

Cosmic Microwave Background Ballooning Silvia Masi - Sapienza University of Rome

Towards the European Coordination of the CMB programme Villa Finaly – Firenze 20/sep/2018

Stratospheric Balloons:

Near-space carriers able to:

- Reach 40 km (3 mbar)
- Stay there for up to 40 days
- Lift heavy (2 tons) large payloads (larger than what we can reasonably fly on satellites)
- Cost roughly 1/100 of a satellite mission
- Allow for recovery and refly of the payload
- Important for the CMB community:
 - To carry out sensitive CMB measurements
 - On the high frequency side,
 - with high angular resolution,
 - at the largest angular scales ...
 - .. and even absolute measurements
 - To qualify instrumentation and experimental methods in preparation of satellite missions
 - To educate young experimentalists !

CMB-related science from balloons

(with large advantage wrt ground-based experiments)

- Dust polarization & Dust-cleaned inflationary and lensing B-modes
- CMB Polarization at very large angular scales
- Spectral measurements of the SZ
- Spectral measurements of CIB anisotropy
- Precision measurements of CMB spectrum (at selected frequencies)

Advantage of CMB measurements from balloons: a) Absolute brightness (low frequency side)

b) Sensitivity: Photon noise from the local environment

Advantage of CMB measurements from balloons: **b) sensitivity**

- In absolute terms, a large array of photon-noise limited detectors on a ultra-long-duration balloon is able to reach cosmic variance limits at all interesting angular scales.
- The comparison to the theoretical sensitivity of groundbased experiments is interesting because defines the frequency range where the balloon advantage is larger.
- In the absence of atmospheric turbulence:
 - one day of integration on a balloon equals:
 - 12 days of operation on the ground at 220 GHz
 - 34 days of operation on the ground at 270 GHz
 - 198 days of operation on the ground at 340 GHz
 - 1390 days of operation on the ground at 480 GHz
 - At these high frequencies, the advantage of a balloon mission is going to improve if atmospheric turbulence is taken into account.

Long Duration Ballooning

Flight Options

- Antarctic Long Duration Balloon (LDB) : 10 30 days / 3 tons
- Arctic (Svalbard & Kiruna) Long Duration Balloon (LDB) : 10 30 days / 3 tons
- Wanaka Super Pressure Balloon (SPB) : 30 100 days / 1 ton
- Polar Night LDB (Svalbard) : ~ 10-20 days (limited by power supply) / 2 tons
- Conventional Flight (Ft. Sumner, Palestine, Timmins) : 1-2 days / 3 tons

Flight Parameters

- 33-37 km altitude
- 1 km altitude stability (200 m for SPB)
- Annual flight windows
 - December/January (Antarctic LDB, Polar night LDB),
 - April (SPB, Wanaka),
 - June (Palestine, Arctic LDB),
 - September (Ft. Sumner)

Antarctic summer LDB: consolidated technology Longest open balloon flight ever: CREAM payload, flight I Flown by CSBF in Antarctica Launch Dec. 16, 2004. Termination January 27, 2005 Duration 41 days and 22 hours

CREAM payload, flight V: 37 days and 10 hours (2009-2010)

Arctic summer LDB flights

- We have flown long duration stratospheric balloons around the North Pole launching from Longyearbyen (Svalbard) both in the summer (heavy lift payloads) and in winter (pathfinders) [see Peterzen, S., Masi, S., et al., Mem. S. A. It., 79, 792-798 (2008), and PdB+SM Proc. of the I.A.U., 8, 208-213 (2013)]
- In this way CMB experiments can access most of the northern sky in a single flight,
 - within a cold and very stable environment
 - Accumulating more than 10 days of integration at float (38 km altitude).

Top: Ground path of a flight performed in June 2007. **Bottom left:** Launch of a heavy-lift balloon from the Longyearbyen airport (Svalbard Islands, latitude 78°N).

• Recent first flight of OLIMPO in the Arctic

ULDB flights

Great progress with super-pressure balloons: COSI payload flown by CSBF in may 2016 for over 46 days at altitudes between 33 km and 21 km, with a with a 0.5Mm³ SPB

https://blogs.nasa.gov/superpressureballoon/

Polar Night Flights

Simulation: F. Piacentini

Simulation: F. Piacentini

Stratospheric Balloons:

Disadvantages:

- Stringent limits on mass, power
- Complexity of automation
- Insane integration schedule
- Narrow, and scarce, flight windows
- Risky recovery

Current / Pending Balloons for CMB-related science

Missions Recently Flown	survey area [sky fraction]	frequencies [GHz]	resolution [arcmin]
EBEX (2012/13)	0.2	150/250/410	8/5/5
Spider (2014/15)	0.1	94/150	42/28
PILOT (2015, 2017)	< 0.01	1200/545	3
Piper (2017)	0.8	200	36
OLIMPO (N.LDB 2018)	0.01	140-220-340-450	2/4
Missions Planned	survey area [sky fraction]	frequencies [GHz]	resolution [arcmin]
Spider (LDB 2018)	0.1	94-285 (3)	42-15
BLAST-TNG (LDB 2018) OLIMPO (2020?)	< 0.01 0.01	1200, 860, 600 140-220-340-450	1 2/4
LSPE (N.LDB 2019)	0.25	44-240 (4)	85-20
Missions in Preparation	survey area [sky fraction]	frequencies [GHz]	resolution [arcmin]
Piper (2018-2020)	0.8	200-600 (4)	36-12
EBEX-IDS	0.035	150-360 (7)	8-3
BFORE	0.23	270-600 (3)	4
BSIDE	0.05	600-700	7

Spider 2015: Overview

Sky coverage	About 10 %
Scan rate (az, sinusoid)	3.6 deg/s at peak
Polarization modulation	Stepped cryogenic HWP
Detector type	Antenna-coupled TES
Multipole range	10 < ℓ < 300
Observation time	16 days at 36 km
Limits on r ⁺	0.03

⁺ Ignoring all foregrounds, at 99% confidence

Frequency [GHz]		
94	150	
3	3	
22	36	
30-45%	30-50%	
42	28	
652 (816)	1030 (1488)	
≤ 0.25	≤ 0.35	
6.5	5.1	
	Frequet 94 3 22 30-45% 42 652 (816) ≤ 0.25 6.5	

*FWHM. [†]Only counting those currently used in analysis [‡]Including sleeve, window, and baffle

William C. Jones

CERN CMB Workshop, May 16, 2016

Spider 2015: survey coverage

willian C. Jones

CENIN CIVID VVUI KSHUP, IVIAY 10, 2010

· 7~1

vviillatti C. JUHES

CENIN CIVID VVUI KSHUP, IVIAY 10, 2010

· >~ \

William C. JUIIES

~~

Stacking hot spots : SPIDER

EBEX-IDS

- 7 bands: 150, 180, 220, 250, 280, 320, 360 GHz
- 1500 sq. deg. Co-observe with • BICEP/Keck + Simmons Array
- Sinuous Antenna Trichroic . Pixels (PB2, SPTPol, LiteBIRD)

Lee + Westbrook, UCB

BLAST-TNG

- 2.5 meter Carbon Fiber Mirror
- 2200 Polarized KID detectors
- Three bands: 250, 350, and 500 μm
- 22 arcsec resolution at 250 μm
- 28 day flight!
- 10 times the mapping speed of BLAST-pol
 - First flight December 2018 with Shared Risk Observing

PILOT

Exp Astron DOI 10.1007/s10686-016-9506-1

ORIGINAL ARTICLE

PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

Table 1 Key characteristics and performance of the *PILOT* instrument in its nominal configuration. The last lines gives the expected 3σ performance in the two extreme observing modes corresponding to deep (5^{\Box}/hour) and large (150^{\Box}/hour) surveys respectively, where the ^{\Box} symbol stands for square degree. Our estimated polarization sensitivity assumes a dust polarization fraction of 10 %

Primary mirror diameter [mm]	730	
Equivalent focal length [mm]	1800	
Numerical aperture	F/2.5	
Detector temperature [mK]	300	
Mapping speed $[^{\Box}/h]$	[5-150]	
FOV [°]	1.0 imes 0.8	
	SW Band	LW Band
$\lambda_0 \ [\mu m]$	240	550
<i>v</i> ₀ [GHz]	1250	545
$\Delta \nu / \nu$	0.27	0.31
Tr(dust)	0.025	0.136
beam FWHM [']	1.9	3.29
Number of Detectors	1024	1024
background [pW/pix]	5.7	4.0
$\operatorname{NEP}_{Det}\left[W/\sqrt{Hz}\right]$	2.010^{-16}	2.010^{-16}
$\operatorname{NEP}_{Phot} \left[W/\sqrt{Hz} \right]$	9.810^{-17}	6.010^{-17}
$\operatorname{NEP}_{Tot}\left[W/\sqrt{Hz}\right]$	2.210^{-16}	$2.1 10^{-16}$
Sensitivity $(3\sigma \text{ in } 3.5')$		
Intensity [MJy/sr]	[0.98-6.28]	[0.33-2.13]
Av [mag]	[0.05-0.30]	[0.12-0.75]
Av polar [mag]	[0.47-2.99]	[1.17-7.48]

the Large-Scale **Polarization Explorer**

1	Potor	Ado	University of Cardiff
	Giorgia	Amico	Dip. Firica Sapionza & INFN Roma1
1	Alerrandra	Baldini	INFN Pira
1	Paola	Battaglia	Dip. Firica Università di Milano
1	Elia Stofano	Battirtelli	Dip. Firica Sapionza & INFN Roma1
1	Alerrandra	Bað	Din, Firica Università di Milann Bieneca
1	Carle	Bomonrad	INFN Piza
Í	Marco	Borranolli	Die, Firiga Università di Milane
1	Marca Marca	Discontai	Dis Fisien U.S. Greene & INEN Greene
+	Plichele	Diaracci Diaracci	
+	Andrea	Barcalori	
-	Alessandro	Buzzelli	Università di Koma TorVergata & INFN Koma2
-	Paolo	Cabella	Università di Roma TorVergata & INFN Roma2
4	Francesco	Cavaliere	Dip. Firica Università di Milano
1	Valentina	Corialo	Dip. Firica Uni. Gonova & INFN Gonova
1	Eugenia	Caccia	Dip. Firica Tar Vorgata & INFN Roma2
	Gabriele	Саррі	Dip. Firica Sapionza & INFN Roma1
]	Alerrandra	Cappalecchia	Dip. Firica Sapionza & INFN Roma1
1	Daria	Carrini	Dip. Firica Uni. Genova & INFN Genova
1	Angelo	Cruciani	Dip. Fizica Sapienza & INFN Roma1
1	Francorco	Cuttaia	INAF - IASE Bolgana
1	Antonolla	D'Addakka	Din Firica Sanjanza & INEN Barnat
1	Givernet	D'Alveses des	Die Fisies Sectores & INEN Dee of
1	Giuroppo Duulu	J. D	Dip. Force Septenze & INFN Dep of
+	Paolo	do Bornardu	Dip. Fuica Sapionza & IAFA Koma1
-	Giancarlo	Do Garporir	Universită di Roma TorVergata & INFN RomaZ
ļ	Mattee	De Gerane	Dip. Firica Uni. Gonova & INFN Gonova
ļ	Marco	DoPotris	Dip. Firica Sapionza & INFN Roma1
ļ	Francosco	DolTarta	Dip. Firica Università di Milano
1	Alessandra	DiMarco	Università di Roma TorVergata & INFN Roma2
J	Viviana	Fafano	Dip. Firica Tor Vorgata & INFN Roma2
1	Lorenzo	Finninerchi	Dip. Ing. Ind. Uni. Fironzo
1	Flavio	Fontanelli	Dip. Firica Uni. Gonova & INFN Gonova
İ	Francesco	Forartieri	Università di Ferrara & INFN Ferrara
1	Christian	Francorchat	Die, Firical Iniversità di Milane
1	Luce	C -III	INFN Diss
+	Euca	Gam	
-	Flavio	Gatti	Dip. Farica Uni. Genova & IMFN Genova
-	Marrimo	Gervari	Dip. Firica Università di Milano Bicocca
4	Anna	Gregoria	Department of Physics - University of Trieste
4	Daniele	Grarro	Dip. Firica Uni. Genova & INFN Genova
1	Alessandra	Gruppura	INAF/IASE Balagna & INEN Balagna
1	Riccardo	Gualtieri	Dip. Firica Sapienza & INFN Roma1
	Victor	Haynes	University of Manchester
]	Marco	Incagli	INFN Pira
1	Nicolotta	Krachmalnico	Dip. Firica Università di Milano
1	Luca	Lamaana	Dip. Fizica Sapienza & INFN Roma1
1	Marrimiliane	Lattanzi	Università di Ferrara & INFN Ferrara
1	Brunn	Maffoi	University of Manchester
1	Davida	Maine	Die, Fiziaalleimeeritä di Milane
1	T	Marak shi	Die Fisies Sectores & INEN Dee of
1	Ciluia	Marchetti	Dip. Force Septenze & INFN Dep of
+	511014	riari	Dip. Fuica Sapionza « Infrimoma I
+	Aniello	Mennella	Dip. Firica Universita di Milano
-	Diago	Molinari	Università di Ferrara & INFN Ferrara
-	Gianluca	Morganto	INAF-IASF Bologna
1	Fodorica	Nati	Dip. Firica Sapionza & INFN Roma1
1	Paolo	Natoli	Università di Ferrara & INFN Ferrara
1	Ming Wah	Ng	University of Manchester
J	Luca	Pagano	Dip. Firica Sapionza & INFN Roma1
1	Alessandra	Paiella	Dip. Firica Sapionza & INFN Romat
1	Andrea	Parrorini	Dip. Firica Università di Milano Bicocca
1	Orcar	Peverini	IEIIT - CNR - Tarina
1	Francosco	Piacontini	Dip. Firica Sapienza & INFN Romat
ţ	Lucio	Piccirille	University of Manchester
ţ	Giampanle	Pirana	University of Cardiff
ţ	Sara	Bicciardi	INAF - IASE Bolgana
t	Panla	Birrano	Din Ing Ind Uni Firenzo
ł	Alessia	Reach:	Dis Finisa Tas Useasta & INFN D
ł	Giovan	Pageni	INGU- P
ł	Gidvanni	nomen Calavia	Dia Fisia Casta and INFN Darrad
ł	maria M	Salatina	Dip. ranca Sapienza « Intr A Koma) IMAR - IACE D-I
ł	Maura	Sandri	Indi - 1821 Balagna
ļ	Alessandro	Schillaci	Dip. Firica Sapionza & INFN Roma1
ļ	Giovanni	Signorelli	INFN Pira
ļ	Franco	Spinella	INFN Pira
ļ	Luca	Stringhotti	INAF-IASE Bologna
J	Andrea	Tartari	Dip. Firica Università di Milano Bicocca
J	Riccardo	Tarcone	IEIIT - CNR - Tarina
J	Luca	Toronzi	INAF-IASE Balagna
1	Maurizio	Tomari	Dip. Firica Università di Milano
1	Elizabotta	Temmari	Italian Space Agency
1	Carole	Tucker	University of Cardiff
t	Fabrizin	Villa	INAF - IASE Balagea
ł	Giuranaa	Virmo	IEIIT - CNB - Taring
ł	Nicola	Vitterie	Università di Roma Taslles - et - % INEN D
ł	As days	Zasakai	INAE Ossessational Taireta
ł	Marea Maria	Zeeenel	Die Die Heimerich (MD) Di
ł	marie .	Cannoni 7	Dip. runca Università di Milano Bicocca
1	Guide	Zavattini	Université di Ferrara & IMFN Ferrara

LSPE in a nutshell

- The Large-Scale Polarization Explorer is an experiment to measure the polarization of the Cosmic Microwave Background at large angular scales
- Frequency coverage: 40 250 GHz (5 channels, 2 instruments: STRIP on the ground & SWIPE on a balloon)
- Angular resolution: around 1° FWHM
- Sky coverage: 20-25% of the sky
- Current collaboration: Sapienza, UNIMI, UNIMIB, IASFBO-INAF, IFAC-CNR, Uni.Cardiff, Uni.Manchester, INFN-GE, INFN-PI, INFN-RM1, INFN-RM2, INFN-FE
- PI: P. de Bernardis (Sapienza), M. Bersanelli (UniMI), F. Gatti (INFN)
- See astro-ph/1208.0298, 1208.0281, 1208.0164 and forthcoming update
- Combined sensitivity: 10 μ K arcmin

LSPE/STRIP

STRIP observing site : Tenerife

STRIP 44GHz polarimeters arrays

LSPE/SWIPE

8 mm

The SWIPE instrument (120-250 GHz) uses:

- a spinning stratospheric balloon payload to avoid atmospheric noise, flying long-duration, in the polar night to avoid diffracted solar pickup
- a *polarization modulator* to achieve high stability
- Large arrays of multimode bolometers for high sensitivity (8800 radiation modes)

LSPE/SWIPE: General system

INFN Istituto Nazionale di Fisica Nucleare Sezione di Roma

LSPE horns & bolo holders

Large Throughput multimode detectors: 8800 modes collected by 330 sensors

Focal plane detector flanges (gold plated Al6061, 40 cm side).

SWIPE - multimode absorbers & TES

- The absorbers are large Si₃N₄ spider-webs (8 mm diameter, multimode)
- Sensors are Ti-Au TES
- Photon noise limited

tensor-to-scalar ratio

L. Pagano, F. Piacentini

Current Status

- LSPE is fully funded by ASI and INFN
- STRIP will operate from the ground (Tenerife) covering the same sky as SWIPE
- STRIP and SWIPE in due course of development, consistent with a 1st launch opportunity from Svalbard (78°N) in Winter 2020/21 for SWIPE and start of data taking in 2020 for STRIP.
- Baseline science expected from (one flight + 1 year) is competitive with current gen B-mode experiments – and contributions to polarized foreground science will provide a great complement the CMB science.

OLIMPO

- The OLIMPO experiment is a first attempt at spectroscopic measurements of CMB anisotropy.
- A large balloon-borne telescope (2.6m aperture) with a 4-bands photometric array and a plug-in room temperature spectrometer
- PI Silvia Masi (Sapienza). See <u>http://olimpo.roma1.infn.it</u> for a collaborators list and full details on the mission
- Main scientific targets:

CARDIFF UNIVERSITY

PRIFYSGOL

SZ effect in clusters -> unbiased estimates of cluster parameters Spectrum of CMB anisotropy -> anisotropic spectral distortions

Cei

CHALMERS

PIENZA

A&A 538, A86 (2012) DOI: 10.1051/0004-6361/201118062 © ESO 2012

Low-resolution spectroscopy of the Sunyaev-Zel'dovich effect and estimates of cluster parameters

P. de Bernardis^{1,2}, S. Colafrancesco^{3,4}, G. D'Alessandro¹, L. Lamagna^{1,2}, P. Marchegiani³, S. Masi^{1,2}, and A. Schillaci^{1,2}

- ¹ Dipartimento di Fisica, Università di Roma "La Sapienza", Roma, Italy e-mail: paolo.debernardis@roma1.infn.it
- ² INFN Sezione di Roma 1, Roma, Italy
- ³ INAF Osservatorio Astronomico di Roma, Monte Porzio Catone, Italy
- ⁴ School of Physics, University of the Witwatersrand, Johannesburg Wits 2050, South Africa

Received 9 September 2011 / Accepted 8 November 2011

ABSTRACT

Context. The Sunyaev-Zel'dovich (SZ) effect is a powerful tool for studying clusters of galaxies and cosmology. Large mm-wave telescopes are now routinely detecting and mapping the SZ effect in a number of clusters, measure their comptonisation parameter and use them as probes of the large-scale structure and evolution of the universe.

Aims. We show that estimates of the physical parameters of clusters (optical depth, plasma temperature, peculiar velocity, non-thermal components etc.) obtained from ground-based multi-band SZ photometry can be significantly biased, owing to the reduced frequency coverage, to the degeneracy between the parameters and to the presence of a number of independent components larger than the number of frequencies measured. We demonstrate that low-resolution spectroscopic measurements of the SZ effect that also cover frequencies >270 GHz are effective in removing the degeneracy.

Methods. We used accurate simulations of observations with lines-of-sight through clusters of galaxies with different experimental configurations (4-band photometers, 6-band photometer, multi-range differential spectrometer, full coverage spectrometers) and dif-

OLIMPO

- Long Duration Balloon experiment for mm & sub-mm astronomy
- Operates from the stratosphere - launch from Svalbard
- Cassegrain telescope, 2.6m aperture
- Multifrequency arrays of bolometers
- Low resolution spectrometer

ch	$v_{eff}[GHz]$	Δv_{FWHM} [GHz]	Res. [']
Ι	148.4	21.5	4.2
Π	215.4	20.6	2.9
III	347.7	33.1	1.8
IV	482.9	54.2	1.8

Beam Size - Elevation (arcmin)

Test specchio primario 2.6m - f/0.5

0.3K cryostat (made in Sapienza) 65L superfluid ⁴He 70L liquid N 40LSTP ³He refrigerator 50L experimental volume Hold time – 15 days @ 0.3K

OLIMPO: Cold Optics and Arrays

OLIMPO - Kinetic Inductance Detectors

OLIMPO'S DIFFERENTIAL SPECTROMETER

telescope

Jetector a. tal.

A Differential Fourier Transform Spectrometer (DFTS). Similar to COBE-FIRAS but... .. rather than measuring the brightness difference between the sky and an internal blackbody, it measures the brightness difference between two directions in the sky

210GHz

145GHz and all intern

480GHz

ediate frequencie

 The instrument is based on a double **Martin Puplett Interferometer** configuration to avoid the loss of half of the signal.

 A wedge mirror splits the sky image in two halves I_a and I_b, used as input signals for both inputs of the two FTS's.

 In the FTSs the beam to be analyzed is split in two halves, and a variable optical path difference is introduced.

See Schillaci et al. A&A 565, A125, 2014 for a detailed description of the instrument. The output brightness is

Olimpo Telescope

 δ = variable phase shift, introduced by the variable optical path difference.

Only the *difference* between the two input brightnesses is modulated by the variable optical path difference.

A&A 565, A125 (2014) DOI: 10.1051/0004-6361/201423631 © ESO 2014

Efficient differential Fourier-transform spectrometer for precision Sunyaev-Zel'dovich effect measurements

Alessandro Schillaci¹, Giuseppe D'Alessandro¹, Paolo de Bernardis¹, Silvia Masi¹, Camila Paiva Novaes², Massimo Gervasi³, and Mario Zannoni³

¹ Dipartimento di Fisica, Università di Roma "La Sapienza", Roma, Italy

e-mail: alessandro.schillaci@roma1.infn.it

² Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brazil

³ Dipartimento di Fisica G. Occhialini, Universitá Milano Bicocca, Milano, Italy

Received 13 February 2014 / Accepted 11 April 2014

ABSTRACT

Context. Precision measurements of the Sunyaev-Zel'dovich effect in clusters of galaxies require excellent rejection of common-mode signals and wide frequency coverage.

Aims. We describe an imaging, efficient, differential Fourier transform spectrometer (FTS), optimized for measurements of faint brightness gradients at millimeter wavelengths.

Methods. Our instrument is based on a Martin-Puplett interferometer (MPI) configuration. We combined two MPIs working synchronously to use the whole input power. In our implementation the observed sky field is divided into two halves along the meridian, and each half-field corresponds to one of the two input ports of the MPI. In this way, each detector in the FTS focal planes measures the difference in brightness between two sky pixels, symmetrically located with respect to the meridian. Exploiting the high commonmode rejection of the MPI, we can measure low sky brightness gradients over a high isotropic background.

Results. The instrument works in the range $\sim 1-20 \text{ cm}^{-1}$ (30-600 GHz), has a maximum spectral resolution 1/(2 OPD) = 0.063 cm⁻¹ (1.9 GHz), and an unvignetted throughput of 2.3 cm²sr. It occupies a volume of $0.7 \times 0.7 \times 0.33 \text{ m}^3$ and has a weight of 70 kg. This design can be implemented as a cryogenic unit to be used in space, as well as a room-temperature unit working at the focus of suborbital and ground-based mm-wave telescopes. The first in-flight test of the instrument is with the OLIMPO experiment on a stratospheric balloon; a larger implementation is being prepared for the Sardinia radio telescope.

Key words. cosmic background radiation - instrumentation: spectrographs - techniques: spectroscopic - galaxies: clusters: general

CMRR

- The differential signal (SZ) is much smaller than the common mode, which is CMB + instrument emissivity (a few %) + residual atmosphere.
- We have measured the common-mode rejection ratio of the FTS using custom temperature-controlled blackbody sources at the two entrance ports of the FTS.
- It turns out that the CMRR of our DFTS is <-55dB
- This means that the offset is less than the SZ signal in OLIMPO, and will be much less than the SZ signal in a cryogenic/space implementation.

Telescope / primary mirror DFTS cryostat / detectors arrays

Main components of OLIMPO integrated on the payload

Observation Program

- In a circumpolar summer long duration flight (>200h) we plan to observe 40 selected clusters and to perform a blind deep integration on a clean sky region
- We have optimized the observation plan distributing the integration time among the different targets according to their brightness and diurnal elevation.

	ind	ID	RA	Dec	TIME	frac	NAME
9	0	1	212.83	52.2	18000	1	3C295CLUSTER
8	1	40	194.95	27.98	3600	0	ABELL1656
2	2	43	203.13	50.51	3600	1	ABELL1758
G.	3	44	205.48	26.37	3600	1	ABELL1775
	4	45	207.25	26.59	3600	1	ABELL1795
	5	48	216.72	16.68	18000	1	ABELL1913
8	6	49	223.18	16.75	11360.88	1.27	ABELL1983
E.	7	50	223.63	18.63	18000	1	ABELL1991
5	8	51	223.21	58.05	5640.53	1.28	ABELL1995
	9	53	227.56	33.53	18000	1	ABELL2034
	10	54	229.19	7	3600	1	ABELL2052
	11	55	230.76	8.64	3600	1	ABELL2063
ß	12	56	234.95	21.77	3600	1	ABELL2107
8	13	57	236.25	36.06	18000	1	ABELL2124
F.	14	58	239.57	27.23	3600	1	ABELL2142
8	15	59	240.57	15.9	3600	1	ABELL2147
	16	61	247.04	40.91	18000	1	ABELL2197
3	17	62	247.15	39.52	3600	1	ABELL2199
2	18	63	248.19	5.58	3600	1	ABELL2204
	19	65	250.09	46.69	3600	1	ABELL2219
6	20	66	255.68	34.05	7230	1.49	ABELL2244
	21	69	260.62	32.15	18000	1	ABELL2261
	22	70	290.19	43.96	3600	1	ABELL2319
2	23	71	328.39	17.67	3600	1	ABELL2390
0	24	98	241.24	23.92	13045.75	1.1	AWM4
÷.	25	100	299.87	40.73	18000	1	CYGNUSA
R	26	101	201.2	30.19	18000	1	GHO1322+3027
	27	102	241.11	43.08	18000	1	GHO1602+4312
2	28	107	230.46	7.71	3600	1	MKW03S
é	29	120	228.61	36.61	18000	1	MS1512.4+3647
2	30	121	245.9	26.56	13147.05	1.1	MS1621.5+2640
	31	128	201.15	13.93	18000	0	NGC5129GROUP
8	32	134	199.34	29.19	18000	1	RDCSJ1317+2911
	33	143	231.17	9.96	18000	1	RXJ1524.6+0957
9	34	150	211.73	28.57	18000	1	WARPJ1406.9+2834
8	35	151	213.8	36.2	18000	1	WARPJ1415.1+3612
	36	161	194.02	25.95	18000	0	[VMF98]128
4	37	162	203.74	37.84	18000	1	[VMF98]139
	38	163	205.71	40.47	18000	1	[VMF98]148
	39	164	214.12	44.78	18000	1	[VMF98]158
	40	165	250.47	40.03	18000	1	[VMF98]184

Current status:

- Payload flown for 5 days.
- Recovery accomplished
- KIDs worked very well, first validation in space.
- Spectrometer also validated
- Data analysis just started.

- The OLIMPO spectrometer is the prototype for a similar Differential Fourier Transform Spectrometer to be flown on the Millimetron space mission
- So, once again, stratospheric balloons are effectively used as pathfinders for satellite experiments.

OLIMPO as a precursor of forthcoming space-missions

- OLIMPO is a demonstrator of new detectors, to be used in forthcoming missions (PRISM etc.)
- Will demonstrate the power of polar ballooning in the northern hemisphere for CMB missions
- The DFTS Methodology has been used in space (COBE-FIRAS, missions for remote sensing), and will be used again (PIXIE, PRISM, Millimetron)
- >20% of fhe focal plane of Millimetron (a ROSCOSMOS mission) is available for a cryogenic version of the OLIMPO DFTS (ASI phase-A study).

- Antenna diameter: 10 m
- Range of wavelengths: 0.01 20 mm
- Bolometric sensitivity ($\lambda 0.3$ mm, 1h integration): 5x10⁻⁹ Jy
- Interferometry sensitivity (λ 0.5mm, 300s integration, 16 GHz bw) : 10⁻⁴ Jy
- Interferometer beam: 10⁻⁹ arcsec

РадиоАстрон

Millimetron DFTS

Absolute measurements (spectral distortions)

COSMO

The COSmic Monopole Observer :

- An attempt to measure spectral distortions of the absolute brightness of the CMB from the ground (Dome-C, Antarctica)
- Uses a differential Fourier Transform Spectrometer comparing sky emission to the emission of an internal blackbody.
- Copes with atmospheric emission
 - Selecting the best site in the world for observations
 - Using fast detectors and fast modulation
- Funded by Programma Nazionale di Ricerche in Antartide

Why Dome-C : optical depth of the atmosphere (credits : AM code)

COSMO : coping with the atmosphere

• We have to measure and subtract atmospheric emission, and we have to do it very quick.

- Recipe to mitigate the problem:
- 1. Work from a high altitude, cold and dry site (Dome-C, Antarctica) to minimize the problem
- 2. Measure the specific spectral brightness of atmospheric emission while measuring the brightness of the sky, modulating the optical depth
- 3. Use fast, sensitive detectors (KIDs, heritage from OLIMPO developments), and fast modulators (a spinning wedge mirror, rotating at 2500 rpm in front of the instrument).

COSMO sky/atmosphere scan strategy

Oversized (1.6m diameter), spinning flat mirror, 10° wedge (red/blue) To scan circles (D=5°-20°) in the sky modulating atmospheric emission. Center elevation ranges between 30° and 80° depending on cryostat tilt.

Cryostat tilt = 0° PT tilt = 40° Min. elev. = 20° Max. elev. = 40°

Cryostat tilt = 20°

PT tilt = 20°

- Cryostat tilt = 40° PT tilt = 0° Min. elev. = 60° Max. elev. = 80°

COSMO sky / atmosphere scan simulation

COSMO sky / atmosphere scan simulations

COSMO implementation

- As of today, still moving from *concept* into *instrument design*
- However:
 - PNRA proposal funded to provide cryogenic system, optics, and logistic support for the Concordia base (PI Silvia Masi, partner institutions UniMI (Mennella), UniMIB (Zannoni))
 - PNRA proposal funded to support development of KID detector arrays and coupling optics (PI Elia Battistelli, partner institutions CNR-IFN (Castellano), UniMI, UniMIB)
 - PRIN proposal being finalized to support development of optical design and construction of the cryogenic interferometer (PI P. de Bernardis, partners CNR-IFN (Cibella), UniMI, UniMIB)
 - Additional partner Cardiff University
- International interest expressed from other international institutions ... the experiment is gaining momentum.
- Further step: COSMO on a stratospheric balloon

COSMO's successor: a balloon-borne (ULDB) instrument ?

COSMO's successor: a balloon-borne instrument ?

Conclusions

- Balloons offer a great deal of opportunities for CMB research.
- They will add reliability to ground based Bmodes measurements (waiting for a final space mission, for which they should be used to qualify instruments / detectors / methods)
- Original/new satellite-based science can and should be first implemented using balloonborne experiments.