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Abstract. In this review, we present the basic concepts of physics on large scale structures.
We start by giving a brief overview on the thermal history of our universe. We describe the
theoretical framework, behind the magnificent scenery of observations, known as the standard
ΛCDM model. The statistical observables currently used from surveys are discussed. We give
an overview of the main limitation we have from observations. A summary of current and
future large scale structure surveys is discussed. Finally, we give a brief overview on elements
of statistics needed to study large scale structures physics.
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1 A brief introduction

At first glance, we understand our universe as describe by Fig. 1. The universe starts from
quantum fluctuations, for unknown reasons, as a hot dense plasma at about 13.8 Gyrs ago.
The interaction between baryons, leptons, photons, and neutrini is violent. An inflationary
growth of structure follows only after 10−32sec after the "Big Bang". The photons are scatter
from electrons and baryons and the universe is opaque. At about 380,000 yrs after the "Big
Bang", the interactions of photons, baryons and leptons reduce rapidly as an epoch know as
Big Bang Nucleonsynthesis (BBN). Therefore the photons are decoupled from the baryons and
leptons and start to diffuse freely in space at an epoch know as decoupling. This radiation that
is released we can observed it today and comes with the name Cosmic Microwave Background
(CMB). At that time baryons and leptons combined with each other to form the first neutral
hydrogen atoms at an epoch know as recombination, z ∼ 1090. Due to the high transparency
of structures, since baryons and electrons do not interact with the photons, photons were
diffused rapidly. Therefore there is an epoch of our universe where matter does not interact
with the light so we cannot observe it. Since we have no clue about that epoch we named it,
Dark Ages.

Figure 1. The current understanding of our universe. The universe starts as a hot densed fluid that
expands through space for about 13.8 billion years. [See text for details]

About 400 million yrs after the "Big Bang" another phase change occurs, with the name
reionisation epoch. Once objects started to condense in the early universe that were ener-
getic enough to reionize neutral hydrogen. As these objects formed and radiated energy, the
universe reverted from being neutral, to once again being an ionized plasma. This occurred
between 150 million and one billion years after the Big Bang (6 < z < 20). At that time,
however, matter had been diffused by the expansion of the universe, and the scattering in-
teractions of photons and electrons were much less frequent than before the lepton-baryon
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recombination. Thus, a universe full of low density ionized hydrogen will remain transparent,
as is the case today.

At later times, the universe pass to the next phase transition, namely structure forma-
tion. At that time the first stars are forming. Those stars are primordial so they are made
only by elements with atomic number as high as that of Iron, 56

26Fe. Due to the gravita-
tional force of those massive objects and the expansion of the universe, these objects collide
with each other. These collision produce high energetic phenomena, that allow the acceler-
ation of particles. High speed moving particles produce collisions that produce the highest
atomic elements such as that of Uranium, producing heavier stars, clusters of stars and in
extend galaxies. Those collisions are happening to large gravitational potentials of another
unknown matter of our universe which comes with the name Dark Matter. This exotic matter
is responsible for the constant rotational curves of stars within a galaxy.

At the time of recombination and decoupling the luminous matter (baryons and leptons)
and the dark matter interact with each other through gravity. At that time gravity is a
attractive force. The space time is expanding. In order to compensate the expansion and the
attractive force the hot dense fluid (baryons leptons and photons) is in an oscillatory phase.
When the photons are released from matter and travel freely through space the baryonic fluid
(baryons and leptons) is freezing in space. This effect is known as Baryon Acoustic Oscillations
(BAO). The frozen modes are expanding with the comoving space through eternity. Finally
the universe pass to each last phase which is the accelerated expansion, z ∼ 0.5, due to a new
aspect of gravity which acts as a repulsive force, currently with the name Dark Energy.

This magnificent scenery of phenomena are observed in an expanding background which
was first observed by Hubble[1], in 1929, who studied the recessional velocities, vrec of far
galaxies and compare it to their distances from the earth, d, establishing their proportionality
with a constant that we named after him, H0, namely Hubble constant. This law is given by:

vrec = H0d . (1.1)

This law is still accurate today, in the approximation regime that was observed, and the
Hubble constant has its best value, H0 = 67.27±0.66kms−1/Mpc as measured by the Planck
Satellite[2] in 2015.

This is a summary of the standard model of modern cosmology which comes with the
name ΛCDM. The "Λ" correspond to Dark Energy uknown component of our universe re-
sponsible for the accelarating nature of our universe, while the "CDM" stands for Cold Dark
Matter, which is the most accepted feature of current dark matter models. This is only a
brief introduction, therefore many simplifications were done for this discussion. The interested
reader is directed to Dodelson [3] for a more detailed discussion.

2 An non exhaustive historical summary

The main theoretical framework of ΛCDM model was develloped by an non excaustive list
of fathers of modern cosmology, Einstein, Friedmann, Lemaître, Alpher, Gamow, Hubble,
Zwicky, ... . Einstein developed the Theory of General Relativity in 1915[4] which explains
how gravity is only a manifestation of the effect of how the matter locally affects the curvature
of space time around it. This Theory is formulated in the well know Einstein field equation

Gµν(x) = κTµν(x) , (2.1)
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where Gµν is the Einstein tensor that describes the local curvature around a specific matter
density which has a simplistic energy tensor, Tµν and κ is a topological constant. In 1922,
Friedmann[3] have applied the above formulation to a model for the evolution of the universe.
He solved the above equations for a homogeneous and isotropic universe. At about the same
time independently, in 1931, Lemaître have applyied the above equations for solutions of a
homogeneous and isotropic universe that starts from a small hot dense region known as the
"Big Bang Theory". Notice that this term is inaccurate since the equations break down on
r = 0, an issue know as singularity. However this description agrees with the data that
we have so far, which are not corresponding to r = 0 and therefore this model is still well
accepted from the largest amount of the physics community, nowadays, 2018. This gave
rise to the smooth cosmology that we are going to briefly describe in section 3.1. However,
the standard model described by a "Big Bang" origin is still under investigation against the
several attempts to explain some unexplained phenomena. Alternatives to this model are
among the following: Late time isotropic universe, Bouncing universe, Multiverse, and so on.

Fast forward in time, 1948, Alpher a student of Gamow with his supervisor have pre-
dicted that the universe initially could emit a radiation at the Microwave regime known as
the Cosmic Microwave Background (CMB) radiation. Therefore that year they published
the so called α, β, γ-paper[5] introducing to the author list the friend of Gamow Bethe1. In
1965, Penzias and Wilson have observed by accident this radiation[6] without knowning the
prediction of the Alpher and Gamow. Fast forward in time in 2006, Smooth and Mather get
a Nobel Prize for the discovery of the Black Body nature of CMB by leading the team on
observing with unprecedentedly accuracy the CMB temperature, TCMB = 2.728±0.004 K as
measured by the FIRAS instrument of COBE satellite[7]. This measurement confirmed the
state of the art ΛCDM model which predicts the Baryon Acoustic Oscillation phenomenon
behind the structure of the CMB radiation. Afterwards, WMAP confirmed this oscillatory
feature by studying the temperature fluctuations of the CMB in 2010 [8]. Now the state of
the art of this measurement is acquired by Planck satellite[2] measuring the CMB fluctua-
tions unprecedentedly accuracy, ∆T/T ∼ 10−5 at redshift, z ∼ 1090 and inferring precision
measurement on the parameters of ΛCDM model among alternatives.

In 1965, Gunn and Peterson observed the Gunn-Peterson trough, a feature of the spectra
of quasars due to the presence of neutral hydrogen in the Intergalactic Medium (IGM) [9].
This marked the epoch of reionisation and it is a hot research area these days due to the lack
of observations at 6 < z < 20.

At the large scale structure observations there were several developments as well at that
time. In 1929, Hubble[1] turned his telescope on the sky and observed the expansion of
the universe confirming the theoretical framework build upon the previous authors. Hubble
determined a linear relation between the recessional velocities (vrec) and the radial distances
of galaxies):

vrec := cz = H0d (2.2)

where z is the redshift, c is the speed of light and H0 is the hubble expansion rate. The
determination of the velocities was obtained by studying the spectrum of the galaxies . In
order to obtained an estimate for their distance, he used Cepheids Variables. Cepheids are
stellar objects within galaxies, that undergo pulsations in very regular periods on the order
of days or months. This regular pulsations allows to determine the radial distance of the

1 Bethe has nothing to do with this research but he was selected on the author’s list by the authors only
for the sake of the naming of the paper!
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cepheids from the earth and in extend their host galaxies. The know diagram that Hubble
built was named after him and it is shown in Fig. 2.

Figure 2. Hubble diagram obtained and the striking linear relation between the distances and the
velocities as measured from Cepheids Variables by Hubble reveilling the expansion of our universe[1].

The redshift, z, is the shift of the emiting spectra (towards the red color) as observed
by an observer on earth in respect of the rest frame emission of spectra as emitted by the
galaxy itself. In other words, assuming that a galaxy emit radiation in a specific pattern (the
spectrum which is the flux against different wavelengths), if this galaxy moves in respect to
an observer away from him, it is nutural that the observed spectra will by shifted in respect
of the emitted spectra due to dopler effect. This redshift is formulated as following:

1 + z =
λobs(tobs)

λem(te)
, (2.3)

where λem(te) is the wavelength of the emitted spectra at the rest frame of the galaxy at
time te, while λobs(to) is the wavelength of the observed spectra as observed by an observer
at time to. We explain this phenomenon further in section 7.3. For more details the reader is
redirected to [10].

In 1937, Zwicky [11] have studied the virial theorem,

(Kinetic energy) = −1

2
(Potential energy) , (2.4)

on galaxies in the local group and he realised that a missing compenents exists in order
to much the observational data with the theoretical model of gravity, (Newtonian Gravity
back then). The missing component was named Dark Matter since it was not luminous
but was interacting with the luminous matter through gravity. This missing matter could
compensate the missing mass that was necessary to fit the constant rotational curves at large
radii away from the centers of the galaxies. A more robust confirmation of this phenomenon
was aqcuired later on by Ruby[12] in 1970, who studied the rotation of the andromeda nebula
from a spectroscopic survey.
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Phenomenon redshift, z time, t temperatue, T [eV]
Inflation ? 10−32sec ?
Photon Decoupling 1090 380 k yr 0.23− 0.28
Reionization 11− 30 100− 400 M yr 2.6− 7.0
Accelerated Expansion 0.4 9 G yr 0.33 m
Present 0 13.8 G yr 0.24 m

Table 1. Key phenomena of large scale structures.

Fast forward in time, in 1998, three teams independently [13–15] have studied the lumi-
nosity distance relation of type Ia Supernovae and discovered the acceleration of the universe
at late times z ∼ 0.4, confirming once again the state of the art ΛCDM model. At 2005 in-
depedently two teams have observed through spectrscopic surveys the imprint of the Baryon
Acoustic Oscillations at the distribution of galaxies another prediction of ΛCDM model. The
one was the SDSS collaboration[16] and the other one was the 2dFGRS collaboration[17].
This discovery cannot be explain yet from alternatives of ΛCDM such as MOdified Newto-
nian Dynamics (MOND) theories[18]. For a more detailed discussion on alternative to ΛCDM
theories the reader is redirected to Hamilton [19].

In the standard model of cosmology, redshift, time and temperature are related quanti-
ties. We summarise the discussed key phenomena of large scale structure in those parameters
in table 1. You can see that some boxes are still missing particular in the inflation paradigm
which is still an active area of reasearch of CMB observations but this falls of the discussion
of this manuscript. However there is still a vast amount of improvement on the understanding
of our universe on large scales as well in order to complete this picture. The BAO is the main
observable in the late universe on large scale structures and we hope to give an overview on
the rest of this document and we hope to reveal to the reader the exciting discoveries that
await the large scale structures observations.

3 Theoretical Framework

The basic theoretical framework is build upon general theory of relativity and quantum field
theory. Semianalytical models of the latter framework, alongside with observational evidence
led the physics community to build the ΛCDM model, as we explained before. Now we
will briefly describe the "smooth" part of this model and the "perturbed". To describe this
framework, we will use information from [3, 10, 20]. For a more complete description please
read the aforementioned references.

3.1 Smooth Cosmology

Friedmann2 has shown in the 20’s that one can use the cosmological principle to build such
a coordinate system in order to solve Einstein Field Equations for a dynamical model that
describe an expanding, homogeneous and isotropic universe, or smooth universe. There he
showed that for a statistically homogeneous and isotropic universe, an observer has a coordi-

2Lemaître, Robertson and Walker, independently of Friedmann, have developed the same model during
same epoch, 1920-1930.
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nate system that follows the FLRW metric3:

ds2 = −c2dt2 + a2(t)

[
1

1− kr
dr2 + r2(dθ2 + sin2θdφ2)

]
(3.1)

where dΩ = dθ2 + sin2θdφ2 reflects the isotropy condition and γij = 1
1−kr2dr

2 + r2dΩ. If
k = 0, space is flat and infinite (critical). If 0 < k < 1 space is spherical and finite (closed),
while −1 < k < 0 correspond to a hyperbolic and infinite space (open).

The FLRW metric is used as an input on the left hand side of equation Eq. 2.1 for the
computation of the scale factor as a function of the geometrical properties of the universe.
Thus one can easily show that the Einstein Tensor, for an FLRW metric (Eq. 3.1), reduces
to a tensor with the following non-zero components:

G00 = 3

([
ȧ(t)

a(t)

]2

+
kc2

a2(t)

)
, Gij = −γij

[
k + 2a(t)ä(t) + ȧ2(t)

]
(3.2)

where dot " ˙ " represent the derivative in respect of time t.
The right hand side of equation Eq. 2.1 describes the energy content of the universe as a

perfect fluid in thermodynamic equilibrium, thus the energy-stress tensor takes the simplified
form:

Tµν =

[
ρ(x) +

P (x)

c2

]
uµuν + P (x)gµν (3.3)

where ρ(x) is the energy density, P (x) is the pressure and uµ is the 4-velocity. The cosmo-
logical principle implies that uµ = (1, 0, 0, 0), meaning that the fluid is locally at rest with
respect to the chosen frame. Furthermore, the cosmological principle restricts the energy
density and pressure to be constant over space but allows a possible time dependence. These
considerations model the stress energy tensor, with only non-zero components, as follows:

T00 = ρ(t), Tij =
P (t)

c2
a2(t)γij (3.4)

The gauge invariance allows us to add a constant on the Eq. 2.1, cosmological constant, Λ. By
taking all the above considerations into account, the 00-component and the trace of Eq. 2.1
are written as:

H2(t) ≡
(
ȧ

a

)
=

8πG

3
ρ(t)− kc2

a2(t)
+

Λc2

3
(3.5)

−
(
ä

a

)
=

8πG

2

[
ρ(t) +

3P (t)

c2

]
− Λc2

3
(3.6)

where the H(t) = ȧ/a is the Hubble expansion rate. The above differential equations are not
enough to completely specify the system, i.e. a(t), ρ(t) and P (t). Thus, either by combining
the above equations or by using the local conservation of the stress-energy tensor (Tµν;µ = 0),
we have that:

ρ̇(t) = −3H(t)

[
ρ(t) +

P (t)

c2

]
(3.7)

The set of the 3 latter equations (Eq. 3.5, Eq. 3.6 and Eq. 3.7) are used to describe the
evolution a(t) of the cosmic fluid with properties ρ(t) and p(t). This set of equations are

3For an approach that has more general considerations of topology on constructing this metric, see Ap-
pendix A2: Topological Restrictions from Ntelis [10]

– 7 –



DRAFT

called Friedmann equations. However, in the ΛCDM-modelling there are several species of
the total cosmic fluid such as X = {γ, ν, b, cdm,Λ} which corresponds to photons, baryons,
neutrinos, cold dark matter and dark energy, respectively.

The cosmic species are divided into two general categories, i.e. the relativistic and non
relativistic species, according to the level of their rest mass energy mc2. The former have
a rest mass energy which is insignificant against their average kinetic energy mc2 << kBT .
This leads to Prel = ρrel/3. The latter are those whose momentum is negligible to their rest
energy (mc2 >> kBT ), and therefore Pn.rel ' 0. However, one may generalise those two
approximated relations for the two categories of species with a parameter

w =
P

ρc2
(3.8)

namely equation of state parameter. This allow for a class of solutions of Eq. 3.7, i.e.

ρX(t) ∝ [a(t)]−3(wX+1) (3.9)

for each species X.
It is convenient, now, to define the critical energy density as the energy density for a

universe of zero curvature (k=0) and no cosmological constant (Λ = 0):

ρc(t) =
3H2(t)

8πG
(3.10)

Then by dividing Eq. 3.5 with H2(t), we have:

1 =
8πG

3H2(t)
ρ(t)− kc28πG

8πGa2(t)H2(t)
+

Λc28πG

3× 8πGH2(t)
(3.11)

Now substituting Eq. 3.10 to Eq. 3.11 we have:

1 =
ρ(t)

ρc(t)
− 1

ρc(t)

kc2

8πGa2(t)
+

1

ρc(t)

Λc2

3× 8πG
(3.12)

Last but not least, we introduce the ratio of energy densities of the possible species (X) of
our universe against the critical density as:

ΩX(t) =
ρX(t)

ρc(t)
(3.13)

where X = {γ, ν, b, cdm,Λ} correspond to photons, baryons, neutrinos, cold dark matter and
dark energy, respectively. One may define as well the energy density ratio of curvature as:

Ωk(t) = − kc2

8πGa2(t)
. (3.14)

Therefore, all those species must satisfy the local energy conservation equation at all times:

Ωk(t) +
∑
X

ΩX(t) = 1 . (3.15)

Thus in the field of concordance cosmology, we use the above simple parametrization (Eq. 3.13)
to measure the ratio of energy densities of the different species in our universe. The convention
we adopted is that when we drop the time dependence, we talk about the energy density ratio
today ΩX = ΩX(t = 0).
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3.2 Perturbed Cosmology

The latest observations, such as the CMB measurements[21], have shown that the universe
is full of small inhomogeneities. In other worlds the universe behaves not homogeneously at
smaller scales. Two ingredients are necessary to describe the unforementions inhomogeneities.
The first ingredient is the perturbation of the smooth metric, i.e. FLRW metric (Eq. 3.1 ).
The second one is the Boltzmann equation that describe the nature of the interactions and
the evolution between the different species of the cosmic fluid, beyond the equilibrium.

In order to account those inhomogeneity in the previous described framework (sec-
tion 3.1), we perform a perturbations in the metric. The mechanism of perturbation give
rise to a gauge-invariance. In our case, we are going to describe the simplest one, the Newto-
nian synchronous gauge. The FLRW metric in the perturbation theory is going to be written
as:

ds2 = − [1 + 2Ψ(~x)] dt2 + a2(t) [1 + 2Φ(t)] d~x2 (3.16)

where we have considered scalar perturbations defined via the Φ(t) spatial curvature field and
the Ψ(~x) Newtonian potential field. By neglecting Ψ and Φ scalar perturbations, we retrieve
the homogeneous and isotropic, FLRW metric.

The Perturbed Boltzmann Einstein Equations can be summarised by

DtfX(~x, ~p, t) = C[fX(~x, ~p, t)] (3.17)

where the left hand side describes the time evolution of the distribution fX(~x, ~p, t) of the
primordial fluctuations of each species, which we have developed in first order approximation.
Note that in first order approximation we have that:

Dt = ∂t + a−1(t)p̂i + ∂tΦ(t) + a−1(t)p̂i∂iΨ(~x) (3.18)

which is the well defined derivative of the perturbed metric. The right hand side of Eq. 3.17
describes the collision treatment between the different species X, C[fX ]. For the interaction
between photons and leptons, we consider the classical Thomson scattering non-relativistic
approach, l∓ + γ ↔ l∓ + γ with an interaction rate Γ ' nlσT , where σT ' 2× 10−3MeV −2

is the Thomson cross section.
For cold dark matter, we consider a collisionless non-relativistic approach, as done in

various famous structure formation history models. This are the simplest models that agree
with observational large scale structure data. For baryons and leptons interactions, we assume
a Coulomb Scattering, b±+ l∓ ↔ b±+ l∓ in the Quantum ElectroDynamic (QED) approach.
While for neutrini, we only consider them as a massless relativistic particle fluctuation over-
density and therefore we assume that they do not interact with matter. This is true only
in the linear regime at large scales. Adopting a Fourier transform framework to simplify the
equations in question, we end up with a set of 6 linear differential equations describing the
non linear evolution of the 3 different species of density fluctuations (baryons, photons and
neutrinos and Dark Matter) and their corresponding velocities at large scale as a function of
conformal time4, η, and wavenumber, ~k. However, this system is coupled to the 2 degrees,
Φ(η) & Ψ(~k), of freedom defined by the perturbations of the curved metric. Thus, in order to
completely specify the system one may solve the time-time component and the spatial trace

4 The conformal time η =
∫ t

0
dt′/a(t′) defines the time needed for particles that travel in the speed c to

reach an observer from the maximum distance existing in the universe (observable universe) which we call
particle horizon.
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Figure 3. Schematic representation of the linear, coupled Boltzmann-Einstein field equation de-
scribing the interplay of physics at large scales, inspired by Fig 4.1 of Dodelson [3].

of the Einstein equations using the perturbed metric defined via Eq. 3.16. Thus we end up
with the 8 coupled differential equations, namely Perturbed Boltzmann-Einstein Equations
that completely specify the system on large scale structures, i.e. the evolution of the density
and temperature fluctuations, δX(t, ~x) & δT

T |X(t, ~x), of the different species X. This interplay
between the different species and the metric is represented schematically in Fig. 3.

~Ω Value (Planck 2015) Physical Description
ωcdm = Ωcdmh

2 0.1198± 0.0015 physical cold dark matter density ratio
ωb = Ωbh

2 0.0225± 0.0002 physical baryon density ratio
h = H0/100[Km/s/Mpc] 0.6727± 0.0066 dimensionless hubble expansion rate
ns 0.9645± 0.0049 spectral index
ln[1010As] 3.094± 0.0034 Amplitude of the primordial fluctuations
Ωm 0.316± 0.013 Total matter density ratio
ΩΛ 0.684± 0.013 Dark Energy density ratio
Ωk −0.004± 0.0015 curvature density ratio
w0 −1.006± 0.0045 equation of state parameter today
wa −0.0001± 0.0005 equation of state parameter redshifted

Table 2. Top: Standard parametrization of the ΛCDM model parameters as they could observed
now, z = 0. Middle: Derived parameters Bottom: Extensions.

The full set of those differential equations are given in Chapter 4 equations 4.100-4.107
of Dodelson [3].
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3.3 Theoretical prediction

All the above description encodes the total theoretical framework that we confront in ob-
servations. The aforementioned Perturbed Boltzmann Einstein equations are solved semi
analytically to give a prediction of our universe. This predictions is encoded mostly to the
Power Spectrum of the total matter of the universe Pmatter as a function of the wave-vector
k, time, defined by z, and the cosmology dependence, ~Ω, as:

Pmatter(k, z; ~Ω) = Ask
ns−1T 2(k; ~Ω)D2(z) (3.19)

These equations describe the intrinsic power shape of the matter density field coming from
the solutions of the Boltzmann-Einstein equations. T (k; ~Ω) is the transfer function[3, 22]
which is basically how the modes of the primordial fluctuations of the total matter field in
our universe before the last scattering surface are converted to the primordial fluctuations
of the total matter field of our universe after the last scattering surface, which is denoted
as the so called drag epoch. The Askns−1 factor describe the primordial shape of the power
spectrum, where As the amplitude and ns the spectral index of the primordial scalar power
spectrum. Finally, D(z) = G(z)/G(z = 0) is the normalized scale independent linear growth-
factor which describes the evolution of the shape of the matter density field at different times
according to redshift, z.

The prediction is always under development and there are several working package that
allow one to obtain the numerical solution of the matter field. Currently the most popular
ones are the CLASS[23] and CAMB[24]. These functionals are usually parametrized in the
standard ΛCDM model by the parameters ~Ω in the standard framework, or extensions of it,
as shown table 2.

The standard parametrization includes; ωcdm = Ωcdmh
2 and ωb = Ωbh

2 the physical
density of cold dark matter and baryonic matter, h = H0/100[Km/s/Mpc] the dimensionless
hubble expansion rate, ns and ln[1010As] the spectral index and amplitude of the primordial
fluctuations. Derived parameters are usually the total matter density ratio, Ωm, and the total
Dark Energy density ratio, ΩΛ. However there is the possibility for extensions such as for
a variation of the curvature density of the universe, Ωk. Other extensions include varying
equation of state, w. A popular redshift dependence parametrizsation of the equation of state
is given by

w(z) = w0 +
z

1 + z
wa (3.20)

where w0 is the equation of state parameter today and wa is the difference between the
equation of state parameter at high redshifts, usually z >> 1. This is the target of several
experiments, that try to investigate the nature of Dark Energy field.

4 What is a structure?

Since we have describe the underlying physics of large scale structure, in this section we are
going to answer to two relevant questions: what is a structure and what are the observables
that we use on large scale structures. To answer to the first question let’s review what are
the structures observed so far. From small scales to large scales we can have different kind of
structures and therefore different observables. We depict some of the main structures in Fig. 4.
Let’s start at the smallest possible scales, lpl ' 10−35 m, where the matter hypothetized to
be structured as strings and/or as the quantum foam[10]. At scales δl ' (10−20, 10−15) m,
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the matter is structured as field particles such as quarks, leptons, photons, W and Z bosons,
Higgs and many more. At scales up to 10−10 m, the matter is structured in the form of
atoms such as the form Hydrogen, and molecules such the ones of the water we drink, H2O.
These scales are usually described by the Standard Model build upon, Quantum Field Theory
and/or Quantum Gravity models.

Figure 4. Illustration of the different matter structures in our universe in terms of scales, from
the smallest hypothetized scales, lpl ' 10−35m, to the largest observable scales, of the order of
Gpc' 1026m. [See text for details.]

At scales between 10−4−108m are the trivial scales that we make some easy observations,
such as the ants walking in the surface of our the planet, we leave in!

At scales of the order of Astronomical Units (A.U.), which is the distance between the
earth and our sun, 1 A.U. = 109 m, the matter is structure in the form of planets that travel
around a massive object such as a star. This groups are called solar systems. Going further
upwards on scales, the matter is structured in the form of star clusters such as the Messier
45 which in greek is called Pleiades, which in free translation means many.

On large scales of the order of kpc(= 1019m) the matter is structured in the form of
galaxies, quasars, Super Novae (SN). Galaxies are collection of stars which are concentrated in
deep gravitational potentials. Quasars or Quasi Stellar Objects (QSO) are the most massive
galaxies in the early universe. Explosions of stars or galaxies in the late time universe. Further
classification includes galaxy clusters that are collection of galaxies in large gravitational
potential at the order of few kpc. Do not forget that also there is the dark matter particles
that usually are invisible to our instruments but they are being traced by the observing the
dynamics of the luminous matter such as the galaxies. At the largest possibly observables
scales, order of few Gpc(' 1026m), there are also some other classification of the large scale
structure of the universe, in terms of Nodes, Filaments, Sheets and Voids, namely Cosmic Web.
This form of structure can be also be consider as structure of foams. Therefore one can observe
that at the very small scales, infinitesimally small and at the very large scales, infinitesimally
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large , the universe is structure as a foam, or namely large scale structure foam! If one would
like to describe marninally, the two structures towards the two infinities, he would give them
a proper name, namely the cosmic foam. The cosmic foam is the form of structure at the
infinitesimally small and the infinitesimally large scales of our universe. In other words, one
would say that the universe seem blurry at the two infinities! How we can optimally combine
these observations to distinguish between models is still an open question of current research!

The second question, what is our observable, is more complicated to answer. As you
understood a structure can have different forms, and we can pick different ways to model it
and study it according to our preference and convinience. On larger scale structures, we are
interested on how matter is distributed. Therefore we are interested in the light coming from
distant objects such as galaxies and the early universe (CMB radiation) which are able trace
the total matter fluid of our universe. Therefore radiation in the form of photons is the main
observable that allows us to observe the largest possible scales. Additionally, we are going to
treat galaxies as point source of photon radiation to study their statistical properties.

These objects helps to constrain our theoretical models of cosmology such as the standard
ΛCDM model or modifications of gravity and several submodels of this universal model such
as galaxy formation models, Dark Energy models, Dark Matter models etc.

5 Baryon Acoustic Oscillation: Briefly

According to the short summary of our standard ΛCDM model, now we are able to give the
insights of the famous phenomenon, Baryon Acoustic Oscillations.

About 300,000yr after Big Bang, the universe was in a hot and dense state expanding
rapidly. Baryons , leptons and photons were interacting with each other due to high tempera-
ture. Note that the gravitational potential, which is created by the total matter, is attractive.
While the kinetic energy coming from the high temperature and interaction of the particles
was high. This creates an outward pressure on the structures. These counteracting forces
of gravity and pressure created oscillations in the structure of total matter of the universe,
analogous to sound waves created in the air by pressure differences.

At about ∼ 360, 000yr after the Big Bang (Recombination epoch), the universe cool
down at a point were the baryons are combined with the leptons. These acoustic oscillations
freeze.

Shortly after, about ∼ 380, 000yr after Big Bang (Decoupling epoch), the photons can-
not interact anymore with the already produced atoms. Therefore the photons free stream
in space-time continuum, in the form of CMB radiation. Note the informations of BAO
oscillations is also encoded to the free streaming photons.

For about 13Gy the structures are evolving and therefore, the frozen Baryon Acoustic
Oscillations evolve as well.

About ∼ 13Gyr after the Big Bang, we observe these frozen BAO in the distant universe!
We observe them e;ither in the form of temperature fluctuations (CMB) or in the form of
density fluctuations (galaxy distributions).

Note that this is only a short simplification of the phenomenon.

6 Observations: Clustering statistics

Observations are usually devided into two big categories; the primordial observations and the
late time observations. In the first kind of observations we study the "initial" conditions in
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the far past, z ' 1100 through local temperature fluctuations, δT (x) in the comoving position
x. These are usually referred to as CMB experiment [2]. In the second kind of observations we
study the "final" conditions of our universe in the near past, z ' 1 , using the galaxy number
density fluctuations, δ(x). These are usually referred to as redshift surveys or galaxy surveys.
Both are used individually or in combination to constrain cosmological models. Let’s focus
on the redshift surveys.

6.1 The number overdensity field

Any redshift survey will observe a particular "window" of the universe, consisting of an
angular mask of the area observed, and a radial distribution of galaxies. In order to correct
for a spatially varying galaxy selection function, we translate the observed local galaxy number
density, n(t, x), as:

δ(t, x) =
n(t, x)− n̄(t)

n̄(t)
(6.1)

where n̄(t) is the expected mean density at a given time, t. At early times, or on large-scales,
δ(t, x) has a distribution that is close to Gaussian one[2] and thus the statistical distribution
is completely described by the two-point functions of this field.

6.2 The two point correlation function

The two point correlation function is the expected 2-point function of the aforementioned
statistic:

ξ(t, x1, x2) ≡ 〈δ(t, x1)δ(t, x2)〉 , (6.2)

where the operator 〈〉 denotes average over space, x = x1 +x2. The ergodic theorem 5 that the
space average is equivalent of the average over different realizations of the galaxy distribution.

From statistical homogeneity and isotropy, we have that:

ξ(t, x1, x2) = ξ(t, x1 − x2) = ξ(t, |x1 − x2|) . (6.3)

An alternative definition of the correlation function, will help us understand better its sta-
tistical inference. Assume that we have two small regions in comoving space, δV1 and δV2,
separated by a distance r. Then the expected number of galaxies, dPpair, with one galaxy in
δV1 and the other in δV2 is given by:

dPpair = n̄2 [1 + ξ(r)] δV1δV2 , (6.4)

where n̄ is the mean number of galaxies per unit volume. Therefore, ξ(r) measures the excess
probability of finding a galaxy at a finite volume separated by the referenced one by a given
distance, r.

For ξ(r) = 0, the galaxies are unclustered (randomly distributed) on this scale - the
number of pairs is just the expected number of galaxies in δV1 times the expected number in
δV2. The values of ξ(r) > 0 correspond to strong clustering and ξ(r) < 0 to anti-clustering.
The estimation of ξ(r) from a sample of galaxies will be discussed in section 6.8.

5 Note: The ergodic theorem suggest that an ensemble spatial average (average over many realisations) for
a field, is equal to the spatial average over one realization, only if the field is random and large enough. In
other words, all the information that is present in a complete distribution p[ψ(~x)] is encoded from a single
sample ψ(~x) over all space. In other words, this means that spatial correlations decay sufficiently rapidly with
separation such that many statistically independent volumes exist in one realization.
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6.3 The power spectrum

Another convenient tool to measure the clustering in Fourier space is the power spectrum.
The following Fourier transform is adopted:

δ(k) =

∫
d3rδ(r)eikr , (6.5)

δ(r) =

∫
d3r

(2π)3
δ(k)e−ikr . (6.6)

The power spectrum is defined via:

P (k1, k2) =
1

(2π)3
〈δ(k1)δ(k2)〉 , (6.7)

with statistical homogeneity and isotropy giving:

P (k1, k2) = δD(k1 − k2)P (k1) (6.8)

where δD is the Dirac delta function of a 3D field. The correlation function and the power
spectrum for a Fourier pair as:

P (k) =

∫
ξ(r)eikrd3r , (6.9)

ξ(k) =

∫
P (k)e−ikr

d3r

(2π)3
, (6.10)

since they provide the same information. The choice of which to use is therefore somewhat
arbitrary, see discussion by Percival [25].

6.4 Fractal Dimension

Nature all around us is full of fractal patterns, be it from amazing snowflakes to romanesco
broccoli. Naturally due to the peculiar structure of galaxies around us, there were several
claims that the universe behaving like a fractal one (Labini et al. [26], Coleman and Pietronero
[27]). Therefore we can study the fractality of the galaxy distributions using the fractal
dimension, defined as:

D2(r) ≡ d lnN(< r)

d ln r
(6.11)

where N(< r) is the count-in-spheres of galaxies. However the information obtained from
this statistics it is similar to the one of ξ(r) or P (k) but it is an active field of research on
how we can use it to optimize our observations! It has been shown that the universe at small
scales behaves as a fractal, at scales less than 50h−1Mpc and at large scales it reaches a
statistically homogeneous behaviour asymptotically[28–30]. For a homogeneous distribution
the counts-in-spheres scale as the volume, N(< r) ∝ r3, while for a fractal distribution they
scale as N(< r) ∝ rD2 where D2 quantifies the fractality of the distribution in study. For
further discussion, see [10] and references therein.
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6.5 Anisotropic statistics

Although the true universe is expected to be statistically homogeneous and isotropic, the
observed one is not so due to a number of observational effects discussed in section 7. Statis-
tically, these effect are symmetric around the line-of-sight. In the distant-observer limit these
effects possess a reflectional symmetry along the line-of-sight looking outwards or inwards.
Thus, to first order, the anisotropies in the over-density field can be written as a function of
µ which is the cosine angle to the line-of-sight. Consequently, we often write the correlation
function ξ(r, µ), the power spectrum P (k, ) or the Fractal Dimension, D2(r, µ). It is common
to expand these observables in Legendre polynomials Ll(µ) as:

ξ(r, µ) =
∑
l

ξ(r)Ll(µ) . (6.12)

Only the first thre even Legendre polynomials are important, as shown by Kaiser [31]; L0(µ) =
1, L1(µ) = (3µ2 − 1)/2 and L4(µ) = (35µ4 − 30µ2 + 3)/8. In the absence of redshift space
distortions, discussed in section 7.3, only the "monopole" or the andgle-averaged correlation
function survives:

ξ0(r) =
1

2

∫ 1

−1
dµ ξ(r, µ) . (6.13)

In the same way, one can expand the fractal dimension in terms of the legendre polyno-
mials:

D2(r, µ) =
∑
l

D2(r)Ll(µ) . (6.14)

and study the anisotropic fractality of large scale structures. Another active area of current
research[10]!

6.6 Higher order statistics

At early times and on large scales, we expect the over-density field to have Gaussian statistics.
This follows from the central limit theorem, which implies that a density distribution is asymp-
totically Gaussian in the limit where the density results from the average of many independent
processes. The over-density field has zero mean by definition so, in this regime, is completely
characterised by either the correlation function or the power spectrum. Consequently, mea-
suring either the correlation function or the power spectrum provides a statistically complete
description of the field. To capture them on small scale structure, we usually resort to higher
order statistics of the matter field. Higher order statistics tell us about the break-down of the
linear regime, showing how the gravitational build-up of structures occurs and allowing tests
of General Relativity.

The extension of the 2-pt statistics, the power spectrum and the correlation function,
to higher orders is straightforward. From Eq. 6.4 we have:

dPtuple = n̄n
[
1 + ξ(n)

]
δV1 . . . δVn (6.15)

The immediate application of n-point statistics is the Bispectrum, B(k1, k2) defined as:

< δ(k1)δ(k2)δ(k3) >= (2π)3B(k1, k2)δD(k1 − k2 − k3) (6.16)

studying the 3rd order statistics, and the Trispectrum, T (k1, k2, k3), defined as:

< δ(k1)δ(k2)δ(k3)δ(k4) >= (2π)3T (k1, k2, k3)δD(k1 − k2 − k3 − k4) (6.17)

– 16 –



DRAFT

studying the 4th order statistics. As an example take a look at [32–35]. We study these
higher order statistics to obtain information about the non-linear properties of the matter
field which is caused by the small scale complex astrophysical processes, r ∼ 10 h−1Mpc.

6.7 Non-Gaussianity

At very large scales the power spectrum is theoritized to deviate from the Gaussian case. It
has been shown that primordial non-Gaussianities are generated in the conventional scenario
of inflation[36]. However there are very weak. The primordial non-Gaussian properties[36] of
the matter field are model in many different ways and can also be observed by different kind
of observables. In our case we are going to focus to the power spectrum observable and the
so called "local" non-Gaussianity. The "local" model is given by:

Φ = φ+ fnl(φ
2 − 〈φ2〉) . (6.18)

Here φ denotes the Gaussian random field while Φ denotes the Bardeen’s gauge-invariant
potential, which on sub-Hubble scales reduces to the usual Newtonian peculiar gravitational
potential, up to a minus sign. On even larger scales this potential is related to the conserved
variable ζ by

ζ =
5 + 3w

3 + 3w
Φ (6.19)

where w is the equation of state of the dominant component in the universe. The amount
of primordial non-Gaussianity is quantified by the non-linearity parameter fNL. Note that,
since Φ ' φ ' 10−5 then fNL ∼ 100 which corresponds to relative non-Gaussian corrections
of the order of 10−3. While ζ is constant on large scales, Φ is not. Thus, there are usually
two conventions for Eq. 6.18. The large scale structures (LSS) and the cosmic microwave
background (CMB) one. In the LSS convention, Φ is linearly extrapolated now, z = 0. In
the CMB convention Φ describes the primordial non Gaussian potential. Therefore, there is
an approximate formula that relates the two observables:

fLSS
NL =

G(z =∞)

G(z = 0)
fCMB

NL ∼ 1.3fCMB
NL (6.20)

where G(z) denotes the linear growth suppression factor relative to the Einstein-de Sitter
universe. It is customary to report valus of fCMB

NL but there is also convient for the large scale
structure community to use fLSS

NL .
So far observations have shown that fNL measurements are consistent with 0, and there-

fore no detection of deviations from the Gaussianity of the matter field were observed yet.
However, this is another active field of research[37]!

6.8 Estimators for Correlation function and Fractal Dimension

Let’s brefily discuss the estimators of the correlation function and the fractal dimension.
For the correlation dimension what we can observe is the counts-in-cells. These are usually
denoted as pairs of galaxies in different cells of r on a given galaxy data catalogue, GG(r).
Therefore we can formally define:

• gg(r) =
GG(r)

ng(ng − 1)/2
, the normalized number of galaxy pairs separated by r,

• rr(r) =
RR(r)

nr(nr − 1)/2
, the normalized number of random-point pairs separated by r,
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• gr(r) =
GR(r)

ngnr
, the normalized number of galaxy random-point pairs separated by r,

where ng and nr are the total number of galaxies and random points, respectively. A usual
estimator of the correlation function is the Peebles-Hauser estimator, ξ̂(r) = dd(r)/rr(r)− 1,
for the two-point correlation function Peebles and Hauser [38]. This estimator is known to
be less efficient than the more sophisticated Landy and Szalay [39] estimator.

ξ̂ls(r) =
gg(r)− 2gr(r) + rr(r)

rr(r)
, (6.21)

which has minimal variance on scales where ξ(r) << 1.
It has been shown that the optimal weighting of galaxies, for a precise measurement of

the BAO peak, is to assign a weight to each galaxy Reid et al. [40]:

wgal = (wcp + wnoz − 1)× wstar × wsee × wFKP , (6.22)

Here, the close-pair weight, wcp, accounts for the fact that, due to fiber coating, one cannot
assign optical fibers on the same plate to two targets closer than 62′′. The wnoz weight
accounts for targets for which the pipeline failed to measure the redshift. The wstar and wsee
weights correct for the dependance of the observed galaxy number density with the stellar
density and with seeing, respectively. Finally, we use the FKP weight, wFKP , Feldman et al.
[41] in order to reduce the variance of the two-point correlation function estimator. Since we
have introduced the random pairs in our analysis we have no longer access to the counts-in-
spheres, but to the normalised counts-in-spheres

N (< r) = Ndata(< r)/Nrandoms(< r) . (6.23)

However, we can directly compute the normalised counts-in-spheres from the correlation func-
tion:

N̂ (< r) = 1 +
3

r3

∫ r

0
ξ̂ls(s)s

2ds . (6.24)

It has been shown that this estimator is expected to be the most optimal by Ntelis et al. [29].
Applying the previous result to equation Eq. 6.11 our estimator for the fractal correlation
dimension is given by:

D̂2 = 3 +
d ln

d ln r

[
1 +

3

r3

∫ r

0
ξ̂ls(s)s

2ds

]
. (6.25)

Throughout this document, we drop the hats for sake of simplicity. Estimators of the theo-
retical predictions of these observables are publicly available at COSMOlogical Python Initial
Toolkit (COSMOPIT).

7 Limits on information mining

What can we extract from these observables? What information about the universe is accessi-
ble to us, directly or indirectly? Are there fundamental limits that underlie to our knowledge?
Generally, the intrinsic limits-to the information we can have access to-are due to the finite
speed of propagation of the information asserted by special relativity. The information that
we extract comes from the photons arriving to our devices. This phenomenon gives also rise
to the cosmic bias. Finally, an additional complications arise from the peculiar motion of
the celestial objects on the sky. In this section, we are going to describe the effect of causal
diagrams, the cosmic bias and the redshift space distortions. This section is based on Leclercq
et al. [42] and Ntelis [10].
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7.1 Causal diagrams

According to special relativity, there is a causal structure of the universe that is relevant for
cosmology. In fact, it is only possible to observe part of the universe at a given time. This fact
limits the information available for making statistical statements about scales comparable to
the entire observable Universe. Since only a single realization from the ensemble of universes is
accessible to us, statements about the largest scales are subject to uncertainty, usually referred
to as cosmic variance. Causal diagrams are a convenient tool to visualize the information
accessible directly or indirectly. They depict relativistic light cones whose surfaces describe
the temporal evolution of light rays in space-time. These diagrams include both a future part
(everything that you can possibly influence) and a past part (everything that can possibly
have influenced you). On causal diagrams, your world line, i.e. your trajectory in space-
time, is essentially a straight line orthogonal to the spatial space (the t-axis), for a stationary
observer. As usual, for graphical convenience, we will suppress the three spatial dimension
and represent the four-dimensional space-time in 2+1 dimensions. In addition, we will use
comoving coordinates to factor out the expansion of the Universe, so that light-rays travel on
diagonal lines. To examine further the causal structure of our universe, we will successively
consider three categories: the information we can access now, directly; the information we
could access directly, in a Universe’s lifetime and the information we can access indirectly.

Information accessible directly, now. - Causality allows direct access, now, to:

• the surface of your past light cone (a 3D volume): all the photons that reach you now
(e.g. photons from distant galaxies or from the CMB),

• the interior of your past light cone (a 4D volume): all events that could possibly influence
you via a slower-than-light signal (this includes the gravitational field from massive
objects or cosmic particles that you receive from space).

Fig. 5 illustrates the 3D lightcone and the information you can have access to directly.
Your "CMB circle? (the last scattering sphere in 3D) is the intersection of a plane (3D Volume
in reality) − corresponding to the time of last scattering sphere t = tlss, i.e. the time when
the CMB was emitted − and your past light cone.

Information accesible directely, over time - With the passing of time, progressively we
receive more information through light. If one takes a telescope and gaze the galaxies at a
fixed time, t = t1, he will obtain information from the 4D lightcone of this particular time.
At each moment of his world line there is a 4D lightcone. The more time he observes, the
more 4D lightcones he observes and the more information he obtains. Note that for a finite
age of the universe, at any given time, there are regions of the t = 0 3D plane that we have
not yet observed. Take the CMB for instance. The CMB we have access to changes with
time, because the intersection of the 3D plane corresponding to the time of last scattering
sphere t = tlss, and the 3D lightcone changes when we consider a different lightcone. This
means that in principle, waiting (for a long time!) allows access to a thick ring in the last
scattering plane, i.e. the CMB map turns into a 3D CMB map.

Information accesible inderectly - If we want information that it is not directly accessible
to us and we do not want to wait there is another option. The naive way is to proceed
also indirectely. Knowing the laws of physics we can infer the behaviour of the universe in
different regions of the spacetime continuum. Essentially, we can evolve observations forward
and backward in the 4D volume and predict events in the interior (evolution backwards) or
exterior (evolution forward) of our 3D lightcone. However such studies are model dependent
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Figure 5. Causal diagram of the spacetime continum. The information that we have access at each
time is only available in the interior of the 4D volume inside the 3D lightcone. The information that
we observe each moment through light propagation is only available in the 3D lighcone, depicted here
in 2 dimensional space. [Image inspired by Leclercq et al. [42]]

and it is difficult to test against the actual observational data. For a further discussion the
interested reader is encouraged to read the review from Leclercq et al. [42] where they present
some interesting ideas on how to get those observations.

7.2 Cosmic Bias

The ΛCDM model describes a universe filled with Cold Dark Matter and Dark Energy. Our
current understanding suggests that the Dark Energy is responsible about the observed ac-
celerating expansion nature of our universe. Cold Dark Matter is already observed as the
missing mass of the galaxies when we study their rotational curves, as was explained in sec-
tion 2. Therefore, we understand that the universe has a total matter distribution spread all
over the spacetime continuum.

However what we are only able to observed with our telescopes is the light coming from
galaxies, as explained in section 7.1. Thus what we are only have access to is the galaxy
distribution, and therefore we can exctract the clustering statistis of galaxies, and not the
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total matter of the universe. It turns out, when we compare the clustering statistic of our
tracers and compare it with the theoretical prediction of the clustering statistic of the total
matter of the universe, we end up having a biased relation between the two. The common
statistic that defines this biased relation is usually given through the two point correlation
function:

ξtracer(r) = b2ξmatter(r) (7.1)

where ξtracer(r) is the two point correlation function of our tracer, usually the galaxy dis-
tribution, ξmatter(r) is the two point correlation function of the total matter of the universe
and b is the cosmic bias or bias. There is an active field of research of exploring models of
different kinds of biases, such as the local bias, or scale dependent biases[37].

7.3 Redshift Space Distortions

When we make the 3D map of the universe using the galaxy surveys, we are interested on
the comoving angle positions (2D) of the galaxies in the sky and on their comoving radial
position in the sky. However what we measure is their velocities through their luminosities,
through the flux of photons in our devices. In particular, what we want to measure is the
redshift, z, that was introduced in section 2. Let us explain what we measure in order to
obtain the quantity of the redshift.

Firstly, to obtain the redshift, we measure the peaks of the luminosities of the individual
galaxies as a function of wavelength or frequency of the incident photons in our devices. We
identify the wavelength difference between those peaks of luminosities and we compare them
with the wavelength differences of peaks of luminosities on well studied chemical elements in
our laboratories, with the most notable one the Hydrogen! Therefore the observed redshift
is basically the dopler effect of the galaxies in respect us. We called it redshift (because the
most galaxies are going away from us and therefore their color shifts to redder colours. ) Due
to the expansion of the universe, there are additional swifts, on the redshifts that we observe
for those galaxies. Therefore the observed redshift is given by:

zobs = zpec + zexp , (7.2)

where zobs is the observed redshift, zpec is the redshift due to the peculiar motion of the
galaxy, and zexp is the redshift due to the expansion of the universe. Note that always the
measurements of redshifts are performed in the radial direction and in respect of us, and
us we mean the local enviroment of the earth and our solar systems which we are currently
able deploy our telescopes for those observations. Therefore this phenomenon produces a
distortion on the actual expansion redshift that we would like to observe.

In terms of positions, the radial distance between us and a galaxy differs from the real-
space due to the peculiar motion of the galaxies and the expansion. Therefore the actual
radial position we observed is given by:

~s(r) = ~r − vr(r)
~r

r
(7.3)

where ~s is the redshift radial comoving distance, ~r is the real comoving distance and vr is the
peculiar velocity in the radial direction.

Usually we are interested in two key regimes for redshift space distortions on large scale
structure clustering studies; The linear regime, at scales r ' [20 − 40] h−1 Mpc, and the
non-linear regime, r . 10 h−1 Mpc. The linear regime is described by the Kaiser model[31],
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Figure 6. Illustration of Redshift Space distortions. Left: Kaiser effect. Right: Finger of God
effect. Top: actual configuration. Bottom: apparent configuration as observed by a distant observer.
[See text for details]

while for the non-linear regime there are several descriptions and it is an active research field
in cosmology.

The kaiser model models the the velocity field of galaxies due to the fact that the
galaxies are within a large over-density. In this over-density the gravitational pull is so
large that galaxies are drifting within the center as shown in upper left part of Fig. 6. The
perpendicular to the line of sight remains the same for the distant observer. The parallel
to the line of sight produces a distortion due to this phenomenon. Therefore the image
looks squeezed as shown by the bottom left part of Fig. 6. Kaiser [31] has shown that this
phenomenon can be described by a model on the power spectrum of each tracer (galaxy,
quasar or else) as:

Ptracer(k, µ) = b2(1 + βµ2)Pmatter(k) (7.4)

with

β = f/b, f =
d lnD[a(t)]

d ln a(t)
' Ωγ

m(z) , (7.5)

where the last equality is a valid parametrization of the rate of growth of structures, f and
γ = 0.55 for the unmodified General Relativity as shown by Linder and Cahn [43]. Notice
that:

Ωγ
m(z) =

[
Ωm(1 + z)3

(Ωm(1 + z)3 + 1− Ωm

]γ
(7.6)

for a flat ΛCDM model.
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The non-linear regime is described empirically by the "Finger of God" effect which
models by the dispersion of the peculiar velocity field of the galaxies at the cluster level, few
kpc. In the litarature there are several models [44], so someone can take an compare these
model according to their data. The Finger of God effect supresses the power spectrum at
small scales, i.e. at large k modes due to the peculiar motions of the galaxies. Therefore the
Damping models are summarised by:

DG(k, µ;σp, H0) = exp

[
−
(
kµσp
H0

)2
]
,Gaussian (7.7)

and the
DL(k, µ;σp, H0) =

1

1 + 1
2

(
kµσp
H0

)2 ,Lorentzian (7.8)

These dumbs the theoretical model at smaller scales r < 10 h−1Mpc according to:

Ptracer,final(k, µ; b, σp;H0) = DX(k, µ;σp, H0)Ptracer(k, µ) (7.9)

where DX is either the Lorentzian model or the Gaussian model for damping.

8 Large scale structure surveys, status

Large scale structure surveys are usually devided into two big categories. The ones which
focus on studying the primordial universe and the ones that focus on studying the late time
universe. Often we use the their results to extract the physical information that explains both
regimes of observations. The model that we are trying to describes is the ΛCDM model that
explains the universe as a whole. The primordial universe observations are focus on studying
the primordial temperature fluctuations. They study the Cosmic Microwave Background and
there are several interesting physics going on.

Here we are going to the second part of observations, the ones that study the late time
universe. At that time there are several models about the structure formation, content of the
universe as long as alternative models of Gravity and many more. These observations are
achieved by the so called, "large scale structure surveys". To perform such observations, we
use telescopes that basically map the two dimensional position on the sky of several objects, as
long as the luminosities of those objects. From the luminocities we can deduce velocities and
radial distances and we can do a lot of interesting science with them! The basic observable
that we use is the three Dimensional comoving density field and many of the reconstructions
of that we tryied to summarise in section 6. Let’s see what are the main instruments that
are useful to extract the above information. The main characteristic that we are interested in
cosmology, and large scale structure physics, is the redshift of each object that we described
in section 2, therefore these surveys are called Redshift Surveys or Galaxy Surveys, since the
main targets are galaxies.

The Redshift Surveys are usually devided into ground based and satellites. However,
the satellite redshift surveys is a relative new theme of instruments that we are currently
investigating, with the ongoing mission named, "Euclid Mission". The advantage of ground
based observations is that we can easily modify the instrument, as well as the ongoing process
of constructing it and testing it against observations is faster. However this allow for a very
vast spectrum of different kind of instruments. However, they are subtle to atmospheric noise.
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Therefore, for the first time, Euclid Mission is prepered to study the large scale structure in the
late universe from space. The other important devision of instruments is that of Spectroscopy
and Photometry that we will describe in the next two paragraphs.

In Photometry, instruments are build in such a way to take fast images of the sky.
Photons transverse coloured filters and map the spectrum (flux as a function of wavelength)
of the observed targets. The advantages are that they can perform fast imaging, with a good
Signal to noise ratio (SNR), since one simple detector pipeline is used. Therefore they are
able to perform massive data collection. However, their disadvantage is that they have a very
small resolution on the wavelength.

In Spectroscopic instruments the photons transverse a sequences of dispersive materials
so that we can map more precisely and accurately the spectrum of the targets. The advan-
tages are that they perform an exquisite δλ resolution. However, they have low SNR, since
multiple detector elements are required of the photon pipeline. Furthermore, they perform
slow imaging, since they require high exposure time. However, several robotic mechanisms
are under development to ameliorate their speed and SNR.

Currently, the Sloan Digital Sky Survey (SDSS)[45] is observing the redshift region from
0 ≤ z ≤ 3.5 targeting millions of galaxies and thousands of QSO with their corresponding
Lyman-α forests. The main project is dedicated to cosmology and large scale structures.
It has the name the extended Baryon Oscillation Spectroscopy Survey (eBOSS). The Dark
Energy Spectroscopy Instrument (DESI)[46] is a dedicated project to study the large scale
structure from the ground. We expect the first light in 2019. In 2019, we expect also the
first light from the Large Synoptic Survey Telescope (LSST)[47] which is a sophisticate based
photometric instrument with the a camera with the largest field of view for redshift surveys.
Finally the Euclid Mission[48], is expected to give the first light in 2022, and is going to map
the 3D comoving galaxy distribution in redshift 0.9 < z < 1.8 and study the dark universe
mainly from galaxy clustering and weak lensing. Currently, at CPPM[49], researcher are
developing some characterisation of its NISP instrument[50]. All those instrument, target
some overlapping regions to calibrate on one an another and explore as much as possible the
vast universe!

9 Statistical inference

Information theory is a framework where the way of making decisions from a collection of
data is studied 6. One of the main things that we are interested from this framework is
the statistical analysis or statistical inference. When discussing statistical data analysis, two
different points of view are traditionally reviewed and opposed: the frequentist (see e.g. [51])
and the Bayesian approaches. It is commonly known that arguments for or against each
of them are generally on the level of a philosophical or ideological position, at least among
cosmologists today, 2018. Before criticizing this controversy, somewhat dated to the 20th
century, and stating that more recent scientific work suppresses the need to appeal to such

6Fun Fact: In the framework of information theory the quote of Sokratis, "one think I know, that I known
nothing", interpretes the equation EX [I(X)] = lnn, where I(x) is the self-information, which is the entropy
contribution of an individual message, and EX is the expected value for n messages. Proof : Let X be the set
of all messages {x1, . . . xn} that an X random variable could be, and p(x) is the probability of some x ∈ X ,
then the entoropy, H, of X is defined as EX [I(x)] = H(X) = −

∑
x∈X p(x) ln p(x). A property of entropy is

that it is maximized when all the messages in the message space are equiprobable, p(x) = 1/n, i.e. the most
unpredictable, in which case EX [I(x)] = lnn.
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arguments, we report the most common statements encountered. This section is based on
Leclercq [52].

9.1 Bayesian vs Frequentist

Frequentist and Bayesian statistics differ in the epistemological interpretation of probability
and their consequences for hypotheses testing and models comparison. Firstly, the methods
differ on the understanding of the concept of the probability P (A) of an event A. As a
frequentist, one defines the probability P (A) as the relative frequency with which the event
A occurs in repeated experiments, i.e. the number of times the event occurs over the total
number of trials, in the limit of a infinite series of equiprobable repetitions. This probability
(definition) has several caveats. Besides being useless in real life (as it assumes an infinite
repetition of experiments with nominally identical test conditions, requirement that is never
met in most practical cases), it cannot handle unrepeatable situations, which have a particular
importance in cosmology, as we have exactly one sample of the Universe. More importantly,
this definition is surprisingly circular, in the sense that it assumes that repeated trials are
equiprobable, despite that it is the very notion of probability that is being defined in the first
place.

On the other hand, in Bayesian statistics, the probability P (A) represents the degree
of belief that any reasonable person (or machine) shall attribute to the occurrence of event
A under consideration of all available information. This definition implies that in Bayesian
theory, probabilities are used to quantify uncertainties independently of their origin, and
therefore applies to any event. In other words, probabilities represent a state of knowledge in
presence of partial information. This is the intuitive concept of probability as introduced by
several authors such as Laplace, Bayes, Bernoulli, Metropolis, Jeffreys, etc.[53].

Translated to the measurement of a parameter in an experiment, the aforementioned
definitions of probabilities yield differences in the questions addressed by frequentist and
Bayesian statistical analyses. In the frequentist point of view, statements are structured as:
"the measured value x occurs with probability P (x) if the measured quantity X has the true
value XT ". This means that the only questions that can be answered are of the form: "given
the true value XT of the measured quantity X, what is the probability distribution of the
measured values x?". It also implies that statistical analyses are about building estimators,
X̂, of the truth, XT .

In contrast, Bayesian statistics allows statements of the form: "given the measured value
x, the measured quantity X has the true value XT with probability P". Therefore, one can also
answer the question: "given the observed measured value x, what is the probability that the true
value of X is XT ?", which arguably is the only natural thing to demand from data analysis.
For this reason, Bayesian statistics offers a principled approach to the question underlying
every measurement problem, of how to infer the true value of the measured quantity given
all available information, including observations. In summary, in the context of parameter
determination, the fundamental difference between the two approaches is that frequentist
statistics assumes the measurement to be uncertain and the measured quantity known, while
Bayesian statistics assumes the observation to be known and the measured quantity uncertain.
Similar considerations can be formulated regarding the problems of hypothesis testing and
model comparison.
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9.2 Bayesian Framework

The "plausible reasoning" can be formulated mathematically by introducing the concept of
conditional probability P (A|B), which describes the probability that the event A will occur
given the information B which is given on the right side of the vertical conditioning bar "|".
To conditional probabilities applies the following famous identity, which allows to go from
forward modelling to the inverse problem, by noting that if one knows how x arises from y,
then one can use x to constrain y:

P (y|x)P (x) = P (x|y)P (y) = P (x, y) (9.1)

This observation forms the basis of Bayesian statistics.
Therefore, Bayesian analysis is a general method for updating the probability estimate

for a theory in light of new data. It is based on Bayes’ theorem,

P (θ|d) =
P (d|θ)P (θ)

P (θ)
, (9.2)

where θ represents the set of the parameter space of a particular model of a particular theory
and d represents the data or evidence (before the data are known). The above formula is
interpreted as follows:

• P (d|θ) is the probability of the data before they are known, given the theory. It is
usually called the likelihood.

• P (θ) is the probability of theory in the absence of data. It is called the prior probability
distribution function or simply the prior.

• P (θ|d) is the probability of the theory, after the data are known. It is called the posterior
probability distribution function or simply the posterior.

• P (d) is the probability of the data before they are known, without any assumption
about the theory. It is called the evidence.

One can think that the probability distribution function (pdf) for an uncertain parameter
can be thought as a "belief distribution function", quantifying the degree of truth that one
attributes to the possible values for some parameter. Certainty can be represented by a Dirac
distribution, e.g. if the data determine the parameters completely.

In summary, the inputs of a Bayesian analysis are two:

• the data: include for example, the galaxy angle position in the sky, galaxy redshift,
photometric redshift pdfs, the temperature in pixels of a CMB map, etc. Details of the
survey specifications have also to be accounted for at this point: noise, mask, survey
geometry, selection effects, biases, etc.

• the prior: it includes modelling assumptions, both theoretical and experimental. Spec-
ifying a prior is a systematic way of quantifying what one assumes true about a theory
before looking at the data.

While the output of a Bayesian analysis is the posterior density function. The prior choice is
a key ingredient of Bayesian statistics. It is sometimes considered problematic, since there is
no unique prescription for selecting the prior. Here we can argue that prior specification is
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not a limitation of Bayesian statistics and does not undermine objectivity. One can simply
determine the prior knowledge that he consider and compare with studies that have used
different prior. The discussion of selecting the appropriate prior is beyond the scope of these
notes and the reader is redirected to Leclercq [52].

9.3 Statistical indeference problem

Data analysis problems can be typically classified as: parameter inference, model comparison,
hypothesis testing. For example, cosmological questions of these three types, related to the
large-scale structure, would be:

• What is the value of the dark energy density ratio, ΩΛ?

• Is structure formation driven by general relativity or by modified gravity?

• Are large-scale structure observations consistent with the hypothesis of an inflationary
scenario?

In this section, we describe the methodology for questions of the first two types. Hypothesis
testing, i.e. inference within an uncertain model, in the absence of an explicit alternative,
can be treated in a similar manner.

9.4 First level inference: parameter estimation

The general problem of parameter estimation can be stated as follows. Given a physical
model M , a set of hypotheses is specified in the form of a vector of parameters, θ. Together
with the model, priors for each parameter must be specified: P (θ|M). The next step is to
construct the likelihood function for the measurement, with a probabilistic, generative model
of the data: P (d|θ,M). The likelihood reflects how the data are obtained: for example, a
measurement with Gaussian noise will be represented by a normal distribution.

Once the prior is specified and the data is incorporated in the likelihood function, one
immediately obtains the posterior distribution for the model parameters, integrating all the
information known to date, by using Bayes’ theorem eq. 9.2:

P (θ|d,M) =
P (d|θ,M)P (θ|M)

P (d)
(9.3)

Note that the normalizing constant, namely Bayesian evidence is defined as:

P (d) =

∫
M

∫
θ
P (d|θ,M) =

∫
M1

· · ·
∫
Mn

∫
~θ1

· · ·
∫
~θn

p(d|M1(~θ1) . . .Mn( ~θn)) (9.4)

where
∫
x f(x) =

∫
X f(x)dx implies the usual Remannian integration. The Bayesian evidence

is irrelevant for parameter inference (but fundamental for model comparison, see section 9.7).
Usually, the set of parameters θ can be divided in some physically interesting quantities φ and
a set of nuisance parameters n. The posterior obtained by eq. 9.3 is the joint posterior for
θ = (φ, n). The marginal posterior for the parameters of interest is written as (marginalizing
over the nuisance parameters):

P (φ|d,M) ∝
∫
P (d|φ, n,M)P (φ, n|M)dn . (9.5)

– 27 –



DRAFT

This pdf is the final inference on φ from the joint posterior. The following step, to
apprehend and exploit this information, is to explore the posterior. One usually uses Monte
Carlo Markov Chains (MCMC) to explore the posterior and then he can represent the result
in the form of the posterior probability in the form of 1D plots or 2D contour plots. A more
detail discussion on the estimation of the posterior using MCMC is given in section 9.9.

9.5 Example 1

Let’s take an example. Given the likelihood:

P (d|α, β) =

[
α− 1

0.3

]2

+

[
β − 1

0.4

]2

(9.6)

Notice that the data are equal only 0. In the figure 7, the schematic representation of the
posterior of the above model is given in 3 panels. This schematic representation is usually
referred to as corner plot. In the top panel the posterior probability distribution function
is plotted for α parameter (1D plot). On the right corner of this panel the mean and 1σ
standard deviation is plotted. Notice that the posterity distribution is normalised so that its
maximum is 1. The same for the posterior of the β parameter in the right corner on this
figure. In the left bottom corner one can see the 2D plot of the joint probability density
distribution of the model. The hight of the probability distribution is denoted usually with
the density of the chains.
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Figure 7. Representation of the posterior distribution of an 1D and 2D parameter model. [See text
for details]
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9.6 Example 2

Now lets take a more realistic case by taking another example using data. Since we do not
possess any data in our disposal, lets construct some fake ones, XD, YD, σD. Now we can
construct our simple model:

ym = ax+ b (9.7)

lets call it linear model. Now we can construct our Prior:

lnP (a, b) =

[
a− 1

0.05

]2

+

[
b− 0.05

0.05

]2

:= lnPPrior (9.8)

Now we can construct the likelihood:

lnP (d|a, b) =

N−1∑
i=0

[
yD(xi)− ym(xi|a, b)

σyD

]2

:= lnPData (9.9)

If we want we can combine the Prior information with the information coming from the data
using the following way:

lnPData+Prior = lnPData + lnPPrior (9.10)

which can be writtien in the explicit form :

lnPDP (d|a, b) = lnP (d|a, b) + lnP (a, b) (9.11)

Now we can maximize the logarithm of the likelihood to find the best value for α, β.
By using an MCMC algorithm [54] we can easily maximize equations 9.8, 9.9 and 9.11.

The results of the fitted models are shown in figure 8 where the reduced χ2 is given.
NOTE : The reduced χ2 is the χ2 devided by the degrees of freedom. The degrees of

freedom are the number of bins of the data minus the number of free parameters of the model.
What do we observe? Notice that the Prior information was a better fit to the data. Then
using only the Data the χ2 is small. and deviates a lot from the degrees of freedom. By
using both data and the prior information you can see that the χ2 is increasing which is an
indication of a better fitting. So by using the Prior knowledge we enhance the fitting of our
model.

In figure 9 we can observe the resulting contours for the different method of estimations
using only the Prior (blue color), using only the Data (green color) and using both Prior and
Data (red color). Notice that using the prior the precision on the estimation of the parameters
is enhanced, i.e. the errors of the parameters are getting smaller. Therefore we have more
precise measurement.

9.7 Second level inference: model comparison

Contrary to the frequentist’s approach where the model comparison is simply inferred by the
comparison the χ2, second level Bayesian inference always requires an alternative explanation
for comparison (finding that the data are unlikely within a theory does not mean that the
theory itself is improbable, unless compared with an alternative).

The evaluation of model M ’s performance given the data is quantified by P (M |d).
Using Bayes’ theorem to invert the order of conditioning, we see that it is proportional to
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Figure 8. The linear fitting Using the MCMC method. Light blue are the data. Dark Blue is the
best fit model using only the prior. With Green is the best fit model using only the data. With red
is the best fit model using both the prior and the data.

the product of the prior probability for the model itself, P (M), and the Bayesian evidence
already encountered in the first level inference, P (d|M):

P (M |d) ∝ P (M)P (d|M) . (9.12)

(It is implied that those quantities have integrated out the dependence on the parameters
of the model, ~θ). Usually, prior probabilities for the models are taken as all equal to 1/Nm,
where Nm are the different models (this choice is said to be non-committal). When comparing
two competing models denoted by M0 and M1, one is interested in the ratio of the posterior
probabilities, given by:

P01 :=
P (M0|d)

P (M1|d)
=
P (M0)P (d|M0)

P (M1)P (d|M1)
(9.13)

With non-committal priors on the models, P (M0) = P (M1), the ratio simplifies to the ratio
of evidences, called the Bayes factor :

B01 :=
P (d|M0)

P (d|M1)
(9.14)

The Bayes factor is the relevant quantity to update our state of belief in two competing models
in light of the data, regardless of the relative prior probabilities we assign to them: a value
of B01 greater than one, i.e. B01 > 1, means that the data support model M0 over model
M1. Note that, generally, the Baye’s factor is very different from the ratio of likelihoods: a
more complicated model will always yield higher likelihood values, whereas the evidence will
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Figure 9. Is the resulting contour plot of figure 8. Dark contours represent the 1σ region (68%
C.L.) the light contours represent the 2σ region (95% C.L.).

favor a simpler model if the fit is nearly as good, through the smaller prior volume, (Occam’s
Razor).

In practice one uses the so called Akaike Information Criterion corrected (AICc) [55] and
Bayesian Information Criterion (BIC)[56] tests for model comparison. For ND the number
of data, Nθ number of parameters and the resulting χ2 from the fitted model we have the
following. The AICc is defined as:

AICc = χ2 + 2ND +
2N2

θ + 2Nθ

ND −Nθ − 1.
(9.15)

While the BIC is defined as:
BIC = χ2 + 2Nθ ln(ND) (9.16)

The model with the smallest statistic, AICc or BIC, is the preferred description of the data.
Notice, how we penalise the models that have large number of parametersNθ (Occam’s razor).
Therefore when AICc(M1) < AICc(M2), we keep the model M1 and we discard the model
M2.

9.8 Example 3

Now going back to our example, section 9.5, we can fit our data with a more sophisticated
model that can follow the complexity of the data. In this case we can choose the spline
model [57]. This model is a piece wise polynomial with gaussian components. The can choose
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a high number of nodes for this model N spl
θ = 27. Therefore we fit the spline model to the

data as well and we present the resulting metric to figure 10.
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 (BIC,AICc)=(84.5,266.2)
Spline, 2 = 92.13/(100.00 - 27.00)=1.26 
 (BIC,AICc)=(340.8,313.1)
Data

Figure 10. The data are denoted with light blue. The linear model (green line) and the spline
model (green line) are compared against the data. [See text for details].

As you can observe, the resulting model follows better the data rather than the linear
model, given by equation 9.7, with N linear

θ = 2 parameters. Even though the resulting χ2
spline

is closer to 1 than the χ2
linear the AICc and BIC criteria shows otherwise. The AICc(spline),

BIC(spline) are larger than AICc(linear), BIC(linear). Therefore the linear model is
preferred to the more sophisticated one, i.e. spline model.

9.9 MCMC parameter exploration

Usually, the list of parameters is long, and thus multi-parameter likelihood calculations would
be computationally expensive using grid-based techniques. Consequently, fast methods to
explore parameter spaces are popular, particularly the Markov-Chain Monte-Carlo (MCMC)
technique, which is commonly used for such analyses. While there is publicly available code
to calculate cosmological model constraints [23, 24], the basic method is extremely simple
and relatively straightforward to code.

9.10 Basic Algorithm

The MCMC method provides a way to generate a random sequence of parameter values whose
distribution matches the posterior probability distribution. These sequences of parameter, or
chains are commonly generated by an algorithm called the Metropolis-Hasting algorithms
[58]. The algorithm is as folows: given a value at position θ, a candidate point θp is chosen at
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random from a proposal distribution f(θp|θ) - usually by means of a random number generator
tuned to this proposal distribution. Then the algorithm has to decide if it will move to the
candidate point. This transition is accepted if the new position has a higher likelihood. If the
new position θp is less likely than θ, then we must draw another random variable, this time
with uniform density between 0 and 1. The θp is accepted, and the chain moves to point θp,
if the random variable is less than the ratio of the likelihood of θp and the likelihood of θ.
Otherwise the chain "stays" at θ, giving this point extra weight within the sequence. In the
limit of an infinite number of steps, the chains will reach a converged distribution where the
distribution of chain links are representative of the hyper-surface of the likelihood, given any
symmetric proposal distribution f(θp|θ) = f(θ|θp).

It is common to implement dynamic optimisation of the sampling of the likelihood
surface[59], performed in a period of burn-in at the start of the process. The convergence
is always an issue. How do we know when we have sufficiently long chains that we have
adequately sampled the posterior probability. A number of tests are available [60]. In the
next section 9.11, we describe a test that allows to find the convergence of an MCMC by
obtaining the results from different chains started at widely separated locations in parameter
space.

9.11 Tests of MCMC convergence

In order to see if an MCMC parameter estimation algorithm has been converged one usually
uses several methods. These methods can been classified to the "visual" inspection and
the calculation of different statistics. Visual inspection includes that the walkes of an MCMC
oscillate around a common, mean value. The different statistics that are used are the Gelman-
Rubin Test [60], the Heidelberger-Welch test[61], the Goodman-Weare test [62]. Here, we are
going to describe the Gelman-Rubyn test. For an overview of the rest of the tests, see of the
Appendix 6.B of [63].

The statistic[60] which is called the Gelman-Rubyn statistic is denoted usually as R.
How one computes that? One need to follow the forthcoming steps:

• Draw m independent MCMC realisation of a set parameters pi of a model after n steps
of each chain.

• The new parameters now can be denoted as θij where i = [0, ..., n] and j = [0, ...,m]

• Then computes the quantities the R(θ) for each parameter, θ, as follows:

The mean θ̄j and standard deviation σj of each parameter, for each chain, j:

θ̄j =
1

n

n∑
i=1

θij , ;σ2
j =

1

n− 1

n∑
i=1

(θij − θ̄j)2 (9.17)

Then one computes the derived quantities: The mean of the mean

¯̄θ =
1

m

m∑
j=1

θ̄j (9.18)

The mean of the variances:

W =
1

m

m∑
j=1

σ2
j (9.19)
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The deviations of the mean of the chains from the mean of the of the means:

B =
n

m− n

m∑
j=1

(θ̄j − ¯̄θ)2 (9.20)

Then the quantity:
V (θ) = (1− 1/n)W +B/n (9.21)

Finally the Gelman-Rubyn statistic is given by:

R(θ) =

√
V (θ)

W
(9.22)

Compute this statistic with starting from a different iteration of the chains. The Rule of
thumb of convergence is R− 1 < 0.03 or for more demanding results R− 1 < 0.01.

10 Summary & Conclusion

We presented the basic concepts of physics on large scale structures. We gave a brief overview
on the thermal history of our universe. We describe the theoretical framework, behind the
magnificent scenery of the current observations, known as the standard ΛCDM model. We
described the necessary tools for observations by introducing the statistical observables cur-
rently investigated. We discussed the current and future large scale structure surveys. Finally,
we gave an overview on the statistical elements needed to study large scale structures, with
a focus on Bayesian Analysis. Physics, mathematics, statistics and informatics are valuable
skills! Believe it or not, keep on searching! ;-)
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