How to detect particles in ATLAS

INTERNATIONAL

 MASTERCLASSES
2. hands on particle physics

Centre de physique dès particules de Marselle

Cils

Using Minerva to identify events

© () Atlantis GUI File Preferences Lists
\boxtimes events/test_events.zip/001_JiveXML_105200_190249.xml
Reset Demo Previous Next Help

- Δ

Electrons/positrons and photons identification

- Shower in the EM calorimeter
- e^{+} / e^{-}: charged particle, track in the tracker
- Curvature of the track \rightarrow sign of the electric charge

Electrons/positrons identification with Minerva

Electrons/positrons identification with Minerva

- Track in the tracker
- Energy in the calorimeter

Electrons/positrons identification with Minerva

- Track in the tracker
- Energy in the calorimeter

Electrons/positrons identification with Minerva

- $\mathrm{P}_{\mathrm{T}}=$ transverse momentum
- Here, negative charge \rightarrow electron

Muons/antimuons identification

- Charged particle -> track in the tracker
- Few amount of energy in the calorimeter
- Track in the muon detector
- Curvature of the track \rightarrow sign of the electric charge
- Not stopped by internal layers, travels through ATLAS

Identify muonslantimuons with Minerva

Identify muons/antimuons with Minerva

- Tracks in the tracker and muon detector (aligned)
- Some energy in the calorimeters

Identify muonslantimuons with Minerva

- Tracks in the tracker and muon detector (aligned)
- Some energy in the calorimeters

Identify muons/antimuons with Minerva

- Positive charge : antimuon

Neutrinos identification

- Neutral particle which does not interact with matter
- No traces in the detector
- Identified indirectly using momentum conservation

Missing transverse energy: $\mathrm{E}_{\mathrm{T}}{ }^{\text {n }}$

- Without neutrino
- 3 reconstructed particles
- In the transverse plane, sum of momenta: 0
- So E_{T} miss $=0$

- With a neutrino
- Part of the event is unseen
- The sum of transverse momenta is non zero
- The difference is E_{T} miss, associated to the neutrino

Neutrino identification with Minerva

- By conservation, the sum of momenta in the transverse plane is 0
- Else, Missing ET : unseen particles, or badly measured
- Representation with a dashed red line, value in the top right

Analyse : W boson observation Production

Analyse : W boson observation Désintégration

Difficulties : background

- Similar signature to what we look for, but coming from a different source
- Maybe a real process giving this final state
- ... or due to the fact that a particle was not observed
- For example : escaping along the beam
- ... or due to a bad reconstruction
- For example : there is a jet, but I think it's an electron
- ... or due to additionnal particles
- Every event contains several collisions

Examples of signal and background

- Signal : W boson decay $W \rightarrow e v$
- Background : Z $\rightarrow e e$
- One electron is not reconstructed

- If we look for Z events, then W events can be a background!

And you?

- Looking for W bosons
- And measuring the structure of the proton
- Searching for the Higgs boson
- $H \rightarrow W^{+} W \rightarrow e^{+} v e^{-} v$
$e^{+} v \mu^{-} v$
$e^{-} v \mu^{+} v$
$\mu^{+} v \mu^{-} v$

