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Heavy flavour physics at LHCb

 This lecture : 

 No formal computations

 Heavy flavour phenomenology and 

focus on selected LHCb measurements 

 Preamble :

 Familiar with special relativity and 

quantum mechanics ?

 Particle physics background ?
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Outline

Setting the scene 
 Flavour physics in the Standard Model

 Heavy flavour phenomenology

 Searching for new physics

The LHCb experiment
 The current detector

 Data taking

 The LHCb upgrade(s)

Highlight of some LHCb results
 The flavour anomalies and CPPM activities



Setting the scene : Flavour physics

 Flavour physics in the Standard 
Model

 Phenomenology

 Searching for new physics
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Flavour physics in the Standard Model

28 free parameters :
 3 coupling constants

 2 Higgs field parameters

 12 fermions masses

 4 quark mixing parameters

 6 neutrino mixing parameters

 1 QCD CP violating phase (?)

 22 are concerning flavour 
physics

bosonsfermions (+ anti-fermions)

Flavour physics is at the heart of the Standard Model
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Mysteries of flavour physics

Why are there so many different fermions ?

What is responsible for their organisation into generations / families ?

Why are there 3 generations / families each of quarks and leptons ?

Why are there flavour symmetries ?

What breaks the flavour symmetries ?

What causes matter–antimatter asymmetry ?
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Flavour physics

Flavour physics

Quark flavour physics Lepton flavour physics

NeutrinosCharged leptons
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Flavour physics goal

Flavour physics

Quark flavour physics Lepton flavour physics

NeutrinosCharged leptons

Unified understanding of flavour physics ! 
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Flavour physics : this lecture

Flavour physics

Quark flavour physics Lepton flavour physics

NeutrinosCharged leptons

 Main focus on quark Heavy flavour physics 
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Flavour physics : historical successes (1/2) 

No Flavour Changing Neutral Current (FCNC) at tree level

Prediction of the c quark (1970')

 diagram cancellation !

FCNC can occur in loop diagrams

 But the observed rate of K→µµ is 
very much suppressed 

Charged current Neutral current
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Flavour physics : historical successes (2/2) 

1964 : first observation of CP violation 

1973 : Kobayashi and Maskawa show that this can be 
explained if there are 3 generations

 prediction of the third family, directly observed in 1977

 First hint of quark top high mass

1987 : B meson mixing

Evidence for the 2π Decay of the K0
2 Meson

Christenson, Cronin, Fitch et Turlay
Phys. Rev. Lett. 13, 138

B0 B0
UA1 Collab., Phys. Lett.B186, 247 (1987)
ARGUS Collab, Phys. Lett.B192,245 (1987)(plot)
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CKM (1/2)

Quark flavour physics : 
 flavour changing interaction

The weak interaction is the only 
one acting on quark flavour

 flavour changing is due to W 
exchange
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CKM (1/2)
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CKM (1/2)
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CKM (1/2)
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CKM (1/2)
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CKM (1/2)
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CKM (1/2)

 Note : no Flavour Changing Neutral Current (FCNC)
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CKM (2/2)

The Higgs interaction

and the W interaction 

have different quark eigenstates  

  

massweak



19

What is Heavy Flavour physics ?

Flavour changing interactions : 
 electroweak processes

 at the quark level

But quarks feel the strong interaction and hadronise
 quark level parameters can not be accessed directly

 hadronic physics effects need to be under control

Heavy quarks ? 
 ΛQCD / mq << 1 & αs(mq)<<1

 hadronic physics can be handled perturbatively

Heavy flavor physics : 
 study b- (and c-) hadrons decays
− very rich phenomenology

Main objectives : 
 Test the SM / Search for physics beyond the SM (BSM)

 compare precise theoretical prediction with precise experimental measurements

u,d → to light !

s → maybe c,b →just right !

t →too heavy !

m ≈ 2 - 5 MeV 

m ≈ 100 MeV m ≈ 1 - 4 GeV

m ≈ 170 GeV



Some heavy flavour phenomenology

 Strong interaction and hadronisation

 Neutral Mesons mixing

 CP-violation
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Strong interaction

 Electromagnetic interaction
 Electric charges (2)
− +1
− -1
 Interaction between charges
− opposite charges are attracted
− equal charges are repelled
 Neutral object (charge = 0)
− insensitive to electromagnetic 

interaction
 Force career
− photon (neutral)
 Intensity
− decreases with the distance (1/d)

 Strong interaction
 “Color” charges (6)
− red, green, blue (3 charges “+”)
− red, green, blue (3 charges “-”)
 Interaction between charges
− all color charges are repelled

 Neutral object (charge = WHITE)
− rgb = rgb = rr = gg = bb =  WHITE
− insensitive to strong interaction
 Force career
− gluons (8 – carry colors)
 Intensity
− grows with the distance !!!
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Quark confinement into hadrons

Strong interaction gets stronger with distances
 only WHITE (color neutral) states appear in nature

 quarks are confined into hadrons

Different types of hadrons
 baryons made of 3 quarks (rgb, rgb)

− ex : proton, neutron

 mesons made of a quark and an anti-quark (rr, gg, bb)

− ex : pions (π), kaons (K)

 also exotic states with 4 or 5 quarks ! 
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Quark confinement into hadrons

Strong interaction gets stronger with distances
 only WHITE (color neutral) states appear in nature

 quarks are confined into hadrons
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The zoo of hadrons 

A few key players :
 baryons (3 quarks)

 with  u & d quarks (ordinary matter)
– proton (uud) / neutron (udd)

 …

 mesons (quark+anti-quark)
 with u & d quarks (ordinary matter )

– π+(ud) /  π-( ud) / π0(uu ou dd) → « pions »
 with a strange quark : s

– K+(us) / K-(us) / K0(ds) / K0(ds) → « kaons »
 with a charm quark : c

– D+(cd) / D-(cd) / D0(cu) / D0(cu)
– DS

+(cs) / DS
-(cs)

 with a bottom quark : b
– B+(ub) / B-(ub) / B0(db) / B0(db)
– BS

0(sb) / BS
0(sb) 

– BC
+(cb) / BC

-(cb) 

  … and many others with the same quarks and different angular 
configurations
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The zoo of hadrons 

A few key players :
 baryons (3 quarks)

 with  u & d quarks (ordinary matter)
– proton (uud) / neutron (udd)

 …

 mesons (quark+anti-quark)
 with u & d quarks (ordinary matter )

– π+(ud) /  π-( ud) / π0(uu ou dd) → « pions »
 with a strange quark : s

– K+(us) / K-(us) / K0(ds) / K0(ds) → « kaons »
 with a charm quark : c

– D+(cd) / D-(cd) / D0(cu) / D0(cu)
– DS

+(cs) / DS
-(cs)

 with a bottom quark : b
– B+(ub) / B-(ub) / B0(db) / B0(db)
– BS

0(sb) / BS
0(sb) 

– BC
+(cb) / BC

-(cb) 

  … and many others with the same quarks and different angular 
configurations

actively  studied in LHCb !
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Hadronisation

In particle collisions (proton-proton, e+e-, …)
 quarks are produced by pairs (qq)

 and hadronise

B hadrons hadronisation fractions :
 f(B0)  ≈ f(B+)  ≈ 0.37

 f(Bs) ≈ 0.16
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Hadron decays (1/3)

All hadrons (but the proton) are unstable, they decay spontaneously

Most of the hadrons we are interested in are decaying through electroweak transitions :
 ex : tree level processes
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Hadron decays (1/3)

All hadrons (but the proton) are unstable, they decay spontaneously

Most of the hadrons we are interested in are decaying through electroweak transitions :
 ex : tree level processes

Note : simplified view, more realistic representation :
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Hadron decays (1/3)

All hadrons (but the proton) are unstable, they decay spontaneously

Most of the hadrons we are interested in are decaying through electroweak transitions :
 ex : tree level processes

 ex : processes with loops

“Box” diagram “penguin” diagram
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Hadron decays (2/3)

Many possible final states → probabilistic law

Ex : D0 
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Hadron decays (3/3)

Some decays are very rare :
 ex : B → µ+ µ-
− doesn't exist at tree level 

[Nature 522 (2015) 68]

[Phys. Rev. Lett. 118, 191801 (2017)]

http://dx.doi.org/10.1038/nature14474
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Hadron life time (1/2)

For a particular event, the hadron 
 decay mode is not predictable
 neither it's decay time

 probabilistic behavior

Hadrons do not age 
 same decay time prob. at all times

 decay time follow an exponential law

characterised by the hadron life time 
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Hadron life time (1/2)

For a particular event, the hadron 
 decay mode is not predictable
 neither it's decay time

 probabilistic behavior

Hadrons do not age 
 same decay time prob. at all times

 decay time follow an exponential law

characterised by the hadron life time 

Les hadrons sont instables 

(sauf le proton ?)
 ils se désintègrent spontanément

 le moment où un hadron va se 
désintégrer n'est pas prédictible

– comportement probabiliste
 ils sont caractérisés par un temps 

de vie (espérance de vie)
– temps propre de la particule

 ils ne vieillissent pas 
– leur espérance de vie est la même 

à chaque instant
– la durée de vie d'une population 

de hadron de même type suit une 
loi exponentielle Reminder : logarithmic scale ! Reminder : logarithmic scale ! 

y=109 exp−1,6 x
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Hadron life time (1/2)

For a particular event, the hadron 
 decay mode is not predictable

 neither it's decay time
− probabilistic behavior

Hadrons do not age 
 same decay time prob. at all times

 decay time follow an exponential law

characterised by the hadron life time 

[J
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1ps = 10-12 s !!!

τ(B
s
0→J/ΨΦ) = 1.480 ± 0.011 ± 0.005 ps
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Hadron life time (2/2)

Charmed and beauty hadrons have large lifetimes :

 cτ (µm)

Experimentally :
 they fly away from the production vertex before decaying

 flight distance is measurable (allow identification) 

B0 456

B+ 491

B
s

453

D0 123

D+ 312

D
s

150

B+→ J/Ψ K+ ; J/Ψ → µ+µ- 

B
s
→ D

s
 µ- ν ; D

s
 → K+K-π+ 
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The mass of hadrons

Hadron mass 
 intrinsic property

 sum of quarks mass 

+ their binding energy

 proton mass : 
− dominated by binding energy
− ultra-relativistic quarks
 B hadrons :
− dominated by m(b) = ~4 GeV

Experimentally : 
 B hadron mass reconstructed from the 

measured momenta of the particles in the 
final state

 allow identification 
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M(B
s
) = 5366.90 ± 0.28 (stat) ± 0.23 (syst) MeV/c²

Bs J/Ψ

Φ
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K+
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Energy scale ! ΔE/E < 2.10-4

B → ~5 GeV

D → ~2 GeV
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Hadrons : summary

Hadrons : bound states of quarks

Large variety of hadrons

Each is characterized by :
 mass

 life time

 quantum state (parity, …)

Many decay modes accessible

Heavy hadrons (i.e. with b or c quarks) have a very rich phenomenology



Some heavy flavour phenomenology

 Strong interaction and hadronisation

 Neutral Mesons mixing

 CP-violation
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Neutral meson oscillation (mixing)

Interaction eigenstates : M0 and M0

 M0 can be K0(sd), D0(cu), B0(bd) or Bs(bs)

 M0 is the antiparticle of M0

They can mix to each other : 
 M0↔M0

Mass eigenstates :  M1 and M2

 M1/2 = q M0 ± p M0   (√(p²+q²) = 1)

Observation : matter and anti-matter oscillations

mixed     : B
s
→B

s
→D

s

-
π +or B

s
→B

s
→D

s

+
π -
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s
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Some heavy flavour phenomenology

 Strong interaction and hadronisation

 Neutral Mesons mixing

 CP-violation
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 Discrete symmetries and CP violation (reminder)

C (charge conjugation) : 
 reverse all charges (but mass and spin)

i.e. electric, color, isospin, flavour, ...

P (parity) :
 reverse spatial coordinates (i.e. momentum)

identical to a mirror transformation 

C and P are maximally violated by the weak interaction :
 only left-handed neutrinos and right-handed anti-neutrinos are observed

CP was first thought to be a valid symmetry :
 a CP-mirrored process behave as the original

i.e. anti-matter behaves like matter observed in a mirror

BUT, 1964 : first observation of CP violation in the K0-K0 system [Christenson, Cronin, Fitch and Turlay]

 very active domain ever since    lead to the prediction to the third family

 also observed in the B0-B0 system  accounted for in the SM by a phase in the CKM matrix
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Observation of CP violation

CP violation : | A (M → f ) |² ≠ | A (M → f ) |²

CP observation requires 2 interfering amplitudes A1 and A2 :

Need A1 and A2  with :

 different weak phases (CP) : ϕ1 ≠ ϕ2

 different strong phases (CP) : δ1 ≠ δ2 

M f

A1 e
iϕ1eiδ1

A2e
iϕ2 eiδ2

M f

A1 e
−iϕ1e iδ1

A2e
−i ϕ2 eiδ2

CP

A1
2
+A2

2
+2 A1 A2cos(Δ ϕ+Δδ) A1

2
+A2

2
+2 A1 A2cos(Δ ϕ−Δδ)

with Δϕ = ϕ
1
 – ϕ

2 
and   Δδ = δ

1
 – δ

2
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CP violation effects classification

3 types : 

 mixing : 
 P(M0 → M0) ≠ P(M0 → M0)

 decay
 P(M0 → f ) ≠ P(M0 → f )

 interference between mixing and decay

mixing

@ t=0 t

M0 f

A

M0

A
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CP violation in the mixing

Interaction eigenstates : M0 and M0

 CP M0 = M0

CP eigenstates : 
 Meven = ( M0 +  M0 ) √2

 Modd = ( M0 -  M0) / √2

Mass eigenstates : M1 and M2

 M1/2 = q M0 ± p M0 

CP violation if mass eigenstates ≠ CP eigenstates
 i.e. if |p/q| ≠ 1

This is the kind of CP violation observed in 1964 in the Kaon system
 Observation of KL (≈ Kodd) → 2 π  (a CP even state)

 KL = ( Kodd + εK Keven) / √(1 + εK²)  with |εK| ≈ 2.10-3 

This type of CP violation is negligible in the B system

M0 M0

A(M0→ M0) ≠ A(M0→ M0)  

SM  : a
sl
 = (1.9 ± 0.3) 10-5  

LHCb : asl = (0.39 ±0.26±0.20)%
[Phys. Rev. Lett. 117, 061803 (2016)]

CP asymmetry :

with f = (D- µ+ ν X)
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CP violation in the decay

Decays : 
 B0 → K+ π- -VS- B0 → K- π+

 Bs → K- π+ -VS- Bs → K+ π-

The 2 amplitudes, e.g. for B0 :

 First observation of CP violation in 
the  decays of Bs mesons

B0
K+π-

A1e
i arg(V ub

¤ V us)eiδ1

A2e
i arg(V tb

¤ V ts)e
i δ2 [Phys. Rev. Lett. 110 (2013) 221601]

B0, B
s

B0, B
s
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CP violation in the interference (1/2)  

Time dependant CP violation gives access to the mixing phase :
 In the B0-B0 system (mixing phase ϕd)

 final state accessible by both B0 and B0 : J/Ψ Ks

 Construct the time dependant asymmetry : 
− need to know the production flavour of the B (tagging)

mixing

@ t=0 t

B0 f

A

B0

A

ACP(t)=
Γ(Bt0

0
→J /ψK s (t ))−Γ(Bt0

0
→ J /ψK s (t ))

Γ(Bt0

0
→J /ψK s(t ))+Γ(Bt 0

0
→J /ψK s(t))

∝sin(ϕd)sin(Δmt)

A

A

mixing

Mixing phase in the SM :  

ϕd
SM=1

2
arg (

−V cb
¤ V cd

V tb
¤ V td

)
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CP violation in the interference (2/2)  

Time dependant CP violation gives access to the mixing phase :
 In the Bs-Bs system (mixing phase ϕs): 

 Use J/ΨΦ final state

 Much more complicated analysis
− fit angular distributions

 Note : beyond the standard model physics could add an extra contribution to the 
Standard model mixing phase
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CP violation in the CKM framework

CKM : 
 complex (3x3) unitary matrix → 3 real angles and 6 phases
− freedom to redefine the phase of the quark mass eigenstates
 only 1 physical phase remains

 this physical phase is the one responsible for the CP violation in the SM

Wolfenstein parametrisation (O(λ6))

massweak
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Standard model tests with heavy flavour

Lot's of precision measurements 
are being compared to the SM 
prediction

 e.g. lot's of redundant 
measurements of the 
parameters of the CKM matrix 
to check consistency

However, more precision is 
required !
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Standard model tests with heavy flavour

Lot's of precision measurements 
are being compared to the SM 
prediction

 e.g. lot's of redundant 
measurements of the 
parameters of the CKM matrix 
to check consistency

However, more precision is 
required !

 

"A special search at Dubna was carried out by E. Okonov and his 
group.They have not found a single K0L→π+π−event among 600 
decays of K0L into charged particles [13] (Anikina et al., JETP, 1962). 
At that stage the search was terminated by administration of the Lab. 
The group was unlucky.
Approximately at the level 1/350 the effect was discovered by 
J.Christensen,J.Cronin, V.Fitch and R.Turlay [14] at Brookhaven in 
1964 in an experiment the main goal of which was KL→KS 
regeneration in matter.
Thus absolute CP-invariance was falsified."
Spacetime and vacuum as seen from Moscow, Lev Okun
Int.J.Mod.Phys.A17S1:105-118,2002       

"A special search at Dubna was carried out by E. Okonov and his 
group.They have not found a single K0L→π+π−event among 600 
decays of K0L into charged particles [13] (Anikina et al., JETP, 1962). 
At that stage the search was terminated by administration of the Lab. 
The group was unlucky.
Approximately at the level 1/350 the effect was discovered by 
J.Christensen,J.Cronin, V.Fitch and R.Turlay [14] at Brookhaven in 
1964 in an experiment the main goal of which was KL→KS 
regeneration in matter.
Thus absolute CP-invariance was falsified."
Spacetime and vacuum as seen from Moscow, Lev Okun
Int.J.Mod.Phys.A17S1:105-118,2002       



BSM searches with heavy flavour

 The quantum path
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Mysteries of flavour physics

Why are there so many different fermions ?

What is responsible for their organisation into generations / families ?

Why are there 3 generations / families each of quarks and leptons ?

Why are there flavour symmetries ?

What breaks the flavour symmetries ?

What causes matter–antimatter asymmetry ? (SM CP violation is not enough)

What about Dark matter ?
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Mysteries of flavour physics

Why are there so many different fermions ?

What is responsible for their organisation into generations / families ?

Why are there 3 generations / families each of quarks and leptons ?

Why are there flavour symmetries ?

What breaks the flavour symmetries ?

What causes matter–antimatter asymmetry ? (SM CP violation is not enough)

What about Dark matter ?

[I. Ripp-Baudot; this school 4/7/2017]
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Search for physics beyond the Standard Model (BSM)

High energyHigh energy

Direct observation : 
 produce “new” particles on shell 

and detect decay products

 more intuitive, “really” produced

 limited by collision energy

High precisionHigh precision

Indirect observation :
 virtual “new” particles can be 

discovered in loop processes

 less intuitive, “quantum” level

 not limited by collision energy,    
limited by precision (of 
measurements and theoretical 
predictions)

Complementary approaches → both are needed !

DirectDirect

E=mc²

IndirectIndirect

ΔE.Δt < h/2π

W+ virtuel



55

BSM searches with heavy flavour

Contribution to New Physics as a correction to the Standard Model
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BSM searches with heavy flavour

Contribution to New Physics as a correction to the Standard Model

 What is the scale of New Physics Λ? What are its coupling CNP? 



The LHCb experiment

 The LHCb detector

and its upgrades
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LHCb @ LHC

One of the 4 main LHC experiments
 Designed for heavy flavour physics precision measurements
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The LHCb collaborationThe LHCb collaboration
934 members
65 institutes
17 countries
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Beauty and Charm production at the LHC 

LHC is a Flavor Factory, e.g. @ 7 TeV :
 σ(pp → cc X) = ~ 6 mb [LHCb-CONF-2010-013] 

 σ(pp → bb X) = ~0.3 mb  [PLB 694 (2010) 209]

 note : the cross section grows lineraly with the energy

 B factories : σ(e+e- → bb)@Υ(4S) = ~ 1 nb

Challenging background condition : 
 σ(pp →X)inel = 60 mb  [JINST 7 (2012) P01010]

All B hadron species are produced : B0, Bs, Bc, ...

bb/cc pairs are produced predominantly 
 in the forward or backward directions
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A forward spectrometer (1/2)

B forward-peaked production
→

LHCb is a forward spectrometer
(operating in collider mode)

10-300 mrad

beam 1 beam 2

Interaction point
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A forward spectrometer (2/2)

With unique rapidity coverage at LHC 

 LHCb acceptance : 2 <η < 5

 fully covered by tracking and 

particle identification 

ATLAS/CMS
LHCb

→ complementary measurements
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A forward spectrometer optimised for heavy flavors

Key requirements
 B and D decay identification and

resolve fast Bs oscillation

 Final state reconstruction and

background rejection

 collect high statistic

Detector design :
 High precision vertexing and tracking
− VELO, TRACKING system
 Particle identification
− RICH, CALO + MUON system
 Trigger
− L0 (hardware) + HLT (software)

RICH detectorsVErtex LOcator

TRACKING system

Calorimeters

MUON system
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LHCb detector
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The VErtex LOcator (VELO) (0/3) 
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The VErtex LOcator (VELO) (1/3) 

Reconstruction of primary and decay vertices, track seeds

21 modules of R-Φ sensors

Movable device (retracted for safety during beam injection) : 
 35 mm from beam out of physics
 8 mm from beam during physics

Operated in vacuum  OPEN CLOSE
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The VErtex LOcator (VELO) (2/3) 
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The VErtex LOcator (VELO) (3/3) 

[P
L B

 693
 69 ]

Beam 2Beam 1

[C
O

N
F

-20
12-002

]

Reconstructed beam-gaz vertices
(used for luminosity measurement)

B
S
→J/ΨΦ 

Prompt J/Ψ 

Proper time resolution : σ
t
 = ~ 45 fs

(cf. λ
 
= 2π/Δm

S 
~350 fs)

For 25 tracks : σ
X
 ≈ σ

Y
 ≈ 16 µm, σ

Z
 ≈ 76 µm Impact parameter resolution 

for high p
T
 track : ~ 20 µm
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The Tracking System (0/2)
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The Tracking System (1/2)

System :
 1 tracking station before magnet (TT) : 

 4 layers of Si-Strips sensors

 Magnet
 ∫Bdl = ~ 4 Tm ; polarity switched regularly

 3 tracking stations after magnet,
4 layers each split into:
 Inner Tracker (Si-sensors)

 Outer Tracker (straw tube)

Track finding : 
 Long tracks : high-momentum tracks 

traversing the full LHCb tracking setup
 combine track seeds in VELO and T-stations 

and add TT hits

 measured with highest precision

 most numerous in the main LHCb acceptance

TTT1
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The Tracking System (2/2)

B
S
→J/ΨΦ : σ ≈ 8 MeV/c²

(J/Ψ mass 
constrained)∫ L = 25 pb-1

Υ(1S) →  µµ : σ ≈ 54 MeV/c²

[P
LB

 708  (201 2) 24 1]

Momentum resolution : σ(p)/p = 0.4-0.6% (5-100 GeV/c)

Momentum scale and detector alignment well controlled :

[C
O

N
F

-2012-002]

[E
ur.P

hys. J. C
, (72),6]

J/Ψ → µµ : σ ≈ 15 MeV/c²

Υ(3S)

Υ(2S)

Υ(1S)

 cf. [CMS DPS-2010-040] ~ 16 MeV/c²
[ATLAS CONF-2011-050] ~ 22 MeV/c²

B hadron mass world's best measurements (2010 data only, 37pb-1)  B
C

+ mass also measured 

[arX
iv:1209.5634]
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The RICH detectors (Particle Identification) (0/3)
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The RICH detectors (PID) (1/3)

Cerenkov effect :
 Cerenfov effect : when a 

particle travels faster than light 
in a medium,

it emits photons

 the photons are emitted in a 
cone with a opening angle 
proportional to the speed  of 
the particle

LHCb's RICHs : Cerenkov 
imaging detector

 allow to identify charged 
hadrons

vparticule


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The RICH detectors (PID) (2/3)

K/π separation over the full 1-100 GeV/c range

The detectors :
 RICH1 : 

 full angular acceptance

 covers low momentum range : 1-60 GeV/c

 aerogel & C4F10 radiators

 RICH2 : 
 limited angular acceptance (~±15→~±100 mrad)

 high momentum range : ~15 GeV/c - > 100 GeV/c

 CF4 radiator

 Hybrid Photon Detectors (HPDs)
 500 each with 1024 pixels

 High efficiency, low noise

Performances
  ε ≈ 95 % for 5% π-K misID probability
 performances well described by simulation

RICH1



76

The RICH detectors (PID) (3/3)

Charmless B decays : sensitive probes of CKM matrix

 K π 

ππ 

B
S
 → KK 

pπ 

 Plot with ππ hypothesis - No RICH Plot with ππ hypothesis - No RICH

 Deploy RICH 
to isolate 
each mode

KK 

B0 → ππ

B0 → Kπ

B
S
 → Kπ

Λ
b
 → pK Λ

b
 → pπ 

pK 

[arX
iv:1206.2794]
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The Calorimeters (Particle Identification) (0/2)
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The Calorimeters (Particle Identification) (1/2)

Scintillator Pad Detector / PreShower :
 robust e/γ and e/hadron separation

 single layer scintillator tiles separated by Pb sheet (2.5 X0)

 ε(e±) = 90% for 5% e-hadron MisID

Electromagnetic CALorimeter :
 e and γ energy measurement

 trigger on electromagnetic decay channels

 Pb plates / scintillator tiles (25 X0) 

 σ(E)/E = 10%/√E(GeV) + 1% (nominal)

Hadronic CALorimeter : 
 energy measurement for hadron

 trigger on hadronic decay channels

 Fe plates / scintillator tiles

 σ(E)/E = 69%/√E(GeV) + 9% (nominal),                  
moderate but enough for triggering

The ECAL detector

h±

e±

γ

SPD PS ECAL HCAL
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The Calorimeters (Particle Identification) (2/2)
[arX

iv:1202.6267]

B
S
 → Φγ

J/Ψ → e+e- 

σ = 109±8 MeV/c²
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The Muon system (Particle Identification) (0/1)
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The Muon system (Particle Identification) (1/1)

5 stations interleaved with iron 
absorbers

 muon identification

 trigger on muonic decay channels

 Muon ID ε(µ) = 97 % 

for 1-3% π-µ MisID 

ε µ-IDε µ-ID Mis-id π/µMis-id π/µ Mis-id K/µMis-id K/µ
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Data acquisition  (0/1)

Level 0Level 0

HLTHLT

StorageStorage

40 MHz40 MHz

DAQDAQ

Event BuildingEvent Building

custom electronics

custom electronics

CPU farm

CPU farm

Calorimeters,
Muon detectors

DAQDAQ
custom electronics

DAQDAQ
custom electronics

DAQDAQ
custom electronics
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Data acquisition (1/1) 

Level 0Level 0

HLTHLT

StorageStorage

40 MHz40 MHz

DAQDAQ

Event BuildingEvent Building

µ, e, γ and hadrons p
T 
cuts 

Tracking and vertexing
High p

T
 tracks with large IP

Inclusive/exclusive selections 

custom electronics

custom electronics

CPU farm

CPU farm

Calorimeters,
Muon detectors

DAQDAQ
custom electronics

DAQDAQ
custom electronics

5 kHz5 kHz

DAQDAQ

1 MHz1 MHz

custom electronics

1 MHz1 MHz

1 MHz1 MHz

By design :
 full detector read-out @ 1MHz

 need to reduce the LHC collision rate from 40 MHz to 1Mhz

L0 : custom electronic @40Mhz, 4 µs latency  
 based on Muon and calorimeters system 

 search for high-pT µ, e, γ, hadron candidates

− pT(µ)>1.4; ET(e/γ)>2.7; ET(hadron)>3.6 [GeV]

L0Muon made in Marseille
 custom electronic boards
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Data acquisition (1/1) 

Level 0Level 0

HLTHLT

StorageStorage

40 MHz40 MHz

Performances at 8 TeV in 2012 (L0xHLT)
 B decays with µµ :   ε ≈ 90 %

 B decays with hadrons : ε ≈ 30 %

 Charm decays :  ε ≈ 10 %

DAQDAQ

Event BuildingEvent Building

µ, e, γ and hadrons p
T 
cuts 

Tracking and vertexing
High p

T
 tracks with large IP

Inclusive/exclusive selections 

custom electronics

custom electronics

CPU farm

CPU farm

Calorimeters,
Muon detectors

DAQDAQ
custom electronics

DAQDAQ
custom electronics

5 kHz5 kHz

DAQDAQ

1 MHz1 MHz

custom electronics

1 MHz1 MHz

1 MHz1 MHz

L0 : custom hardware trigger

HLT : software trigger
 ~30000 tasks in parallel on over 1500 nodes

 HLT1 : track and vertex reconstruction
− Impact parameter cuts
 HLT2 : global event reconstruction and PID
− select exclusive and inclusive modes

Offline : ~1010 events, 700 TB recorded/year
 centralized stripping selections to reduce the 

sample sizes to 0(107) events for physics analysis

 ~800 selections
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LHCb Operation
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Luminosity

 LHCb designed luminosity : 

– Linst = 2x1032 cm-2s-1 with µ=0.4 (# of visible pp int./crossing)

– Precision physics depending on vertex structure 

 easier in a low-pileup environment

 Luminosity levelling at LHCb

– run with constant luminosity

 beam overlap adjusted regularly

– automatic procedure between LHC&LHCb

 2011 & 2012 instantaneous luminosities  :

20122011

 2011 : Linst = ~ 3.5x1032 cm-2s-1, µ = ~1.5

 2012 : Linst = ~ 4.0x1032 cm-2s-1, µ = ~1.7

beam 1

beam 2

Full luminosity 
central collisions 

Reduced luminosity : 
displaced beams

beam 1

beam 2

1

2

4

Linst (x1032 cm-2s-1) Linst (x1032 cm-2s-1)

3

2

4

6

Fill Fill
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Data Taking

Recorded Luminosity :
 Run1 :
− 2011 :  1 fb-1 @ 7 TeV
− 2012 :  2 fb-1 @ 8 TeV
 Run2 (on going)
− 2015 : 0.3 fb-1 @ 13 TeV
− 2016 : 1.7 fb-1 @ 13 TeV
 Note : σ(pp→bb)Run2 ≈ 2x  σ(pp→bb)Run1 
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LHCb upgrade  (0/3)

HLTHLT

StorageStorage

DAQDAQ

Event BuildingEvent Building

custom electronics

CPU farm

CPU farm

DAQDAQ
custom electronics

DAQDAQ
custom electronics

DAQDAQ
custom electronics
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LHCb upgrade (1/3)

Level 0Level 0

HLTHLT

StorageStorage

40 MHz40 MHz

DAQDAQ

Event BuildingEvent Building

µ, e, γ and hadrons p
T 
cuts 

Tracking and vertexing
High p

T
 tracks with large IP

Inclusive/exclusive selections 

custom electronics

custom electronics

CPU farm

CPU farm

Calorimeters,
Muon detectors

DAQDAQ
custom electronics

DAQDAQ
custom electronics

5 kHz5 kHz

DAQDAQ

1 MHz1 MHz

custom electronics

1 MHz1 MHz

1 MHz1 MHz

Upgrade goal : increase instantaneous luminosity

With current design : saturation of the yields

 pT cuts must be raised to cope with the 1 MHz 
limitation on the read-out rate

 no gain beyond 2-3 1032 cm-2s-1 for hadronic modes
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LHCb upgrade  (2/3)

 In preparation for Run3 (2020)

To benefit from higher luminosity : 
 remove L0 bottleneck

 read full detector at 40 MHz

Full read out at 40 MHz:
 replacement of all front-end and back-

end electronics

 fast high-level software trigger

Replace some detector to cope with 
higher particle density

 optimize geometry for fast 
reconstruction

 sustain increased radiation dose

Final output bandwidth : 20 kHz

HLTHLT

StorageStorage

DAQDAQ

Event BuildingEvent Building

custom electronics

CPU farm

CPU farm

DAQDAQ
custom electronics

DAQDAQ
custom electronics

20 kHz20 kHz

DAQDAQ

40 MHz40 MHz

custom electronics

1-40 MHz1-40 MHz

1-40 MHz1-40 MHz
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LHCb upgrade  (2/3)

To benefit from higher luminosity : 
 remove L0 bottleneck

 read full detector at 40 MHz

Full read out at 40 MHz:
 replacement of all front-end and 

back-end electronics

 fast high-level software trigger

Replace some detector to cope with 
higher particle density

 optimize geometry for fast 
reconstruction

 sustain increased radiation dose

Final output bandwidth : 20 kHz

HLTHLT

StorageStorage

DAQDAQ

Event BuildingEvent Building

custom electronics

CPU farm

CPU farm

DAQDAQ
custom electronics

DAQDAQ
custom electronics

20 kHz20 kHz

DAQDAQ

40 MHz40 MHz

custom electronics

1-40 MHz1-40 MHz

1-40 MHz1-40 MHz
~500 custom 
boards with top-
notch FPGA's and 
PCI interface to 
Event-Building PCs 
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LHCb upgrade  (3/3)

 all subsystems are impacted 

VELOVELOVELOVELO

radiation dose and 
occupancy
→ replace sensors

RICHsRICHsRICHsRICHs

embedded FE
→ replace HPDs
occupancy (RICH1)
→ redesign mirrors

Si trackerSi trackerSi trackerSi tracker

embedded FE
→ replace sensors

Outer trackerOuter trackerOuter trackerOuter tracker
occupancy
→ redesign “hot” regions 

CalorimetersCalorimetersCalorimetersCalorimeters
occupancy
→ remove SPD & PS
→ reduce HV & PM gain MuonMuonMuonMuon

occupancy
→ remove M1

ALLALLALLALL

Replace Front-end 
electronics

 The 40 MHz detector : 
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LHCb future upgrade ?



Highlight on some LHCb results

 biased selection with a focus on 
CPPM's activities
 The flavour anomalies :

– b→s transitions
– b→s transitions



Selected LHCb results 

 b→sℓℓ transitions 

 b→c transitions
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b→sℓℓ transitions

b→sℓℓ transitions are FCNC (flavour changing neutral current)
 forbidden in the SM at the tree level

 only exist at loop level → highly suppressed → rare decay !

Physics beyond the Standard Model (BSM) enter at the same level as the SM

BSM can modify a range of observables
 branching fractions

 angular distributions

 CP/isospin asymmetries

Different type of decays give access to different observables
 sensitive to different BSM contributions

Correlation between the observables allow to identify the type of new physics involved 
 important to measure all possible observables
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A harvest of results

R(K*)

Branching fractions & isospin 
asymmetries 

 B  → K ( * )  µ + µ -

Branching fractions & angular 
analysis 

 B  → K  µ + µ -

 Bs → Φ µ + µ -

 Λb → Λ  µ + µ -

 B  → K  e + e -
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A harvest of results

R(K*) = Γ(B0→K*0 µ+µ-) / Γ(B0→K*0 e+e-)
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A harvest of results

Branching fractions & isospin 
asymmetries 

 B  → K ( * )  µ + µ -

Branching fractions & angular 
analysis 

 B  → K  µ + µ -

 Bs → Φ µ + µ -

 Λb → Λ  µ + µ -

 B  → K  e + e -

[J
H

E
P

 0
6 

(2
01

4)
 1

33
]

http://arxiv.org/abs/1403.8044
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A harvest of results

Branching fractions & isospin 
asymmetries 

 B  → K ( * )  µ + µ -

Branching fractions & angular 
analysis 

 B  → K  µ + µ -

 Bs → Φ µ + µ -

 Λb → Λ  µ + µ -

 B  → K  e + e -

[J
H

E
P

 0
6 

(2
01

4)
 1

33
]

[a
rX

iv
:1

51
2.

0
44

42
]

http://arxiv.org/abs/1403.8044
http://arxiv.org/abs/1512.04442


101

A harvest of results

Branching fractions & isospin 
asymmetries 

 B  → K ( * )  µ + µ -

Branching fractions & angular 
analysis 

 B  → K  µ + µ -

 Bs → Φ µ + µ -

 Λb → Λ  µ + µ -

 B  → K  e + e -

[J
H

E
P

 0
6 

(2
01

4)
 1

33
]

[a
rX

iv
:1

51
2.

0
44

42
]

[J
H

E
P

 0
9 

(2
01

5)
 1

79
]

http://arxiv.org/abs/1403.8044
http://arxiv.org/abs/1512.04442
http://arxiv.org/pdf/1506.08777v3
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A harvest of results

Branching fractions & isospin 
asymmetries 

 B  → K ( * )  µ + µ -

Branching fractions & angular 
analysis 

 B  → K  µ + µ -

 Bs → Φ µ + µ -

 Λb → Λ  µ + µ -

 B  → K  e + e -

[J
H

E
P

 0
6 

(2
01

4)
 1

33
]

[a
rX

iv
:1

51
2.

0
44

42
]

[J
H

E
P

 0
9 

(2
01

5)
 1

79
]

[J
H

E
P

 0
6 

(2
01

5)
 1

15
]

http://arxiv.org/abs/1403.8044
http://arxiv.org/abs/1512.04442
http://arxiv.org/pdf/1506.08777v3
http://arxiv.org/pdf/1503.07138v2
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Model independent analysis of b→s transitions

MZ,W,t >> mb → low energy effective theory :

 Local operators Oi depends on hadronic form factor
 (dominant) source of theoretical uncertainties

 Wilson coefficients Ci describe the short distance effect
 can be modify by new physics : C = C SM  + C NP

(including operators not present or suppressed in the SM)

i  = 1,2......  tree
i  = 3-6,8 ..  gluon penguin
i  = 7 ........  photon penguin
i  = 9,10 ...  electroweak penguin
i  = S ........  Scalar penguin
i  = P ........  Pseudo scalar penguin
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Results interpretation 

Global fit (with all b→sℓℓ observables)

Favours new physics contribution to the 

coefficient C9

 significance almost 5 σ !

Implies a violation of the lepton universality 
 significance > 3 σ

More measurements needed !

 

[arXiv:1704.05340]
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CPPM b→sℓℓ  activities

CPPM worked on the B → µµ analysis

Now, focus on decays with τ in the final state

B(s) → τ+τ- (published in 2017)

 Analysis
 the τ decay in flight and are not reconstructed

 use the τ → πππν mode 
− neutrino escapes detection

– missing energy
– no invariant mass reconstruction

 Results :
 upper limits on branching ratio : 

− BR(Bs→τ τ) < 6.8 10-3  (first limit)
− BR(B0→τ τ) < 2.1 10-3 (best limit)

On going : 
 B(s)→ τ µ (lepton flavour violation !)

Prospects ?
 Bs → K* τ τ

[P
R

L1
18

(2
01

7)
25

18
02

]



Selected LHCb results 

 b → s transitions 

 b → c transitions
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Anomalies in b→cτν transition

All measurements above the SM

Combining Belle, BaBar and LHCb
 measurements are ~4σ away from SM

At CPPM : 
 participate in analysis of R(D*) with Run2 data

 if central value, BSM could be discovered !



Final focus

 Lepton Flavour (non-) Universality
 LFU: equal electroweak coupling to all 

charged leptons
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Conclusion and prospect

Still many open questions in and beyond the Standard Model

Without any sign of new physics in the direct search, the precision era is open !

The heavy flavour sector is still a promising sector for BSM discoveries

More data and measurements are needed to resolve the tensions that are building 
up in heavy hadrons decays

 Lepton flavour non-universality ???

Come and join us !
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