goddu et al.	Our value	Goddu et al.	Our value	Goddu et al.
125	3.65E-003	3.51E-003	3.18E-004	2.58E-004	2.01E-004	1.49E-004	7.88E-004	7.43E-004	1.45E-003	1.37E-003
⁶⁷ Ga	2.05E-003	1.86E-003	1.81E-004	1.94E-004	5.06E-005	4.48E-005	4.24E-004	3.87E-004	7.96E-004	7.25E-004
123	1.57E-003	1.56E-003	1.60E-004	1.28E-004	1.08E-004	8.00E-005	3.49E-004	3.38E-004	6.31E-004	6.19E-004
201 TI	4.37E-003	4.24E-003	4.47E-004	4.68E-004	1.77E-004	1.75E-004	9.14E-004	8.94E-004	1.71E-003	1.67E-003
¹¹¹ In	1.53E-003	1.47E-003	1.83E-004	1.55E-004	1.12E-004	1.00E-004	3.35E-004	3.25E-004	6.13E-004	5.91E-004

Summary and conclusions

- *TILDA-V* is a Monte Carlo track-structure code implementing quantum-mechanical models to describe charged particles interactions in both water and DNA
- The implemented cross sections are in good agreement with the available experimental data
- TILDA-V is being benchmarked against other Monte Carlo codes as well as deterministic codes
- *TILDA-V* introduces a more realistic modelling of the biological matter by including the DNA nucleobases and the sugar phosphate backbone
- *TILDA-V* is being applied in radiation microdosimetry studies (for cell dosimetry calculations) and will soon be applied to DNA damage quantification/identification

Thank you for your attention

Merci pour votre attention