#### **How to detect particles in ATLAS**

## INTERNATIONAL IN MASTERCLASSES

hands on particle physics

Centre de physique des particules de Marseille



Aix Marseille



#### **Using Minerva to identify events**



# Electrons/positrons and photons identification

- Shower in the EM calorimeter
- e⁺/e⁻ : charged particle, track in the tracker
- Curvature of the track → sign of the electric charge





#### Electrons/positrons identification with Minerva



#### Electrons/positrons identification with Minerva



- Track in the tracker
- Energy in the calorimeter

# Electrons/positrons identification with Minerva



- Track in the tracker
- Energy in the calorimeter

#### Electrons/positrons identification with Minerva



- $P_T$  = transverse momentum
- Here, negative charge  $\rightarrow$  electron

#### **Muons/antimuons identification**

- Charged particle -> track in the tracker
- Few amount of energy in the calorimeter
- Track in the muon detector
- Curvature of the track
  → sign of the electric charge
- Not stopped by internal layers, travels through ATLAS





9



- Tracks in the tracker and muon detector (aligned)
- Some energy in the calorimeters



- Tracks in the tracker and muon detector (aligned)
- Some energy in the calorimeters



Positive charge : antimuon

#### **Neutrinos identification**

- Neutral particle which does not interact with matter
- No traces in the detector
- Identified indirectly using momentum conservation



## Missing transverse energy : $E_{T}^{miss}$

- Without neutrino
  - 3 reconstructed particles
  - In the transverse plane, sum of momenta : 0
  - So  $E_T^{miss} = 0$
- With a neutrino
  - Part of the event is unseen
  - The sum of transverse momenta is non zero
  - The difference is E<sub>T</sub><sup>miss</sup>, associated to the neutrino



#### **Neutrino identification with Minerva**



- By conservation, the sum of momenta in the transverse plane is 0
- Else, Missing ET : unseen particles, or badly measured
- Representation with a dashed red line, value in the top right

## Analyse : W boson observation *Production*



#### Analyse : W boson observation Désintégration



#### **Difficulties : background**

- Similar signature to what we look for, but coming from a different source
- Maybe a real process giving this final state ....
- ... or due to the fact that a particle was not observed
  - For example : escaping along the beam
- ... or due to a bad reconstruction
  - For example : there is a jet, but I think it's an electron
- ... or due to additionnal particles
  - Every event contains several collisions

# Examples of signal and background

- Signal : W boson decay
  Background : Z → ee
  W → ev
  One electron is not
  - One electron is not reconstructed



• If we look for *Z* events, then *W* events can be a background !

### And you ?

- Looking for W bosons
  - And measuring the structure of the proton
- Searching for the Higgs boson

 $\begin{array}{ccc} \bullet H \rightarrow W^{+}W \rightarrow & e^{+}v \ e^{-}v \\ & e^{+}v \ \mu^{-}v \\ & e^{-}v \ \mu^{+}v \\ & \mu^{+}v \ \mu^{-}v \end{array}$