

A small introduction about cancer, treatments and modeling

Rachel Delorme

NARA Group, IMNC – UMR 8165, bât. 440, 91405 Orsay, France

rachel.delorme@imnc.in2p3.fr

Cancer

• Cancer:

- ✓ ~360 000 new case /year in France, ~150 000 death.
- ✓ What is a cancer?
 - Abnormal cell division \rightarrow mutation

Cancer

• Cancer:

- ✓ ~360 000 new case /year in France, ~150 000 death.
- ✓ What is a cancer?
 - \circ Abnormal cell division \rightarrow mutation
 - Growth of the tumor \rightarrow angiogenesis to get oxygen, immature vasculature

Cancer

• Cancer:

- ✓ ~360 000 new case /year in France, ~150 000 death.
- ✓ What is a cancer?
 - Abnormal cell division → mutation
 - Growth of the tumor \rightarrow angiogenesis to get oxygen, immature vasculature
 - Propagation of a tumor \rightarrow extension to lymphatic and blood vessels = 2nd cancer

→ Treatment challenge: kill/remove the tumor cells without damaging the organs at risk. Better to treat before 2^{ndary} propagation.

- Main treatments:
 - ✓ Surgery:
 - First indication (if feasible): trying to be as <u>conservative</u> as possible.
 - o Adapted for <u>localized</u> cancer.
 - Problem of <u>tumor micro-extension</u>, borders unclear \rightarrow What margins ??

→ Enzo Fabiani: Modèles numériques et analytiques d'invasion cellulaire à 1D avec et sans interactions de contact

- Main treatments:
 - ✓ Surgery
 - ✓ Chemotherapy:
 - <u>Specific</u> to a tumor type: targeted drugs... But rarely perfect (toxicity ++)
 - o Adapted also for non-localized secondary cancers

• Main treatments:

Internal

- ✓ Surgery
- ✓ Chemotherapy
- ✓ Radiotherapy (RT):
 - Used for half of the patients.

$$D = \frac{d\overline{\varepsilon}}{dm}$$
 (Gy)

- Adapted for localized cancers, and non-localized in the case of targeted therapies
- Problems of toxicity to organs at risk (OAR)

Brachytherapy (Ir, I,...)

External RT (RX, e-, p, C...)

- Main treatments:
 - ✓ Surgery
 - ✓ Chemotherapy
 - ✓ Radiotherapy (RT):
 - ✓ Immunotherapy
 - ✓ Hormonotherapy

✓ ...

Often combined

Radiotherapy developments

- Main research radiotherapy-related topics in our domains:
 - > **Develop new strategies for RT treatment** to improve the therapeutic index:
 - New particles/energy
 - New dose delivery approaches
 - Combined radiotherapy
 - Understand radiobiological mechanism:
 - o Experimental in vitro/in vivo measurements
 - Modelling physical, chemical and biological processes at nano/micro-scale
 - Quality control for treatment and diagnostic:
 - Detection systems for imaging
 - Online control of dose-delivery: detection developments
 - Improve dose calculation of treatment planning systems

Limitations of radiotherapy

• Limitations of conventional radiotherapy

Radioresistant, bulky and diffuse cancers (glioblastomas)

Non-localized tumors (metastases)

Clinical electron accelerator (X-rays ~6-25 MV)

- Type of tumors : radioresistivity (hypoxic tumors), localized or widespread tumors
- Organs at risk : dose limitation to surrounding healthy tissues: spinal cord (<45 Gy), optic structures (< 54 Gy), lung (30% volume < 20Gy), kidney (< 15 Gy), heart, etc.)</p>

How to improve it ?

Improve the ballistic: improved radiotherapy technologies (photons)

Standard clinical accelerator with embedded imaging systems

Tomotherapy

Dosimetry example (prostate) with intensity modulated irradiation (IMRT)

Dosimetry example of medulloblastoma

Gamma knife radiosurgery

 \rightarrow Objectives: large dose in tumor, low doses in healthy tissues

How to improve it ?

- Improve the ballistic: improved radiotherapy technologies (photons)
- Induce a more efficient tumoral irradiation: play on ballistic & radiobiology
 - Particle/energy: hadrontherapy (p, C-ion)

• Example of isodose comparisons between proton & photon irradiation

 \rightarrow Nice isodoses, normal tissue well avoided...

Hadrontherapy centers in Europe:

(~600 patients/year)

• Impact of the cost and size of the facilities on the number of treated patients

Standard medical accelerator (~500 en France, ~1 M€)

Hadrontherapy center of Heidelberg (~ten C-ion and ~50 p centers in world, cost 50-100 M€)

 \rightarrow ... Few patients can benefit from it: priority to pediatric and some specific clinical cases.

How to improve it ?

- Improve the ballistic: improved radiotherapy technologies (photons)
- Induce a more efficient tumoral irradiation: play on ballistic & radiobiology
 - Particle/energy: hadrontherapy (p, C-ion)
 - Targeted radiotherapy:

Boron Neutron Capture Therapy

Gamma

Radioresistant and diffuse

cancers (glioblastomas)

Non-localized tumors

(metastases)

How to improve it ?

- Improve the ballistic: improved radiotherapy technologies (photons)
- Induce a more efficient tumoral irradiation: play on ballistic & radiobiology
- Preserve the healthy tissues: play on dose delivery & radiobiology
 - Particle/energy (hadrontherapy, VHEE...)
 - Dose delivery: Spatial fractionation of dose = very small beam sizes < mm</p>
 - & FLASH = very high dose rate

24 weeks pi

Rachel Delorme

a

• Linear Energy Transfer (LET):

- > Energy transferred along a particle track per unit distance
- LET related to the biological effect of radiation:

→ Equal macroscopical doses of high and low-LET radiation result in different biological effects

Radiobiology

С

LET and track structures:

Relative Biological Effectiveness (RBE):

 $RBE_{Rad} = \frac{Dose(Gy) \, {}^{60}Co \, \gamma}{Dose \, (Gy) \, Rad. \, for \, same \, biol. effect}$

Ex: proton track in the plateau (a) or peak (b) region

Rachel Delorme

Importance of micro/nano-scale in radiobiology

- Biological measurements to quantify the RBE (in vitro):
 - Survival cell assays: clonogenic assays, cell viability, protein signal...

DNA breaks: γH2AX (double strand breaks), comet assay (simple and double breaks)...

→ Dependant on cell line... Hard to get complete data base: let's try modelling!

Monte Carlo codes in Medical Physics

- General purpose code:
 - Based on <u>macroscopic description of the particle transport</u>, using condensedhistory methods: aims at being multi-purpose and relatively fast.
 - Ex: Geant4 (and declinations GATE, TOPAS...), FLUKA, MCNPX, EGS, PENELOPE ...
 - ➢ Approximations and cuts in the low-energies → non-adapted to nano level
- « Track-structure » codes

~400 nm

• « Track-structure » codes:

- > Description of **full particle histories step-by-step**, interaction after interaction.
- Based on full calculation of <u>differential cross section</u> of charged particles in biological matter (water and DNA molecules...)
- Intend to predict the <u>radio-induced energy deposits at the nanometric level</u>, and sometimes DNA damage induction and chemical stage.
- Many very specific codes, among them:
 - TILDA-V: dedicated to proton transport in water and DNA

→ Mario E. Alcocer-Avila: Monte Carlo track structure simulation for radiation microdosimetry and targeted alpha therapy

- Geant4-DNA: extension of the Geant4 code that intend to add: all the
- GEANT4-DNA
- <u>physics</u> process in biological materials, creation and transport of <u>chemical</u> radiolysis species, modelling the early <u>biological damage</u>

→ E. Torfeh: Micro dosimétrie des irradiations par microfaisceau d'ions en utilisant les méthodes Monte Carlo

• Very time-consuming, development of analytical models:

 \rightarrow E. Olivier: Modelling of heavy ions transport in matter with entropic moments methods

Workflow in radiotherapy treatment

Diagnostic

RT prescription

Radiation therapy delivery

In multiple fractions

Treatment planification

Imaging: reference CT in treatment position + multimodal imaging (IRM, TEP...)

Treatment planning: delineation of tumor and OAR + dose calculation

Patient QA ?? Embeded imaging system could be used for online verification

Online monitoring in hadrontherapy

• Patient QA in hadrontherapy:

Challenge: no primary beam outgoing the patient.
 Range uncertainties in dose delivery unknown:
 a small error could have dramatic effect
 (patient/beam position error, patient loose weight...)

Ex. influence of air cavity in beam

- > Methods:
 - \circ Use the β+ radioactive products: « inline » positron emission tomography
 - Detect the secondary particles: prompt gamma imaging camera
 HODOSCOPE
 IN
 BEAM
 HODOSCOPE
 Si SCATTERER
 USO or BGO ABSORBER

→ J. Livingstone: Contrôle en ligne de l'hadronthérapie par rayonnements secondaires

24

