IN2P3 contributions to the Japanese neutrino program: T2K, T2K-II, Super-K and Hyper-K

Claudio Giganti
for the LLR and LPNHE neutrino groups

IN2P3 Scientific Council - 28/06/2018

IN2P3 groups join T2K

T2K starts data taking

Take data in $\overline{\nu}$ -mode

LLR joins Super-K

T2K phase-II + ND280 upgrade

Start of Hyper-K

2036

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

 θ_{13} and δ_{CP} ~2

~2009

Atmospheric (SK, K2K, Minos)

 $\rightarrow \theta_{23}$, Δm_{32}

IN2P3 groups join T2K

T2K starts data taking Take data in $\overline{\nu}$ -mode

LLR joins Super-K

> T2K phase-II + ND280 upgrade

Start of Hyper-K

2036

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

Hints of ν_e appearance $(\theta_{13}\neq 0@2.5\sigma)$

Phys.Rev.Lett. 107 (2011) 041801

Atmospheric (SK, Minos) $\rightarrow \theta_{23}, \Delta m_{32}$

IN2P3 groups join T2K

T2K starts data taking

Take data in $\overline{\nu}$ -mode

LLR joins Super-K

T2K phase-II + ND280 upgrade

Start of Hyper-K

2036

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

Hints of ν_e appearance (θ₁₃≠0@2.5σ)

Observation of ν_e appearance $(\theta_{13}\neq 0@7.3\sigma)$

Phys.Rev.Lett. 107 (2011) 041801

Phys.Rev.Lett. 112 (2014) 061802

IN2P3 groups join T2K

T2K starts data taking

Take data in $\overline{\nu}$ -mode

LLR joins Super-K

T2K phase-II + ND280 upgrade

Start of Hyper-K

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

2036

Hints of ν_e appearance $(\theta_{13}\neq 0@2.5\sigma)$

Observation of ν_e appearance $(\theta_{13}\neq 0@7.3\sigma)$

Precise measurement of θ_{23} , Δm^2_{32}

Phys.Rev.Lett. 107 (2011) 041801

Phys.Rev.Lett. 112 (2014) 061802

Phys.Rev.Lett. 112 (2014) no.18, 181801

IN2P3 groups join T2K

T2K starts data taking

Take data in $\overline{\nu}$ -mode

LLR joins Super-K

T2K phase-II + ND280 upgrade

Start of Hyper-K

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

2036

Hints of ν_e appearance (θ₁₃≠0@2.5σ) Observation of ν_e appearance $(\theta_{13}\neq 0@7.3\sigma)$

Precise measurement of θ_{23} , Δm^2_{32}

Hints of CP violation $\rightarrow \sin(\delta_{CP})=0$ excluded at 95%

Phys.Rev.Lett. 107 (2011) 041801

Phys.Rev.Lett. 112 (2014) 061802

Phys.Rev.Lett. 112 (2014) no.18, 181801

M. Wascko, Neutrino 2018

IN2P3 groups join T2K

T2K starts data taking Take data in ν-mode

LLR joins Super-K

> T2K phase-II + ND280 upgrade

Start of Hyper-K

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

2036

Hints of ν_e appearance $(\theta_{13}\neq 0@2.5\sigma)$ Observation of ν_e appearance $(\theta_{13}\neq 0@7.3\sigma)$

Precise measurement of θ_{23} , Δm^2_{32}

Hints of CP violation \rightarrow sin(δ_{CP})=0 excluded at 95%

????

Phys.Rev.Lett. 107 (2011) 041801

Phys.Rev.Lett. 112 (2014) 061802 Phys.Rev.Lett. 112 (2014) no.18, 181801

M. Wascko, Neutrino 2018

- CP violation at $>3\sigma$? \rightarrow >5 σ with Hyper-K?
- Mass ordering?
- sin²θ₂₃ octant?
- And many ν and $\bar{\nu}$ crosssection measurements

The T2K experiment

- High intensity ~600 MeV ν_μ beam produced at J-PARC (Tokai, Japan)
- Neutrinos detected at the Near Detectors (ND280) and at the Far Detector (Super-Kamiokande) 295 km from J-PARC
- Can run in ν or $\bar{\nu}$ mode by changing horn polarity
- Main physics goals:
 - Observation of v_e and $\overline{v_e}$ appearance \rightarrow determine θ_{13} and δ_{CP}
 - Precise measurement of v_{μ} (\overline{v}_{μ}) disappearance $\rightarrow \theta_{23}$ and Δm^2_{32}

Super-Kamiokande: 22.5 kt fiducial volume water

Cherenkov detector

ND280+INGRID

Sensitivity to oscillation parameters

- $P(\nu_{\mu} \rightarrow \nu_{\mu}) = P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu})$
 - Test of CPT conservation
 - * Sensitive to $sin^2(2\theta_{23}) \rightarrow cannot distinguish the octant$
 - * Sensitive to $|\Delta m^2_{23}| \rightarrow$ cannot distinguish NO and IO
- $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$
 - Sensitive to CP violation
 - * Sensitive to octant of $\sin^2(\theta_{23})$
 - * Sensitive to matter effects (hierarchy) → weak in T2K since L is (relatively) short

T2K goals:

measure v_{μ} and \overline{v}_{μ} disappearance and v_{e} and \overline{v}_{e} appearance probabilities

IN2P3 groups in T2K

	T2K	NA61	Wagasci	T2K-II	SK	НК
LLR	4	0	3	4	4	5
LPNHE	3	2	0	5	0	5

Permanent physicists only

- Main responsibilities:
 - Convener of T2K beam group
 - NA61/SHINE analysis coordinator
 - Convener of T2K oscillation analysis
 - * 2 conveners of CC-0π cross-section group
 - Convener of INGRID and Wagasci electronics
 - * 7 PhD theses defended since 2009, 4 PhD theses on-going

Near Detectors

INGRID: monitor neutrino beam profile and direction

Measure v cross-sections

LLR contributed to mechanics and MPPC testing

WAGASCI + BabyMIND

Newly installed ND (part of T2K since 2018)

Measure ν and $\bar{\nu}$ cross-sections on water

LLR: contributed to mechanics and DAQ

ND280 off-axis: detectors installed in the UA1/

NOMAD magnet (0.2 T)

Fundamental input to T2K oscillation analysis

Tracker system composed by

2 Fine Grained Detectors → active target for v

interactions

3 Time Projection Chambers to measure charge, momentum and PID of leptons emitted in v

interactions

LPNHE contributed to magnet and TPC electronics

Super-Kamiokande

- 50 kton Water Cherenkov detector
 - * ~11000 PMTs for ID, ~2000 for OD
- 1000 m underground at Kamioka mine operated since 1996
- Very good PID capabilities to distinguish between $ν_e$ and $ν_μ$ thanks to shape of Cherenkov ring → <1% misidentification probability

Data taking

- * Collected >3.16x10²¹ protons on target (~half ν and half $\bar{\nu}$)
 - 40% of approved p.o.t.
- * Reached 500 kW beam power
- Beam stability over the whole beam period measured by INGRID

T2K oscillation analysis

Flux prediction:

✓ Proton beam measurement
 ✓ Hadron production (NA61 and others external data)

- ND280 measurements:

 ν_μ and ν_μ selections to constrain flux and crosssections
 - Neutrino interactions:
- ✓ Interaction models✓ External cross-section data

Prediction at the Far Detector:

√ Combine flux, cross section and ND280
to predict the expected events at SK

Extract oscillation parameters!

Super-Kamiokande measurements:

Select CC ν_μ and ν_e candidates after the oscillations

- Multipurpose detector @ CERN → precision hadron production measurements for T2K (and FNAL) neutrino fluxes predictions
- Took data for T2K in 2007, 2009,
 2010 with thin and replica target
- Thin target data already used → 10% uncertainties on neutrino fluxes
- Inclusion of 2010 data with replica target will allow to reduce flux uncertainties to ~5% level

ND280

- * Select 14 samples of ν_{μ} and $\overline{\nu}_{\mu}$ interactions on Carbon and Water with 0,1,>1 π in the final state
- Likelihood fit to constraint flux and cross-section uncertainties for T2K Oscillation Analysis
- Reduce uncertainties from ~15% to ~5%

ND280 cross-sections

- * 14 papers published for measurements of ν and $\bar{\nu}$ crosssections @ND280
- * Example of CC0π analysis with reconstructed protons in the final state (LPNHE,LLR)
- * Extract cross-section in 4-dimensional (P_μ, θ_μ, P_p, θ_p)
- Look for single transverse variables sensitive to nuclear effects

Super-K

µ-like v-mode

μ-like ν-mode

		MC expected Number of events				
Data		δ _{CP} =-π/2	δ _{CP} =0	δ _{CP} =+π/2	δ _{СР} =π	
u-mode e-like	75	73.8	61.6	50.0	62.2	
ν-mode e-like+1π	15	6.9	6.0	4.9	5.8	
$ar{v}$ -mode e-like	9	11.8	13.4	14.9	13.2	
ν-mode μ-like	243	268.5	268.2	268.5	268.9	
$ar{ u}$ -mode μ -like	102	95.5	95.3	95.5	95.8	

To be updated with full run9 stat during Summer (50% more data in $\overline{\nu}$ mode)

e-like v-mode

e-like v-mode

Systematics

	1R μ-like			1R e-like		
	ν -mode	$\bar{\nu}$ -mode	ν -mode	ν-mode (+1π)	$\bar{\nu}$ -mode	
SK detector	2.4 %	2.0%	2.8%	13.1%	3.8%	
SK FSI+SI+PN	2.2%	2.0%	3.0%	11.4%	2.3%	
ND280 flux & cross-section	2.9%	2.7%	3.0%	3.8%	2.9%	
Binding energy	2.4%	1.7%	7.2%	3.7%	3.0%	
σ(ν _e)/ σ(ν _μ)	<0.05 %	<0.05 %	2.6%	2.6%	1.5%	
Neutral currents	0.3%	0.3%	1.1%	1.0%	2.6%	
Total	4.9%	4.3%	8.8%	18.3%	7.0%	

- ◆ Binding energy is treated as an effective parameter not fitted with ND280 → will be reduced in next round of analysis
- Contributions from flux and cross-section constrained by ND280
- ◆ SK detector and FSI+SI uncertainties (not constrained by ND280)
- Only use ν_{μ} selection at ND280 \rightarrow uncertainties due to possible ν_{e}/ν_{μ} cross-section (theoretical uncertainties)

Oscillation results

- Precise measurement of sin2(θ₂₃)→
 compatible with maximal mixing
- * T2K alone and T2K+reactor both prefer values of δ_{CP}~-π/2
- Normal ordering is also favoured

	sin²θ ₂₃ <0.5	sin²θ _{23>} 0.5	SUM
NO (Δm ² ₃₂ >0)	20,4 %	68,4 %	88,8 %
IO (∆m ² 31<0)	2,3 %	8,9 %	11,2 %
SUM	22,7%	77,3 %	100 %

The future

- Long Baseline Experiments are leading techniques to measure several oscillation parameters (δ_{CP} , θ_{23} , mass ordering)
- Next generation of LBL (DUNE, Hyper-K) will not come online before 2026
- T2K (and NOvA) will be the leading experiments for the next 8-10 years
- Let's get the best from them!

T2K phase II

- ◆ T2K was originally approved to collect 7.8x10²¹ pot
 - Driven by sensitivity to θ₁₃
- Proposal for an extended run
 - **◆** T2K-II → 20x10²¹ pot
- Upgrade the Main Ring power supply to reach 1.3 MW operations

 v_e candidates: 460 ± 20% (δ_{CP} and ordering) \overline{v}_e candidates: 130 ± 13% (δ_{CP} and ordering)

- → >3σ measurement of CP violation (if lucky...)
- Need to reduce systematics to ~4% (<3% from ND280)

ND280 upgrade

- Main limitation of ND280 : reduced angular acceptance → only forward going muons are selected with high efficiency
- * An analysis dedicated to select tracks with high polar angles allow to select 20% of the events in that region
- We can do better with an upgrade!

ND280 upgrade

CERN-SPSC-P357

- Replace upstream part of ND280 with an horizontal fully active target (SuperFGD) and 2 horizontal TPCs
- * This will allow to select μ and e at any angle with respect to the beam
- Proposal submitted to SPSC in 2017
- Test beam foreseen for Summer 2018

2017	2018	2019	2020	2021
Proposal	Prototypes, TDR	Construction	Construction	Installation

Upgrade performances

Parameters	Expected improvement on uncertainties		
SK flux FSI	$\sim 20\% \ \sim 45\%$		
CCQE/2p2h Other (Q^2 -dependent)	$\sim 25-40\% \ \sim 25\%$		

- For same POT → Reduce uncertainties on inputs to oscillation analysis by ~30%
- Low momentum threshold and full angular coverage → much better sample to study nuclear effects

Super-FGD

LLR electronics developed for Calice

- * 2 ton target with 1x1x1 cm cubes read by 3 fibers
- * Total of 60-80k channels read with MPPC (80k if S-FGD will be split in 4 modules)
- Proposal from LLR to read the MPPCs with SPIROC2 chips → Front End Boards close to the detector equipped with 4 chips
- DIF will read up to 32 Front End Boards
- * Signal from DIF is sent outside the magnet to a GDCC board → each GDCC can read 7 DIF → 1 GDCC and 7 DIF enough to read 20k channels)
- Proposal from LLR being discussed within the ND upgrade collaboration → total cost ~600 k€
 + request for an electronic engineer

Horizontal TPCs

- Similar to existing TPCs but horizontal and with lighter field cage
- Equipped with resistive MicroMegas (8x2x2 modules)
- * LPNHE will provide front end electronics boards to read AFTER chips (total of ~80 boards will be built) and cooling→ the lab already provided necessary ITA
- * Total cost ~200 k€ (including cooling for electronics)
- * A mechanical engineer to study detectors integration in the basket has also been allocated to the project

Conclusions

- T2K has been a very successful experiment
 - Observation of electron neutrino appearance
 - * World best measurement of sin²θ₂₃
 - First hints of CP violation
- T2K-II will allow us to be one of the two leading LBL experiments until ~2026
- We propose an upgrade of the Near Detector in order to reduce systematics and fully profit of the additional statistics
- Crucial know how (detectors, analyses, PhD theses)
 for future LBL experiments → see Michel's talk

