
Machine learning

Yann Coadou

CPPM Marseille

Ecoles d’été France Excellence 2018
Physics for both infinities

Marseille, 7 July 2018

Outline

1 Introduction
2 Optimal discrimination

Bayes limit
Multivariate discriminant

3 Machine learning
Supervised and unsupervised learning

4 Multivariate discriminants
Quadratic and linear discriminants
Support vector machines
Decision trees
Neural networks
Deep networks

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 2/97

Introduction

Typical problems in HEP

Classification of objects

separate real and fake leptons/jets/etc.

Signal enhancement relative to background

Regression: best estimation of a parameter

lepton energy, /E T value, invariant mass, etc.

Discrimination of signal from background in HEP

Event level (Higgs searches, . . .)

Cone level (tau-vs-jet reconstruction, . . .)

Lifetime and flavour tagging (b-tagging, . . .)

Track level (particle identification, . . .)

Cell level (energy deposit from hard scatter/pileup/noise, . . .)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 3/97

Introduction

Input information from various sources

Kinematic variables (masses, momenta, decay angles, . . .)

Event properties (jet multiplicity, sum of charges, brightness . . .)

Event shape (sphericity, aplanarity, . . .)

Detector response (silicon hits, dE/dx , Cherenkov angle, shower
profiles, muon hits, . . .)

Most data are (highly) multidimensional

Use dependencies between x = {x1, · · · , xn} discriminating variables

Approximate this n-dimensional space with a function f (x) capturing
the essential features

f is a multivariate discriminant

For most of these lectures, use binary classification:

an object belongs to one class (e.g. signal) if f (x) > q, where q is
some threshold,
and to another class (e.g. background) if f (x) ≤ q

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 4/97

Optimal discrimination: 1-dimension case

Where to place a cut x0 on variable x?

Background density
p(x, B) = p(x|B) p(B)

Signal densitySignal density
p(x, S) = p(x|S) p(S)

x

p
(x

)
=

p(
x
,
S

)
+

p(
x
,
B

)

x
0

Optimal choice: minimum misclassification cost at decision boundary
x = x0

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 5/97

Optimal discrimination: cost of misclassification

C (x0) = CS

∫
H(x0 − x)p(x , S)dx signal loss

+ CB

∫
H(x − x0)p(x ,B)dx background contamination

CS = cost of misclassifying signal as background
CB = cost of misclassifying background as signal

 Background
 contamination
 Signal loss

x
0

H(x): Heaviside step
function

H(x) = 1 if x > 0,
0 otherwise

Optimal choice: when cost function C is minimum

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 6/97

Optimal discrimination: Bayes discriminant

Minimising the cost

Minimise
C (x0) = CS

∫
H(x0 − x)p(x ,S)dx + CB

∫
H(x − x0)p(x ,B)dx

with respect to the boundary x0:

0 = CS

∫
δ(x0 − x)p(x , S)dx − CB

∫
δ(x − x0)p(x ,B)dx

= CSp(x0, S)− CBp(x0,B)

This gives the Bayes discriminant:

BD =
CB

CS
=

p(x0,S)

p(x0,B)
=

p(x0|S)p(S)

p(x0|B)p(B)

Probability relationships

p(A,B) = p(A|B)p(B) = p(B|A)p(A)

Bayes theorem: p(A|B)p(B) = p(B|A)p(A)

p(S |x) + p(B|x) = 1
Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 7/97

Optimal discrimination: Bayes limit

Generalising to multidimensional problem

The same holds when x is an n-dimensional variable:

BD = B
p(S)

p(B)
where B =

p(x |S)

p(x |B)

B is the Bayes factor, identical to the likelihood ratio when class
densities p(x |S) and p(x |B) are independent of unknown parameters

Bayes limit

p(S |x) = BD/(1 + BD) is what should be achieved to minimise cost,
achieving classification with the fewest mistakes

Fixing relative cost of background contamination and signal loss
q = CB/(CS + CB), q = p(S |x) defines decision boundary:

signal-rich if p(S |x) ≥ q
background-rich if p(S |x) < q

Any function that approximates conditional class probability p(S |x)
with negligible error reaches the Bayes limit

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 8/97

Optimal discrimination: using a discriminant

How to construct p(S|x)?

k = p(S)/p(B) typically unknown

Problem: p(S |x) depends on k!

Solution: it’s not a problem. . .

Define a multivariate discriminant:

D(x) =
s(x)

s(x) + b(x)
=

p(x |S)

p(x |S) + p(x |B)

Now:

p(S |x) =
D(x)

D(x) +
(
1− D(x)

)
/k

Cutting on D(x) is equivalent to cutting on p(S |x), implying a
corresponding (unknown) cut on p(S |x)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 9/97

Machine learning: learning from examples

Several types of problems

Classification/decision:

signal or background
type Ia supernova or not
will pay his/her credit back on time or not

Regression (mostly ignored in these lectures)

Clustering (cluster analysis):

in exploratory data mining, finding features

Our goal

Teach a machine to learn the discriminant f (x) using examples from
a training dataset

Be careful to not learn too much the properties of the training sample

no need to memorise the training sample
instead, interested in getting the right answer for new events
⇒ generalisation ability

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 10/97

Machine learning and connected fields

Machine Learning
Statistics

Optimization
Artificial intelligence

Neuroscience

Cognitive science

Signal processing

Information theory

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 11/97

Machine learning and HEP

Center for Data Science

Paris-Saclay

the HiggsML challenge
May to September 2014

When High Energy Physics meets Machine Learning

Joerg Stelzer - Atlas-CERN
Marc Schoenauer - INRIA

Balázs Kégl - Appstat-LAL
Cécile Germain - TAO-LRI

David Rousseau - Atlas-LAL
Glen Cowan - Atlas-RHUL

Isabelle Guyon - Chalearn
Claire Adam-Bourdarios - Atlas-LAL

Thorsten Wengler - Atlas-CERN
Andreas Hoecker - Atlas-CERN

Organization committee Advisory committee

info to participate and compete : https://www.kaggle.com/c/higgs-boson

0

500

1000

1500

2000

2500

3000

3 3,04 3,08 3,12 3,16 3,2 3,24 3,28 3,32 3,36 3,4 3,44 3,48 3,52 3,56 3,6 3,64 3,68 3,72 3,76 3,8 3,84 3,88 3,92 3,96 4

final score

HiggsML challenge

Put ATLAS Monte Carlo samples on the web
(H → ττ analysis)

Compete for best signal–bkg separation

1785 teams (most popular challenge ever)

35772 uploaded solutions

See Kaggle web site and more information

12

Final leaderboard

David Rousseau, Higgs ML, Weekly, 2nd December 2014

7000$

4000$

2000$

HEP meets ML award

Free trip to CERN

TMVA expert, with TMVA

improvements

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 12/97

https://www.kaggle.com/c/higgs-boson
http://higgsml.lal.in2p3.fr/

Machine learning: (un)supervised learning
Supervised learning

Training events are labelled: N examples (x , y)1, (x , y)2, . . . , (x , y)N
of (discriminating) feature variables x and class labels y

The learner uses example classes to know how good it is doing

Reinforcement learning

Instead of labels, some sort of reward system (e.g. game score)

Goal: maximise future payoff

May not even “learn” anything from data, but remembers what
triggers reward or punishment

Unsupervised learning

e.g. clustering: find similarities in training sample, without having
predefined categories (how Amazon is recommending you books. . .)

Discover good internal representation of the input

Not biased by pre-determined classes ⇒ may discover unexpected
features!

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 13/97

Machine learning

Finding the multivariate discriminant y = f(x)

Given our N examples (x , y)1, . . . , (x , y)N we need

a function class F =
{

f (x ,w)
}

(w : parameters to be found)
a constraint Q(w) on F
a loss or error function L(y , f), encoding what is lost if f is poorly
chosen in F (i.e., f (x ,w) far from the desired y = f (x))

Cannot minimise L directly (would depend on the dataset used), but
rather its average over a training sample, the empirical risk:

R(w) =
1

N

N∑
i=1

L
(
yi , f (xi ,w)

)
subject to constraint Q(w), so we minimise the cost function:

C (w) = R(w) + λQ(w)

At the minimum of C (w) we select f (x ,w∗), our estimate of y = f (x)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 14/97

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Data generated from an unknown function with unknown noise

c©Balàzs KéglYann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 15/97

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Constant least squares fit, RMSE = 0.915

c©Balàzs KéglYann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 15/97

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Linear least squares fit, RMSE = 0.581

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 15/97

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Quadratic least squares fit, RMSE = 0.579

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 15/97

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Cubic least squares fit, RMSE = 0.339

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 15/97

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

PolyH6L least squares fit, RMSE = 0.278

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 15/97

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

PolyH9 L least squares fit, RMSE =0

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 15/97

Choice of function class

Quality of fit

Increasing degree of polynomial increases flexibility of function

Higher degree ⇒ can match more features

If degree = # points, polynomial passes through each point: perfect
match!

Is it meaningful?

It could be:

if there is no noise or uncertainty in the measurement
if the true distribution is indeed perfectly described by such a
polynomial

. . . not impossible, but not very common. . .

Solution: testing sample

Use independent sample to validate the result

Expected: performance will also increase, go through a maximum and
decrease again, while it keeps increasing on the training sample

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 16/97

Choice of function class

Quality of fit

Increasing degree of polynomial increases flexibility of function

Higher degree ⇒ can match more features

If degree = # points, polynomial passes through each point: perfect
match!

Is it meaningful?

It could be:

if there is no noise or uncertainty in the measurement
if the true distribution is indeed perfectly described by such a
polynomial

. . . not impossible, but not very common. . .

Solution: testing sample

Use independent sample to validate the result

Expected: performance will also increase, go through a maximum and
decrease again, while it keeps increasing on the training sample

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 16/97

Choice of function class

Quality of fit

Increasing degree of polynomial increases flexibility of function

Higher degree ⇒ can match more features

If degree = # points, polynomial passes through each point: perfect
match!

Is it meaningful?

It could be:

if there is no noise or uncertainty in the measurement
if the true distribution is indeed perfectly described by such a
polynomial

. . . not impossible, but not very common. . .

Solution: testing sample

Use independent sample to validate the result

Expected: performance will also increase, go through a maximum and
decrease again, while it keeps increasing on the training sample

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 16/97

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Data generated from an unknown function with unknown noise

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 17/97

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Const. least squares fit, training RMSE = 0.915, test RMSE = 1.067

c©Balàzs KéglYann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 17/97

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Linear least squares fit, training RMSE = 0.581, test RMSE = 0.734

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 17/97

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Quadr. least squares fit, training RMSE = 0.579, test RMSE = 0.723

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 17/97

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Cubic least squares fit, training RMSE = 0.339, test RMSE = 0.672

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 17/97

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

PolyH6L least squares fit, training RMSE = 0.278, test RMSE = 0.72

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 17/97

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

PolyH9 L least squares fit, training RMSE = 0, test RMSE = 46.424

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 17/97

Choice of function class

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

d

R
M
S
E

Training and test RMSE's for polynomial fits of different degrees

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 18/97

Choice of function class

Non-parametric fit

Minimising the training cost (here, RMSE) does not work if the
function class is not fixed in advance (e.g. fix the polynomial degree):
complete loss of generalisation capability!

But if you do not know the correct function class, you should not fix
it! Dilemma. . .

Capacity control and regularisation

Trade-off between approximation error and estimation error

Take into account sample size

Measure (and penalise) complexity

Use independent test sample

In practice, no need to correctly guess the function class, but need
enough flexibility in your model, balanced with complexity cost

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 19/97

Multivariate discriminants

1 Introduction

2 Optimal discrimination
Bayes limit
Multivariate discriminant

3 Machine learning
Supervised and unsupervised learning

4 Multivariate discriminants
Quadratic and linear discriminants
Support vector machines
Decision trees
Neural networks
Deep networks

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 20/97

Multivariate discriminants

Reminder

To solve binary classification problem with the fewest number of
mistakes, sufficient to compute the multivariate discriminant:

D(x) =
s(x)

s(x) + b(x)
where:

s(x) = p(x |S) signal density
b(x) = p(x |B) background density

Cutting on D(x) is equivalent to cutting on probability p(S |x) that
event with x values is of class S

Which approximation to choose?

Best possible choice: cannot beat Bayes limit (but usually impossible
to define)

No single method can be proven to surpass all others in particular case

Advisable to try several and use the best one
Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 21/97

Quadratic discriminants: Gaussian problem

Suppose densities s(x) and b(x) are multivariate Gaussians:

Gaussian(x |µ,Σ) =
1√

(2π)n|Σ|
exp

(
− 1

2
(x−µ)T Σ−1(x−µ)

)
with vector of means µ and covariance matrix Σ

Then Bayes factor B(x) = s(x)/b(x) (or its logarithm) can be
expressed explicitly:

ln B(x) = λ(x) ≡ χ2(µB ,ΣB)− χ2(µS ,ΣS)

Decision
boundary

with χ2(µ,Σ) = (x − µ)TΣ−1(x − µ)

Fixed value of λ(x) defines a
quadratic hypersurface partitioning
the n-dimensional space into
signal-rich and background-rich
regions

Optimal separation if s(x) and b(x)
are indeed multivariate Gaussians

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 22/97

Quadratic discriminant

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 23/97

Quadratic discriminant

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 23/97

Quadratic discriminant

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 23/97

Quadratic discriminant

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 23/97

Linear discriminant: Fisher’s discriminant

If in λ(x) the same covariance matrix is used for each class (e.g.
Σ = ΣS + ΣB) one gets Fisher’s discriminant:

λ(x) = w · x with w ∝ Σ−1(µS − µB)

w

kxw #"

kxw $"

Optimal linear separation

Works only if signal and
background have different
means!

Optimal classifier (reaches the
Bayes limit) for linearly
correlated Gaussian-distributed
variables

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 24/97

Support vector machines

Fisher discriminant: may fail completely for highly non-Gaussian
densities

But linearity is good feature ⇒ try to keep it

Generalising Fisher discriminant: data non-separable in n-dim space
Rn, but better separated if mapped to higher dimension space RH :
h : x ∈ Rn → z ∈ RH

Use hyper-planes to partition higher dim space: f (x) = w · h(x) + b

Example:h : (x1, y2)→ (z1, z2, z3) = (x2
1 ,
√

2x1x2, x
2
2)

x1

x2

z1

z2

z3

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 25/97

Support vector machines: separable data

Consider separable data in RH , and three parallel hyper-planes:

w · h(x) + b = 0 (separating hyper-plane between red and blue)

w · h(x1) + b = +1 (contains h(x1))

w · h(x2) + b = −1 (contains h(x2))

Multivariate Discriminants, Harrison B. Prosper

plane: w.h(x

h(x1)

h(x2)

w

Subtract blue from red:
w ·
(
h(x1)− h(x2)

)
= 2

With unit vector ŵ = w/‖w‖:
ŵ ·
(
h(x1)− h(x2)

)
= 2/‖w‖ = m

Margin m is distance between red and
blue planes

Best separation: maximise margin

⇒ empirical risk margin to minimise:
R(w) ∝ ‖w‖2

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 26/97

Support vector machines: constraints

When minimising R(w), need to keep signal and background
separated

Label red dots y = +1 (“above” red plane) and blue dots y = −1
(“below” blue plane)

Since: w · h(x) + b > 1 for red dots

w · h(x) + b < −1 for blue dots

all correctly classified points will satisfy constraints:

yi
(
w · h(xi) + b

)
≥ 1, ∀i = 1, . . . ,N

Using Lagrange multipliers αi > 0, cost function can be written:

C (w , b, α) =
1

2
‖w‖2 −

N∑
i=1

αi

[
yi
(
w · h(xi) + b

)
− 1
]

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 27/97

Support vector machines

Minimisation

Minimise cost function C (w , b, α) with respect to w and b:

C (α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj
(
h(xi) · h(xj)

)
At minimum of C (α), only non-zero αi correspond to points on red
and blue planes: support vectors

Kernel functions

Issues:

need to find h mappings (potentially of infinite dimension)
need to compute scalar products h(xi) · h(xj)

Fortunately h(xi) · h(xj) are equivalent to some kernel function
K (xi , xj) that does the mapping and the scalar product:

C (α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK (xi , xj)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 28/97

Support vector machines: example

h : (x1, x2)→ (z1, z2, z3) = (x2
1 ,
√

2x1x2, x
2
2)

h(x) · h(y) = (x2
1 ,
√

2x1x2, x
2
2) · (y 2

1 ,
√

2y1y2, y
2
2)

= (x · y)2

= K (x , y)

x1

x2

z1

z2

z3

In reality: do not know a priori the right kernel

⇒ have to test different standard kernels and use the best one

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 29/97

Support vector machines: non-separable data

Even in infinite dimension space, data are often non-separable

Need to relax constraints:

yi
(
w · h(xi) + b

)
≥ 1− ξi

x1

x2

margin

support
vectors

S
ep

ar
ab

le
 d

at
a

optimal hyperplane

N
on

-s
ep

ar
ab

le
 d

at
a

ξ1

ξ2

ξ4

ξ3

with slack variables ξi > 0

C (w , b, α, ξ) depends on ξ,
modified C (α, ξ) as well

Values determined during
minimisation

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 30/97

Decision trees

Decision tree origin

Machine-learning technique, widely used in social sciences.
Originally data mining/pattern recognition, then medical diagnostic,
insurance/loan screening, etc.
L. Breiman et al., “Classification and Regression Trees” (1984)

Basic principle

Extend cut-based selection

many (most?) events do not have all characteristics of signal or
background
try not to rule out events failing a particular criterion

Keep events rejected by one criterion and see whether other criteria
could help classify them properly

Binary trees

Trees can be built with branches splitting into many sub-branches

In this lecture: mostly binary trees
Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 31/97

Tree building algorithm

Start with all events (signal and background) = first (root) node

sort all events by each variable

for each variable, find splitting value with best separation between
two children

mostly signal in one child
mostly background in the other

select variable and splitting value with best separation, produce two
branches (nodes)

events failing criterion on one side
events passing it on the other

Keep splitting

Now have two new nodes. Repeat algorithm recursively on each node

Can reuse the same variable

Iterate until stopping criterion is reached

Splitting stops: terminal node = leaf

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 32/97

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT

of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node
Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 33/97

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT

of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node
Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 33/97

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT

of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node
Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 33/97

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT

of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node
Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 33/97

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT

of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node
Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 33/97

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT

of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 33/97

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT

of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node
Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 33/97

Decision tree output

Run event through tree

Start from root node

Apply first best cut

Go to left or right child node

Apply best cut for this node

...Keep going until...

Event ends up in leaf

DT Output

Purity
(

s
s+b , with weighted events

)
of leaf, close to 1 for signal and 0

for background

or binary answer (discriminant function +1 for signal, −1 or 0 for
background) based on purity above/below specified value (e.g. 1

2) in
leaf

E.g. events with HT < 242 GeV and Mt > 162 GeV have a DT
output of 0.82 or +1

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 34/97

Tree instability: training sample composition

Small changes in sample can lead to very different tree structures

Performance on testing events may be as good, or not

Not optimal to understand data from DT rules

Does not give confidence in result:

DT output distribution discrete by nature
granularity related to tree complexity
tendency to have spikes at certain purity values (or just two delta
functions at ±1 if not using purity)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 35/97

Pruning a tree

Why prune a tree?

Possible to get a perfect classifier on training events

Mathematically misclassification error can be made as little as wanted

E.g. tree with one class only per leaf (down to 1 event per leaf if
necessary)

Training error is zero

But run new independent events through tree (testing or validation
sample): misclassification is probably > 0, overtraining
Pruning: eliminate subtrees (branches) that seem too specific to
training sample:

a node and all its descendants turn into a leaf

Pruning algorithms

Pre-pruning (early stopping condition like min leaf size, max depth)

Expected error pruning (based on statistical error estimate)

Cost-complexity pruning (penalise “complex” trees with many
nodes/leaves)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 36/97

Tree (in)stability: distributed representation

One tree:
one information about event (one leaf)
cannot really generalise to variations not covered in training set (at
most as many leaves as input size)

Many trees:
distributed representation: number of intersections of leaves
exponential in number of trees
many leaves contain the event ⇒ richer description of input pattern

Partition 1

C3=0

C1=1

C2=1

C3=0

C1=0

C2=0

C3=0

C1=0

C2=1

C3=0

C1=1

C2=1

C3=1

C1=1

C2=0

C3=1

C1=1

C2=1

C3=1

C1=0

Partition 3
Partition 2

C2=0

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 37/97

Tree (in)stability solution: averaging

Build several trees and average the output

[Dietterich, 1997]

K-fold cross-validation (good for small samples)

divide training sample L in K subsets of equal size: L =
⋃

k=1..K Lk

Train tree Tk on L − Lk , test on Lk

DT output = 1
K

∑
k=1..K Tk

Bagging, boosting, random forests, etc.

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 38/97

Boosting: a brief history

First provable algorithm by Schapire (1990)

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation by Freund (1995): boost by majority (combining many
learners with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID (2005)

D0 claimed first evidence for single top quark production (2006)

CDF copied (2008). Both used BDT for single top observation

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 39/97

Boosting: a brief history

First provable algorithm by Schapire (1990)

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation by Freund (1995): boost by majority (combining many
learners with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID (2005)

D0 claimed first evidence for single top quark production (2006)

CDF copied (2008). Both used BDT for single top observation

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 39/97

Boosting: a brief history

First provable algorithm by Schapire (1990)

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation by Freund (1995): boost by majority (combining many
learners with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID (2005)

D0 claimed first evidence for single top quark production (2006)

CDF copied (2008). Both used BDT for single top observation

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 39/97

Principles of boosting

What is boosting?

General method, not limited to decision trees

Hard to make a very good learner, but easy to make simple,
error-prone ones (but still better than random guessing)

Goal: combine such weak classifiers into a new more stable one, with
smaller error

Algorithm

Training sample Tk of N
events. For i th event:

weight wk
i

vector of discriminative
variables xi
class label yi = +1 for
signal, −1 for
background

Pseudocode:

Initialise T1

for k in 1..Ntree

train classifier Tk on Tk

assign weight αk to Tk

modify Tk into Tk+1

Boosted output: F (T1, ..,TNtree)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 40/97

Training and generalisation error

Clear overtraining, but still better performance after boosting

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 41/97

Overtraining estimation: good or bad?

“good” overtraining / “bad” overtraining
Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 42/97

Concrete example

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 43/97

Concrete example

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 44/97

Concrete example

Specialised trees

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 45/97

Concrete example

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 46/97

Other averaging techniques

Bagging (Bootstrap aggregating)

Before building tree Tk take random sample of N events from
training sample with replacement

Train Tk on it

Events not picked form “out of bag” validation sample

Random forests

Same as bagging

In addition, pick random subset of variables to consider for each node
split

Two levels of randomisation, much more stable output

Trimming

Not exactly the same. Used to speed up training

After some boosting, very few high weight events may contribute

⇒ ignore events with too small a weight

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 47/97

Other averaging techniques

Bagging (Bootstrap aggregating)

Before building tree Tk take random sample of N events from
training sample with replacement

Train Tk on it

Events not picked form “out of bag” validation sample

Random forests

Same as bagging

In addition, pick random subset of variables to consider for each node
split

Two levels of randomisation, much more stable output

Trimming

Not exactly the same. Used to speed up training

After some boosting, very few high weight events may contribute

⇒ ignore events with too small a weight

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 47/97

Other averaging techniques

Bagging (Bootstrap aggregating)

Before building tree Tk take random sample of N events from
training sample with replacement

Train Tk on it

Events not picked form “out of bag” validation sample

Random forests

Same as bagging

In addition, pick random subset of variables to consider for each node
split

Two levels of randomisation, much more stable output

Trimming

Not exactly the same. Used to speed up training

After some boosting, very few high weight events may contribute

⇒ ignore events with too small a weight

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 47/97

BDT in HEP: CMS H → γγ result

CMS-PAS-HIG-13-001

Hard to use more BDT in an analysis:

vertex selected with BDT

2nd vertex BDT to estimate probability to be within 1cm of
interaction point

photon ID with BDT

photon energy corrected with BDT regression

event-by-event energy uncertainty from another BDT

several BDT to extract signal in different categories

 (GeV)
γγ

Tp
0 50 100 150 200 250

| <
 1

0
m

m
tr

ue
fr

ac
tio

n
|z

 -
 z

0

0.2

0.4

0.6

0.8

1

<PU>=19.9
CMS Preliminary Simulation

 = 125 GeVHm
γγ→H

Photon ID MVA
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

E
ve

nt
s/

0.
02

0

200

400

600

800

1000

1200

 MCγµµ→Z
8TeV Data

 -1 = 8 TeV, L = 19.6 fbsCMS preliminary,

Barrel

 (GeV)γγm
110 120 130 140 150S

/(
S

+
B

)
W

ei
gh

te
d

E
ve

nt
s

/ 1
.5

 G
eV

0

1000

2000

3000

4000

5000
Data
S+B Fit
Bkg Fit Component

σ1 ±
σ2 ±

 (MVA)-1 = 8 TeV, L = 19.6 fbs

 (MVA)-1 = 7 TeV, L = 5.1 fbs

CMS Preliminary

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 48/97

http://cds.cern.ch/record/1530524

Neural networks

Human brain

1011 neurons

1014 synapses

Learning:
modifying synapses

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 49/97

Brief history of artificial neural networks

1943: W. McCulloch and W. Pitts explore capabilities of networks of
simple neurons

1958: F. Rosenblatt introduces perceptron (single neuron with
adjustable weights and threshold activation function)

1969: M. Minsky and S. Papert prove limitations of perceptron
(linear separation only) and (wrongly) conjecture that multi-layered
perceptrons have same limitations
⇒ ANN research almost abandoned in 1970s!!!

1986: Rumelhart, Hinton and Williams introduce “backward
propagation of errors”: solves (partially) multi-layered learning

Next: focus on multilayer perceptron (MLP)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 50/97

Single neuron

Remember linear separation (Fisher discriminant):
λ(x) = w · x =

∑n
i=1 wixi + w0

Boundary at λ(x) = 0

Replace threshold boundary by sigmoid (or tanh):

-20 -15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1/(1+exp(-x))

λ→ σ(λ) =
1

1 + e−λ

1

i

n

w1

wi

wn

:

:

σ(λ) is neuron activity, λ is activation

Neuron behaviour completely controlled by weights w = {w0, . . . ,wn}
Training: minimisation of error/loss function (quadratic deviations,
entropy [maximum likelihood]), via gradient descent or stochastic
approximation

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 51/97

Neural networks

Theorem

Let σ(.) be a non-constant, bounded, and monotone-increasing continuous
function. Let C(In) denote the space of continuous functions on the
n-dimensional hypercube. Then, for any given function f ∈ C(In) and
ε > 0 there exists an integer M and sets of real constants wj ,wij where
i = 1, . . . , n and j = 1, . . . ,M such that

y(x ,w) =
M∑
j=1

wjσ

(
n∑

i=1

wijxi + w0j

)

is an approximation of f (.), that is |y(x)− f (x)| < ε

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 52/97

Neural networks

Interpretation

You can approximate any continuous function to arbitrary precision
with a linear combination of sigmoids

Corollary 1: can approximate any continuous function with neurons!

Corollary 2: a single hidden layer is enough

Corollary 3: a linear output neuron is enough

Multilayer perceptron: feedforward network

Neurons organised in layers

Output of one layer becomes input
to next layer

yk(x ,w) =
M∑
j=0

w
(2)
kj σ

(
n∑

i=0

w
(1)
ji xi

)
︸ ︷︷ ︸

zj

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 53/97

Backpropagation

Training means minimising error
function E (w)

For single neuron: dE
dwk

= (y − t)xk

One can show that for a network:

dE

dwji
= δjzi , where

δk = (yk − tk) for output neurons

δj ∝
∑
k

wkjδk otherwise

Hence errors are propagated backwards

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 54/97

Neural network training

Minimise error function E (w)

Gradient descent: w (k+1) = w (k) − η dE (k)

dw

∂E
∂wj

=
∑N

n=1−(t(n) − y (n))x
(n)
j with target t(n) (0 or 1), so t(n) − y (n)

is the error on event n

All events at once (batch learning):

weights updated all at once after processing the entire training sample
finds the actual steepest descent
takes more time

or one-by-one (online learning):

speeds up learning
may avoid local minima with stochastic component in minimisation
careful: depends on the order of training events

One epoch: going through the training data once

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 55/97

Neural network overtraining

 !" #$% &' (&)'$*$)$!" #$%&&%'& (%)'&*%)'& #% #+, -% ,%), . '/ +(1+&,%(%/, -23*&%/,4 5##% -*&+6, *7.#%(%/, %/ (+8%//%9'):'$; <=>?= *1+:'%)@ 1'2))% (%, ; &+6,&% -% A.B+/ +/,2/'% .'>-%#. -% CD= *1+:'%)4 E% +(1+&,%>(%/, %),)8(1,+(.,2:'% -' !"#$%%"&'() $*&@ :'2 2/-2:'% :'% #% &*)%.' . .11&2) -%) .&.,*&2),2:'%)1.&,2'#2F&%) -%) %G%(1#%) 1&*)%/,*) H 2# +((%, .#+&) '/% %&&%'& ,&F) 1%,2,%)'& #% #+, -$.11&%/,2)).7%@(.2) %), 2/.1.I#% -% 7*/*&.#2)%& .' #+, -% ,%),4

 !"# !"# 5J+#',2+/ -% #$%&&%'& #+&) -% #. 1K.)% -$.11&%/,2)).7%4 L$%&&%'& %), .#'#*% .1&F) K.:'% *1+:'%)'& #% #+, -$.11&%/,2)).7% %,)'& '/ #+, -% ,%), 2/-*1%/-./,4L%)'&>.11&%/,2)).7% %), 2##'),&*)'& #. M7'&% N4N4 O#)% 1&+-'2, %/ 7*/*&.# #+&):'% #% /+(I&% -$%G%(1#%)/$%), 1.) .))%P 7&./- 1.& &.11+&, .' /+(I&% -% 1+2-) -' &*)%.'@ (.2) 2# 1%', 8 .J+2&)'&>.11&%/,2)).7%(Q(%)2 #% /+(I&% -$%G%(1#%) %),)'1*&2%'& .' /+(I&% -% 1+2-) %,@ 2/J%&)%(%/,@ 2# 1%', /% 1.) 8 .J+2&)'&>.11&%/,2)).7% (Q(%)2 #% /+(I&% -% 1+2-) %),)'1*&2%'& .' /+(I&% -$%G%(1#%)4 R'2J&% #$%&&%'&)'& '/#+, -% ,%) 2/-*1%/-./, %), -+/ #.)%'#% A.B+/ -$*J2,%& % 1&+I#F(%4

 !"# ! # O##'),&.,2+/ -' 1&+I#F(% -')'&>.11&%/,2)).7%4 !"! #$%&%'($%)* +, -./.-$/)* 1,&$%2),3. -),/ &(&(''%4($%)* +. +)**5.'S&.-2,2+//%##%(%/,@ #% 1%&%1,&+/ ('#,2>+'K%) . *,*@ %, %), ,+'9+'&)@ ',2#2)* 1+'& #. #.))2M.,2+/-% -+//*%)@ +((% #.)*1.&.,2+/ -$'/)27/.# -' I&'2, -% A+/- +' #. &%+//.2))./% -% .&.,F&%) (./')>&2,) T ℄4 E%,,% ',2#2).,2+/ &%1+)%)'& #%) 1&+1&2*,*))'2J./,%)4V/ 1%&%1,&+/)./) +'K% .K*%@ +&&%,%(%/, %/,&.2/*@ &*.#2)% '/%)*1.&.,2+/ #2/*.2&% -2)&2(./,% H#.)'&A.% %), '/ K81%&1#./ -./) #$%)1.% -%) 1.&.(F,&%) :'2)*1.&% %, %)1.% %/ '/%P+/% -% W)27/.#W %, '/% P+/% -% WI&'2, -% A+/-W4 V/ ,%# &*)%.' /% 1%', -+/ 1.) &*)+'-&% %G.,%(%/,
Diverging weights can cause overfitting

Mitigate by:

early stopping (after a fixed number of epochs)
monitoring error on test sample
regularisation, introducing a “weight decay” term to penalise large
weights, preventing overfitting:

Ẽ (w) = E (w) +
α

2

∑
i

w 2
i

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 56/97

Regularisation

10 hidden nodes 10 hidden nodes and α = 0.04

c©Jan Therhaag

Much less overfitting, better generalisation properties

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 57/97

Neural networks: Tricks of the trade Efficient BackProp

Preprocess data:

if relevant, provide e.g. x/y instead of x and y
subtract the mean because the sigmoid derivative becomes negligible
very fast (so, input mean close to 0)
normalise variances (close to 1)
shuffle training sample (order matters in online training)

Initial random weights should be small to avoid saturation

Batch/online training: depends on the problem

Regularise weights to minimise overtraining. May also help select
good variables via Automatic Relevance Determination (ARD)

Make sure the training sample covers the full parameter space

No rule (not even guestimates) about the number of hidden nodes
(unless using constructive algorithm, adding resources as needed)

A single hidden layer is enough for all purposes, but multiple hidden
layers may allow for a solution with fewer parameters

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 58/97

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

Adding a hidden layer

2-20-1 network
(81 parameters)

2-50-1 network
(201 parameters)

2-10-2-1 network
(55 parameters)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 59/97

Deep learning

What is learning?

Ability to learn underlying and previously unknown structure from
examples
⇒ capture variations

Deep learning: have several hidden layers (> 2) in a neural network

Motivation for deep learning

Just like in the brain!

Humans organise ideas hierarchically, through composition of simpler
ideas

Heavily unsupervised training, learning simpler tasks first, then
combined into more abstract ones

Learn first order features from raw inputs, then patterns in first order
features, then etc.

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 60/97

Deep architecture in the brain

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 61/97

Deep learning in artificial intelligence

Mimicking the brain

About 1% of neurons active simultaneously in the brain:
distributed representation

activation of small subset of features, not mutually exclusive
more efficient than local representation
distributed representations necessary to achieve non-local
generalization, exponentially more efficient than 1-of-N enumeration
example: integers in 1..N

local representation: vector of N bits with single 1 and N-1 zeros
distributed representation: vector of log2 N bits (binary notation),
exponentially more compact

Meaning: information not localised in particular neuron but
distributed across them

Deep architecture

Insufficient depth can hurt

Learn basic features first, then higher level ones

Learn good intermediate representations, shared across tasks
Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 62/97

Deep learning revolution

Deep networks were unattractive

One layer is theoretically enough for everything

Used to perform worse than shallow networks with 1 or 2 hidden layers

Apparently difficult/impossible to train (using random initial weights
and supervised learning with backpropagation)
Backpropagation issues:

requires labelled data (usually scarce and expensive)
does not scale well, getting stuck in local minima
“vanishing gradient”: gradients getting very small further away from
output ⇒ early layers do not learn much, can even penalise overall
performance

Breakthroughs around 2006 (Bengio, Hinton, LeCun)

Try to model structure of input, p(x) instead of p(y |x)

Can use unlabelled data (a lot of it), with unsupervised training

Train each layer independently (pre-train and stack)

New activation functions (e.g. rectified linear unit ReLU)

Possible thanks to algorithmic innovations, computing resources, data!

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 63/97

Deep learning revolution

Deep networks were unattractive

One layer is theoretically enough for everything

Used to perform worse than shallow networks with 1 or 2 hidden layers

Apparently difficult/impossible to train (using random initial weights
and supervised learning with backpropagation)
Backpropagation issues:

requires labelled data (usually scarce and expensive)
does not scale well, getting stuck in local minima
“vanishing gradient”: gradients getting very small further away from
output ⇒ early layers do not learn much, can even penalise overall
performance

Breakthroughs around 2006 (Bengio, Hinton, LeCun)

Try to model structure of input, p(x) instead of p(y |x)

Can use unlabelled data (a lot of it), with unsupervised training

Train each layer independently (pre-train and stack)

New activation functions (e.g. rectified linear unit ReLU)

Possible thanks to algorithmic innovations, computing resources, data!
Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 63/97

Greedy layer-wise pre-training

Algorithm

Take input information

Train feature extractor

Use output as input to training another feature extractor

Keep adding layers, train each layer separately

Finalise with a supervised classifier, taking last feature extractor
output as input

All steps above: pre-training
Fine-tune the whole thing with supervised training (backpropagation)

initial weights are those from pre-training

Feature extractors

Restricted Boltzmann machine (RBM), auto-encoder, sparse
auto-encoder, denoising auto-encoder, etc.

Note: important to not use linear activation functions in hidden
layers. Combination of linear functions still linear, so equivalent to
single hidden layer

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 64/97

Learning feature hierarchy

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 65/97

Auto-encoders

Approximate the identity function

Build a network whose output is
similar to its input

Sounds trivial? Except if imposing
constraints on network (e.g., # of
neurons, locally connected network)
to discover interesting structures

Can be viewed as lossy compression
of input

Finding similar books

Get count of 2000 most common
words per book

“Compress” to 10 numbers

���� 	�&���	�&��� &����

0�����	��

�����������6�	��&����

0�����	���

�0����	���

�0����	���

.� �

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 66/97

Auto-encoders

With PCA With autoencoder

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 67/97

Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers

�����

E#,E#

1�=
	��

>$,:G,:G 1�=
	�!

>$K�$,�$

1�=
	�#

!G>K>,> 1�=
	�$

!G>K�,�
2�����

�-�

L,L

��A�����

�>$�&
	�
��

L,L

��A�����

�$-L>�&
	�
��

�-,�-�������

G,G���<��������
>,>������

$,$���<����

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 68/97

Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers

�����

E#,E#

1�=
	��

>$,:G,:G 1�=
	�!

>$K�$,�$

1�=
	�#

!G>K>,> 1�=
	�$

!G>K�,�
2�����

�-�

L,L

��A�����

�>$�&
	�
��

L,L

��A�����

�$-L>�&
	�
��

�-,�-�������

G,G���<��������
>,>������

$,$���<����

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 68/97

Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers

�����

E#,E#

1�=
	��

>$,:G,:G 1�=
	�!

>$K�$,�$

1�=
	�#

!G>K>,> 1�=
	�$

!G>K�,�
2�����

�-�

L,L

��A�����

�>$�&
	�
��

L,L

��A�����

�$-L>�&
	�
��

�-,�-�������

G,G���<��������
>,>������

$,$���<����

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 68/97

Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers

�����

E#,E#

1�=
	��

>$,:G,:G 1�=
	�!

>$K�$,�$

1�=
	�#

!G>K>,> 1�=
	�$

!G>K�,�
2�����

�-�

L,L

��A�����

�>$�&
	�
��

L,L

��A�����

�$-L>�&
	�
��

�-,�-�������

G,G���<��������
>,>������

$,$���<����

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 68/97

Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers

�����

E#,E#

1�=
	��

>$,:G,:G 1�=
	�!

>$K�$,�$

1�=
	�#

!G>K>,> 1�=
	�$

!G>K�,�
2�����

�-�

L,L

��A�����

�>$�&
	�
��

L,L

��A�����

�$-L>�&
	�
��

�-,�-�������

G,G���<��������
>,>������

$,$���<����

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 68/97

Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers

�����

E#,E#

1�=
	��

>$,:G,:G 1�=
	�!

>$K�$,�$

1�=
	�#

!G>K>,> 1�=
	�$

!G>K�,�
2�����

�-�

L,L

��A�����

�>$�&
	�
��

L,L

��A�����

�$-L>�&
	�
��

�-,�-�������

G,G���<��������
>,>������

$,$���<����

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 68/97

Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers

�����

E#,E#

1�=
	��

>$,:G,:G 1�=
	�!

>$K�$,�$

1�=
	�#

!G>K>,> 1�=
	�$

!G>K�,�
2�����

�-�

L,L

��A�����

�>$�&
	�
��

L,L

��A�����

�$-L>�&
	�
��

�-,�-�������

G,G���<��������
>,>������

$,$���<����

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 68/97

Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers

�����

E#,E#

1�=
	��

>$,:G,:G 1�=
	�!

>$K�$,�$

1�=
	�#

!G>K>,> 1�=
	�$

!G>K�,�
2�����

�-�

L,L

��A�����

�>$�&
	�
��

L,L

��A�����

�$-L>�&
	�
��

�-,�-�������

G,G���<��������
>,>������

$,$���<����

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 68/97

Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers

�����

E#,E#

1�=
	��

>$,:G,:G 1�=
	�!

>$K�$,�$

1�=
	�#

!G>K>,> 1�=
	�$

!G>K�,�
2�����

�-�

L,L

��A�����

�>$�&
	�
��

L,L

��A�����

�$-L>�&
	�
��

�-,�-�������

G,G���<��������
>,>������

$,$���<����

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 68/97

Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers

�����

E#,E#

1�=
	��

>$,:G,:G 1�=
	�!

>$K�$,�$

1�=
	�#

!G>K>,> 1�=
	�$

!G>K�,�
2�����

�-�

L,L

��A�����

�>$�&
	�
��

L,L

��A�����

�$-L>�&
	�
��

�-,�-�������

G,G���<��������
>,>������

$,$���<����

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 68/97

Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers

�����

E#,E#

1�=
	��

>$,:G,:G 1�=
	�!

>$K�$,�$

1�=
	�#

!G>K>,> 1�=
	�$

!G>K�,�
2�����

�-�

L,L

��A�����

�>$�&
	�
��

L,L

��A�����

�$-L>�&
	�
��

�-,�-�������

G,G���<��������
>,>������

$,$���<����

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 68/97

Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers

�����

E#,E#

1�=
	��

>$,:G,:G 1�=
	�!

>$K�$,�$

1�=
	�#

!G>K>,> 1�=
	�$

!G>K�,�
2�����

�-�

L,L

��A�����

�>$�&
	�
��

L,L

��A�����

�$-L>�&
	�
��

�-,�-�������

G,G���<��������
>,>������

$,$���<����

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 68/97

Why does unsupervised training work?

Optimisation hypothesis

Training one layer at a time
scales well

Backpropagation from sensible
features

Better local minimum than
random initialisation, local
search around it

Overfitting/regularisation
hypothesis

More info in inputs than labels

No need for final discriminant
to discover features

Fine-tuning only at category
boundaries

Example
Stacked denoising auto-encoders

10 million handwritten digits

First 2.5 million used for
unsupervised pre-training

0 1 2 3 4 5 6 7 8 9 10

x 10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of examples seen

O
n

lin
e

 c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

3–layer net, budget of 10000000 iterations

0 unsupervised + 10000000 supervised

2500000 unsupervised + 7500000 supervised

Worse with supervision: eliminates
projections of data not useful for
local cost but helpful for deep
model cost

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 69/97

An example from Google research team 2011 paper

A “giant” neural network

At Google they trained a 9-layered NN with 1 billion connections

trained on 10 million 200×200 pixel images from YouTube videos
on 1000 machines (16000 cores) for 3 days, unsupervised learning

Sounds big? The human brain has 100 billion (1011) neurons and 100
trillion (1014) connections...

What it did

It learned to recognise faces, one of the original goals

. . . but also cat faces (among the most popular things in YouTube
videos) and body shapes

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 70/97

http://arxiv.org/abs/1112.6209

Google’s research on building high-level features

Features extracted from
such images

Results shown to be
robust to

colour
translation
scaling
out-of-plane rotation

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 71/97

Deep learning: looking forward

Very active field of research in machine learning and artificial
intelligence

not just at universities (Google, Facebook, Microsoft, NVIDIA, etc. . .)
Training with curriculum:

what humans do over 20 years, or even a lifetime
learn different concepts at different times
solve easier or smoothed version first, and gradually consider less
smoothing
exploit previously learned concepts to ease learning of new abstractions

Influence learning dynamics can have big impact:
order and selection of examples matters
choose which examples to present first, to guide training and possibly
increase learning speed (called shaping in animal training)

Combination of deep learning and reinforcement learning
still in its infancy, but already impressive results

Domain adaptation and adversarial training
e.g. train in parallel network that produces difficult examples
learn discrimination (s vs. b) and difference between training and
application samples (e.g. Monte Carlo simulation and real data)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 72/97

Domain adaptation and adversarial training

Typical training http://arxiv.org/abs/1409.7495

signal and background from simulation http://arxiv.org/abs/1505.07818

results compared to real data to make measurement

Requires good data–simulation agreement

Possibility to use adversarial training and domain adaptation to
account for discrepancies/systematic uncertainties

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 73/97

http://arxiv.org/abs/1409.7495
http://arxiv.org/abs/1505.07818

Domain adaptation and adversarial training

Typical training http://arxiv.org/abs/1409.7495

signal and background from simulation http://arxiv.org/abs/1505.07818

results compared to real data to make measurement

Requires good data–simulation agreement
Possibility to use adversarial training and domain adaptation to
account for discrepancies/systematic uncertainties

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 73/97

http://arxiv.org/abs/1409.7495
http://arxiv.org/abs/1505.07818

ILSVRC 2014 Summary paper

ImageNet Large Scale Visual Recognition Challenge

ImageNet: database with 14 million images and 20k categories

Used 1000 categories and about 1.3 million manually annotated
images

PASCAL ILSVRC

· · ·

· · ·

· · ·
Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 74/97

http://arxiv.org/abs/1409.0575

ILSVRC 2014 images

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 75/97

ILSVRC 2014 images

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 76/97

ILSVRC 2014 tasks

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 77/97

ILSVRC 2014 And the winner is. . .

Google of course! (first time)
GoogLeNet:

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 78/97

ILSVRC 2014 And the winner is. . .

Google of course! (first time)

GoogLeNet:

256 480 480
512

512 512
832 832 1024

9 Inception modules
Convolution
Pooling
Softmax
OtherNetwork in a network in a network...

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 78/97

ILSVRC 2014 Even GoogLeNet is not perfect!

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 79/97

ILSVRC 2010–2016

2010–14: 4.2x reduction 1.7x reduction 1.9x increase

ILSVRC 2015 (same dataset as 2014) arXiv:1512.03385

Winner: MSRA (Microsoft Research in Beijing)

Deep residual networks with > 150 layers

Classification error: 6.7% → 3.6% (1.9x)

Localisation error: 26.7% → 9.0% (2.8x)

Object detection: 43.9% → 62.1% (1.4x)

identity

weight layer

weight layer

relu

relu
F(x) + x

x

F(x)
x

ILSVRC 2016 http://image-net.org/challenges/LSVRC/2016

Mostly ResNets. Classification: 0.030; localisation: 0.08; detection: 0.66
Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 80/97

http://arxiv.org/abs/1512.03385
http://image-net.org/challenges/LSVRC/2016

MSRA @ ILSVRC2015

Revolution of Depth

3.57

6.7 7.3

11.7

16.4

25.8

28.2

ILSVRC'15

ResNet

ILSVRC'14

GoogleNet

ILSVRC'14

VGG

ILSVRC'13 ILSVRC'12

AlexNet

ILSVRC'11 ILSVRC'10

ImageNet Classification top-5 error (%)

shallow8 layers

19 layers22 layers

152 layers

8 layers

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 81/97

Going further
More and more refinement (segmentation)
More objects, in real time on video1/video2/video3

 !"#$%!&'&(

 !"##$%$&"'$()
 !"##$%$&"'$()*

+*,(&"!$-"'$()

=1@ =1@ =1@B&CDEB&CF=5

./01&'*21'1&'$()
3)#'")&1*

41561)'"'$()

=1@B&CDEB&CF=5

G/2HI!&<+4!"# J$I#/7I!&<+4!"#;

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 82/97

Google DeepMind: arcade games Nature 518, 529 (2015)

Learning to play 49 different Atari 2600 games

No knowledge of the goals/rules, just 84x84 pixel frames

60 frames per second, 50 million frames (38 days of game experience)

Deep convolutional network with reinforcement: DQN (deep
Q-network)

action-value function Q
�
s,að Þ~max

p

rtzcrtz1zc
2
rtz2z . . . jst~s, at~a, p

� �

,

maximum sum of rewards rt discounted by γ at each timestep t,
achievable by a behaviour policy π = P(a|s), after making observation
s and taking action a

Tricks for scalability and performance:

experience replay (use past frames)
separate network to generate learning targets (iterative update of Q)

Outperforms all previous algorithms, and professional human player
on most games

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 83/97

http://doi.org/10.1038/nature14236

Google DeepMind: training&performance
Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights h

Initialize target action-value function Q̂ with weights h25 h

For episode5 1,M do

Initialize sequence s1~ x1f g and preprocessed sequence w1~w s1ð Þ
For t5 1,T do

With probability e select a random action at
otherwise select at~argmaxaQ w stð Þ,a; hð Þ
Execute action at in emulator and observe reward rt and image xt1 1

Set stz1~st ,at ,xtz1 and preprocess wtz1~w stz1ð Þ
Store transition wt ,at ,rt ,wtz1

ÿ �

in D

Sample random minibatch of transitions wj,aj,rj,wjz1

� �

from D

Set yj~
rj if episode terminates at step jz1

rjzc maxa0 Q̂ wjz1,a
0; h{

� �

otherwise

(

Perform a gradient descent step on yj{Q wj,aj; h
� �� �2

with respect to the
network parameters h

Every C steps reset Q̂~Q

End For

End For

What about Breakout or Space invaders?

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 84/97

Google DeepMind: mastering Go Nature 529, 484 (2016)

Game of Go considered very challenging for AI

Board games: can be solved with search tree of bd possible sequences
of moves (b = breadth [number of legal moves], d = depth [length of
game])

Chess: b ≈ 35, d ≈ 80 → go: b ≈ 250, d ≈ 150

Reduction:

of depth by position evaluation (replace subtree by approximation that
predicts outcome)
of breadth by sampling actions from probability distribution (policy
p(a|s)) over possible moves a in position s

19× 19 image, represented by CNN

Supervised learning policy network from expert human moves,
reinforcement learning policy network on self-play (adjusts policy
towards winning the game), value network that predicts winner of
games in self-play.

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 85/97

http://doi.org/10.1038/nature16961

Google DeepMind: AlphaGo Nature 529, 484 (2016)

AlphaGo: 40 search threads, simulations on 48 CPUs, policy and value
networks on 8 GPUs. Distributed AlphaGo: 1020 CPUs, 176 GPUs

AlphaGo won 494/495 games against other programs (and still 77% against
Crazy Stone with four handicap stones)

Fan Hui: 2013/14/15 European champion

Distributed AlphaGo won 5–0

AlphaGo evaluated thousands of times fewer
positions than Deep Blue (first chess computer
to bit human world champion) ⇒ better
position selection (policy network) and better
evaluation (value network)

≈ ()v s

a

Policy networ

3,500

3,000

2,500

2,000

1,500

1,000

500

0

E
lo

 R
a
ti
n
g

G
n
u
G

o

F
u
e
g

o

P
a
c
h
i

!
"

C
ra

z
y
 S

to
n
e

F
a
n
 H

u
i

A
lp

h
a
G

o

A
lp

h
a
G

o

d
is

trib
u
te

d

P
ro

fe
ssio

n
a
l

 d
a
n
 (p

)

A
m

a
te

u
r

d
a
n
 (d

)
B

e
g

in
n
e
r

k
y
u

 (k
)

9p
7p
5p
3p
1p

9d

7d

5d

3d

1d
1k

3k

5k

7k

Then played Lee Sedol (top Go play in the world over last decade) in March
2016 ⇒ won 4–1. AlphaGo given honorary professional ninth dan,
considered to have “reach a level ‘close to the territory of divinity’ ”

Ke Jie (Chinese world #1): “Bring it on!”. Last May 2017: 3–0 win for
AlphaGo. New comment: “I feel like his game is more and more like the ‘Go
god’. Really, it is brilliant”

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 86/97

http://doi.org/10.1038/nature16961

DeepMind AlphaGo Zero Nature 550, 354 (2017)

Learn from scratch, just from the rules and random moves

Reinforcement learning from self-play, no human data/guidance

Combined policy and value networks

4.9 million self-play games

Beats AlphaGo Lee (several months of training) after just 36 hours

Single machine with four TPU

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 87/97

http://doi.org/10.1038/nature24270

DeepMind AlphaZero arXiv:1712.01815 [cs.AI]

Same philosophy as AlphaGo Zero, applied to chess, shogi and go

Changes:

not just win/loss, but also draw or other outcomes
no additional training data from game symmetries
using always the latest network to generate self-play games rather than
best one
tree search: 80k/70M for chess AlphaZero/Stockfish, 40k/35M for
shogi AlphaZero/Elmo

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 88/97

https://arxiv.org/abs/1712.01815

Deep networks: new results all the time

Playing poker

Libratus (AI developed by Carnegie Mellon University) defeated four of
the world’s best professional poker players (Jan 2017)
After 120,000 hands of Heads-up, No-Limit Texas Hold’em, led the
pros by a collective $1,766,250 in chips
Learnt to bluff, and win with incomplete information and opponents’
misinformation

Lip reading arXiv:1611.05358 [cs.CV]

human professional: deciphers less than 25% of spoken words
CNN+LSTM trained on television news programs: 50%

Limitations arXiv:1312.6199 [cs.CV]

left: correctly classified image

middle: difference between left image and
adversarial image (x10)

right: adversarial image, classified as ostrich

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 89/97

https://arxiv.org/abs/1611.05358
https://arxiv.org/abs/1312.6199

Hype cycle

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 90/97

Machine learning and particle physics

http://opendata.cern.ch

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 91/97

Machine learning and particle physics

http://opendata.cern.ch

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 91/97

Machine learning and particle physics

http://opendata.cern.ch

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 91/97

Machine learning and particle physics

http://opendata.cern.ch

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 91/97

Machine learning and particle physics

http://opendata.cern.ch

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 91/97

Machine learning and particle physics

http://opendata.cern.ch

https://www.kaggle.com/c/trackml-particle-identification

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 91/97

https://www.kaggle.com/c/trackml-particle-identification

Machine learning and particle physics

Going to lower level features arXiv:1410.3469

Transforming inputs into images arXiv:1511.05190

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 92/97

http://arxiv.org/abs/1410.3469
https://arxiv.org/abs/1511.05190

Machine learning and particle physics

Going to lower level features arXiv:1410.3469

Transforming inputs into images arXiv:1511.05190

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 92/97

http://arxiv.org/abs/1410.3469
https://arxiv.org/abs/1511.05190

Conclusion

When trying to achieve optimal discrimination one can try to
approximate

D(x) =
s(x)

s(x) + b(x)

Many techniques and tools exist to achieve this

(Un)fortunately, no one method can be shown to outperform the
others in all cases.

One should try several and pick the best one for any given problem

Latest machine learning algorithms (e.g. deep networks) require
enormous hyperparameter space optimisation. . .

Machine learning and multivariate techniques are at work in your
everyday life without your knowning and can easily outsmart you for
many tasks

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 93/97

Deep networks and art

Learning a style arXiv:1508.06576 [cs.CV] Neural-style

Computer dreams Google original

deepdream

Face Style http://facestyle.org

http://dcgi.fel.cvut.cz/home/sykorad/facestyle.html

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 94/97

https://arxiv.org/abs/1508.06576
https://github.com/jcjohnson/neural-style
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://github.com/google/deepdream
http://facestyle.org
http://dcgi.fel.cvut.cz/home/sykorad/facestyle.html

References I

V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 2nd
Edition, 2000

T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference and Prediction, Springer-Verlag, New York, 2nd Edition,
2009

R.M. Neal, Bayesian Learning of Neural Networks, Springer-Verlag, New York, 1996

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2007

M. Minsky and S. Papert, “Perceptrons”, M.I.T. Press, Cambridge, Mass., 1969

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 95/97

References II

H.B. Prosper, “The Random Grid Search: A Simple Way to Find Optimal Cuts”,
Computing in High Energy Physics (CHEP 95) conference, Rio de Janeiro, Brazil,
1995

W.S. McCulloch & W. Pitts, “A logical calculus of the ideas immanent in nervous
activity”, Bulletin of Mathematical Biophysics, 5, 115-137, 1943

F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage &
Organization in the Brain”, Psychological Review, 65, pp. 386-408, 1958

D.E.Rumelhart et al., “Learning representations by back-propagating errors”,
Nature vol. 323, p. 533, 1986

K.Hornik et al., “Multilayer Feedforward Networks are Universal Approximators”,
Neural Networks, Vol. 2, pp 359-366, 1989

Y. LeCun, L. Bottou, G. Orr and K. Muller, “Efficient BackProp”, in Neural
Networks: Tricks of the trade, Orr, G. and Muller K. (Eds), Springer, 1998

P.C. Bhat and H.B. Prosper, “Bayesian neural networks”, in Statistical Problems in
Particles, Astrophysics and Cosmology, Imperial College Press, Editors L. Lyons
and M. Ünel, 2005

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 96/97

References III

Q.V. Le et al., “Building High-level Features Using Large Scale Unsupervised
Learning”, in Proceedings of the 29th International Conference on Machine
Learning, Edinburgh, Scotland, UK, 2012 http://research.google.com/pubs/pub38115.html

G.E. Hinton, S. Osindero and Y. Teh, “A fast learning algorithm for deep belief
nets”, Neural Computation 18:1527-1554, 2006

Y. Bengio, P. Lamblin, D. Popovici and H. Larochelle, “Greedy Layer-Wise Training
of Deep Networks”, in Advances in Neural Information Processing Systems 19
(NIPS’06), pages 153–160, MIT Press 2007

M.A. Ranzato, C. Poultney, S. Chopra and Y. LeCun, in J. Platt et al., “Efficient
Learning of Sparse Representations with an Energy-Based Model”, in Advances in
Neural Information Processing Systems 19 (NIPS’06), pages 1137–1144, MIT
Press, 2007

Y. Bengio, “Learning deep architectures for AI”, Foundations and Trends in
Machine Learning, Vol. 2, No. 1 (2009) 1–127. Also book at Now Publishers

http://www.iro.umontreal.ca/ lisa/publications2/index.php/publications/show/239

I. Goodfellow, Y. Bengio and A. Courville, “Deep Learning”, MIT Press (2016)
http://www.deeplearningbook.org

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 97/97

http://research.google.com/pubs/pub38115.html
http://doi.org/10.1561/2200000006
http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/239
http://www.deeplearningbook.org

Beyond the standard slides

Backup

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 98/97

Tree construction parameters

Normalization of signal and background before training

same total weight for signal and background events (p = 0.5,
maximal mixing)

Selection of splits

list of questions (variablei < cuti?, “Is the sky blue or overcast?”)

goodness of split (separation measure)

Decision to stop splitting (declare a node terminal)

minimum leaf size (for statistical significance, e.g. 100 events)

insufficient improvement from further splitting

perfect classification (all events in leaf belong to same class)

maximal tree depth (like-size trees choice or computing concerns)

Assignment of terminal node to a class

signal leaf if purity > 0.5, background otherwise

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 99/97

Splitting a node

Impurity measure i(t)

maximal for equal mix of
signal and background

symmetric in psignal and
pbackground

minimal for node with either signal
only or background only

strictly concave ⇒ reward purer
nodes (favours end cuts with one
smaller node and one larger node)

Optimal split: figure of merit

Decrease of impurity for split s of
node t into children tP and tF
(goodness of split):
∆i(s, t) = i(t)−pP ·i(tP)−pF ·i(tF)

Aim: find split s∗ such that:

∆i(s∗, t) = max
s∈{splits}

∆i(s, t)

Stopping condition

See previous slide

When not enough
improvement
(∆i(s∗, t) < β)

Careful with early-stopping
conditions

Maximising ∆i(s, t) ≡ minimizing overall tree impurity
Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 100/97

Splitting a node: examples

Node purity

Signal (background) event i with weight w i
s (w i

b)

p =

∑
i∈signal w i

s∑
i∈signal w i

s +
∑

j∈bkg w j
b

Signal purity (= purity)
ps = p = s

s+b

Background purity
pb = b

s+b = 1− ps = 1− p

Common impurity functions

misclassification error
= 1−max(p, 1− p)

(cross) entropy
= −∑i=s,b pi log pi

Gini index
signal purity

0 0.2 0.4 0.6 0.8 1

ar
b

it
ra

ry
 u

n
it

0

0.05

0.1

0.15

0.2

0.25

Split criterion

Misclas. error

Entropy

Gini

Also cross section (− s2

s+b) and excess significance (− s2

b)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 101/97

Splitting a node: Gini index of diversity

Defined for many classes

Gini =
∑i 6=j

i ,j∈{classes} pipj

Statistical interpretation

Assign random object to class i with probability pi .

Probability that it is actually in class j is pj

⇒ Gini = probability of misclassification

For two classes (signal and background)

i = s, b and ps = p = 1− pb

⇒ Gini = 1−∑i=s,b p2
i = 2p(1− p) = 2sb

(s+b)2

Most popular in DT implementations

Usually similar performance to e.g. entropy

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 102/97

Variable selection I

Reminder

Need model giving good description of data

Playing with variables

Number of variables:

not affected too much by “curse of dimensionality”
CPU consumption scales as nN log N with n variables and N training
events

Insensitive to duplicate variables (give same ordering ⇒ same DT)

Variable order does not matter: all variables treated equal

Order of training events is irrelevant (batch training)

Irrelevant variables:

no discriminative power ⇒ not used
only costs a little CPU time, no added noise

Can use continuous and discrete variables, simultaneously

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 103/97

Variable selection I

Reminder

Need model giving good description of data

Playing with variables

Number of variables:

not affected too much by “curse of dimensionality”
CPU consumption scales as nN log N with n variables and N training
events

Insensitive to duplicate variables (give same ordering ⇒ same DT)

Variable order does not matter: all variables treated equal

Order of training events is irrelevant (batch training)

Irrelevant variables:

no discriminative power ⇒ not used
only costs a little CPU time, no added noise

Can use continuous and discrete variables, simultaneously

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 103/97

Variable selection II

Transforming input variables

Completely insensitive to the replacement of any subset of input
variables by (possibly different) arbitrary strictly monotone functions
of them:

let f : xi → f (xi) be strictly monotone
if x > y then f (x) > f (y)
ordering of events by xi is the same as by f (xi)
⇒ produces the same DT

Examples:

convert MeV → GeV
no need to make all variables fit in the same range
no need to regularise variables (e.g. taking the log)

⇒ Some immunity against outliers

Note about actual implementation

The above is strictly true only if testing all possible cut values

If there is some computational optimisation (e.g., check only 20
possible cuts on each variable), it may not work anymore.

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 104/97

Variable selection II

Transforming input variables

Completely insensitive to the replacement of any subset of input
variables by (possibly different) arbitrary strictly monotone functions
of them:

let f : xi → f (xi) be strictly monotone
if x > y then f (x) > f (y)
ordering of events by xi is the same as by f (xi)
⇒ produces the same DT

Examples:

convert MeV → GeV
no need to make all variables fit in the same range
no need to regularise variables (e.g. taking the log)

⇒ Some immunity against outliers

Note about actual implementation

The above is strictly true only if testing all possible cut values

If there is some computational optimisation (e.g., check only 20
possible cuts on each variable), it may not work anymore.

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 104/97

Pruning a tree II

Pre-pruning

Stop tree growth during building phase

Already seen: minimum leaf size, minimum separation improvement,
maximum depth, etc.

Careful: early stopping condition may prevent from discovering
further useful splitting

Expected error pruning

Grow full tree

When result from children not significantly different from result of
parent, prune children

Can measure statistical error estimate with binomial error√
p(1− p)/N for node with purity p and N training events

No need for testing sample

Known to be “too aggressive”
Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 105/97

Pruning a tree III: cost-complexity pruning

Idea: penalise “complex” trees (many nodes/leaves) and find
compromise between good fit to training data (larger tree) and good
generalisation properties (smaller tree)

With misclassification rate R(T) of subtree T (with NT nodes) of
fully grown tree Tmax :

cost complexity Rα(T) = R(T) + αNT

α = complexity parameter

Minimise Rα(T):

small α: pick Tmax

large α: keep root node only, Tmax fully pruned

First-pass pruning, for terminal nodes tL, tR from split of t:

by construction R(t) ≥ R(tL) + R(tR)
if R(t) = R(tL) + R(tR) prune off tL and tR

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 106/97

Pruning a tree IV: cost-complexity pruning

For node t and subtree Tt :

if t non-terminal, R(t) > R(Tt) by construction
Rα({t}) = Rα(t) = R(t) + α (NT = 1)
if Rα(Tt) < Rα(t) then branch has smaller cost-complexity than single
node and should be kept
at critical α = ρt , node is preferable
to find ρt , solve Rρt (Tt) = Rρt (t), or: ρt =

R(t)− R(Tt)

NT − 1

node with smallest ρt is weakest link and gets pruned
apply recursively till you get to the root node

This generates sequence of decreasing cost-complexity subtrees

Compute their true misclassification rate on validation sample:

will first decrease with cost-complexity
then goes through a minimum and increases again
pick this tree at the minimum as the best pruned tree

Note: best pruned tree may not be optimal in a forest

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 107/97

AdaBoost algorithm

Check which events of training sample Tk are misclassified by Tk :
I(X) = 1 if X is true, 0 otherwise
for DT output in {±1}: isMisclassifiedk(i) = I

(
yi × Tk(xi) ≤ 0

)
or isMisclassifiedk(i) = I

(
yi × (Tk(xi)− 0.5) ≤ 0

)
in purity convention

misclassification rate:

R(Tk) = εk =

∑N
i=1 wk

i × isMisclassifiedk(i)∑N
i=1 wk

i

Derive tree weight αk = β × ln((1− εk)/εk)

Increase weight of misclassified events in Tk to create Tk+1:

wk
i → wk+1

i = wk
i × eαk

Train Tk+1 on Tk+1

Boosted result of event i :
T (i) =

1∑Ntree
k=1 αk

Ntree∑
k=1

αkTk(i)

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 108/97

AdaBoost by example

Assume β = 1

Not-so-good classifier

Assume error rate ε = 40%

Then α = ln 1−0.4
0.4 = 0.4

Misclassified events get their weight multiplied by e0.4=1.5

⇒ next tree will have to work a bit harder on these events

Good classifier

Error rate ε = 5%

Then α = ln 1−0.05
0.05 = 2.9

Misclassified events get their weight multiplied by e2.9=19 (!!)

⇒ being failed by a good classifier means a big penalty:

must be a difficult case
next tree will have to pay much more attention to this event and try to
get it right

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 109/97

AdaBoost error rate

Misclassification rate ε on training sample

Can be shown to be bound:
ε ≤

Ntree∏
k=1

2
√
εk(1− εk)

If each tree has εk 6= 0.5 (i.e. better than random guessing):

the error rate falls to zero for sufficiently large Ntree

Corollary: training data is over fitted

Overtraining?

Error rate on test sample may reach a minimum and then potentially
rise. Stop boosting at the minimum.

In principle AdaBoost must overfit training sample

In many cases in literature, no loss of performance due to overtraining

may have to do with fact that successive trees get in general smaller
and smaller weights
trees that lead to overtraining contribute very little to final DT output
on validation sample

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 110/97

Clues to boosting performance

First tree is best, others are minor corrections
Specialised trees do not perform well on most events ⇒ decreasing
tree weight and increasing misclassification rate
Last tree is not better evolution of first tree, but rather a pretty bad
DT that only does a good job on few cases that the other trees could
not get right

Yann Coadou (CPPM) — Machine learning Physics for both infinities, 7/7/2018 111/97

