# The SO:Europe Telescope Array A small aperture facility in Chile



Michael Brown The University of Manchester What is the SO:Europe Telescope Array?

- A proposal developed by a European (so far, mostly UK) consortium for a major CMB instrument at the SO site in Chile.
- The proposal is subject to **agreement with the SO collaboration** (who we anticipate working closely with).
- Institutes involved in discussions to date:





...and informed by initial discussions with SO.

# Why Chile / Simons Observatory?

- Existing, well established CMB presence in Chile (POLARBEAR/Simons Array, ACT, CLASS).
- Simons Observatory (SO) is a funded project and under construction can benefit from the momentum, experimental know-how and infrastructure/site facilities that SO offers.
- Strong network of European collaborators already exists within SO (including several European scientists in leadership roles).



# The Simons Observatory collaboration

#### United States

- Arizona State University
- Carnegie Mellon University
- Center for Computational Astrophysics
- Cornell University
- Florida State
- Haverford College
- Lawrence Berkeley National Laboratory
- NASA/GSFC
- NIST
- Princeton University
- Rutgers University
- Stanford University/SLAC
- Stony Brook
- University of California Berkeley
- University of California San Diego
- University of Michigan
- University of Pennsylvania
- University of Pittsburgh
- University of Southern California
- West Chester University
- Yale University

#### Japan

- KEK
- IPMU
- Tohoku
- Tokyo

- 10 Countries
  - 40+ Institutions
  - 160+ Researchers

#### Canada

- CITA/Toronto
- Dunlap Institute/Toronto
- McGill University
- Simon Fraser University
- University of British Columbia

#### Chile

- Pontificia Universidad Catolica
- University of Chile

#### Europe

- Stockholm University Sweden
- APC France
- Cambridge University
- Cardiff University
- Imperial College
- Manchester University
- Oxford University
- SISSA Italy
- University of Sussex

#### South Africa

• Kwazulu-Natal, SA

#### Australia

Melbourne

#### Israel

- Tel Aviv
  - 5

# The Simons Observatory collaboration

#### United States

- Arizona State University
- Carnegie Mellon University
- Center for Computational Astrophysics
- Cornell University
- Florida State
- Haverford College
- Lawrence Berkeley National Laboratory
- NASA/GSFC
- NIST
- Princeton University
- Rutgers University
- Stanford University/SLAC
- Stony Brook
- University of California Berkeley
- University of California San Diego
- University of Michigan
- University of Pennsylvania
- University of Pittsburgh
- University of Southern California
- West Chester University
- Yale University

#### Japan

- KEK
- IPMU
- Tohoku
- Tokyo

- 10 Countries
  - 40+ Institutions
  - 160+ Researchers

#### Canada

- CITA/Toronto
- Dunlap Institute/Toronto
- McGill University
- Simon Fraser University
- University of British Columbia

#### Chile

- Pontificia Universidad Catolica
- University of Chile

#### Europe

- Stockholm University Sweden
- APC France
- Cambridge University
- Cardiff University
- Imperial College
- Manchester University
- Oxford University
- SISSA Italy
- University of Sussex

# Already a large European presence in SO - can build on this.

- Melbourne
- Israel
- Tel Aviv
  - 5

#### THE SIMONS OBSERVATORY: SCIENCE GOALS AND FORECASTS

<section-header>

<sup>1</sup> Correspondence address: so\_tac@simonsobserv. <sup>2</sup> School of Physics and Astronomy, Cardiff University, The Parad

<sup>3</sup> Department of Physics and Astronomy, University of Pennsylvania, 209 South <sup>4</sup> SLAC National Accelerator Laboratory, Menlo Par <sup>5</sup> Kavli Institute for Particle Astrophysics and Cosmology, M



arXiv:1808.07445v1 [astro-ph.CO] 22 Aug 2018

<sup>6</sup> Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ, USA 08544 <sup>7</sup> Department of Physics, University of California, Berkeley, CA, USA 94720 <sup>8</sup> University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK

# Simons Observatory science goals

1. Primordial perturbations (r, P(k), f<sub>NL</sub>)

2. Relativistic species

3. Neutrino mass

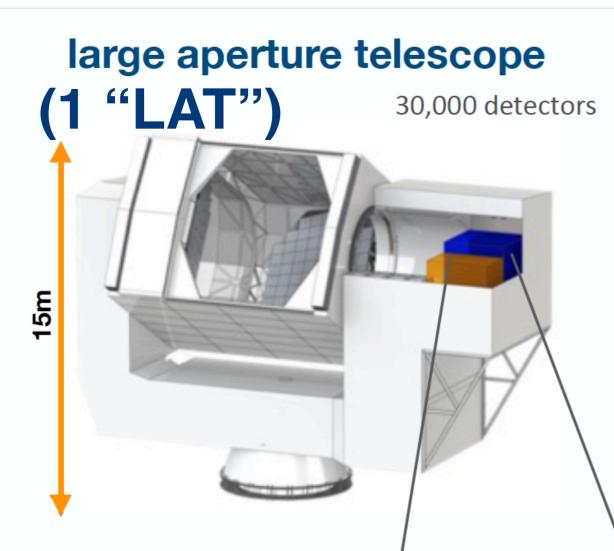
4. Deviations from  $\Lambda$ ( $\sigma_8$  z=1-3, H<sub>0</sub>)

5. Galaxy evolution (feedback in massive halos)


6. Reionization (typical duration)

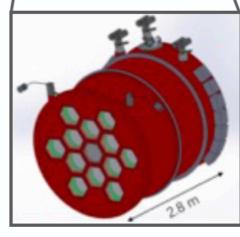
Legacy catalogs: clusters, radio galaxies, dusty star-forming galaxies + lots more great science: dark matter, BBN, modified gravity, birefringence...

Common suite of science topics with CMB-S4

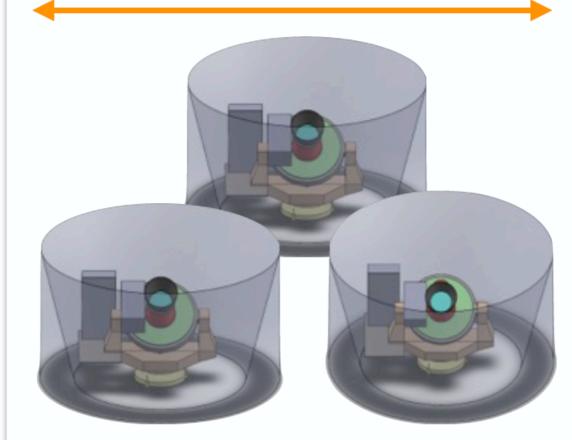

# Simons Observatory

One 6m Large Aperture Telescope Three 0.5m Small Aperture Telescopes Five-year survey planned 2021-26, six frequencies 30-280 GHz




Large telescope: resolution needed for all science goals except tensor-to-scalar ratio Small telescopes: lower noise at the few-degree-scale B-mode signal, for tensor-to-scalar ratio

# The Simons Observatory instruments and technology



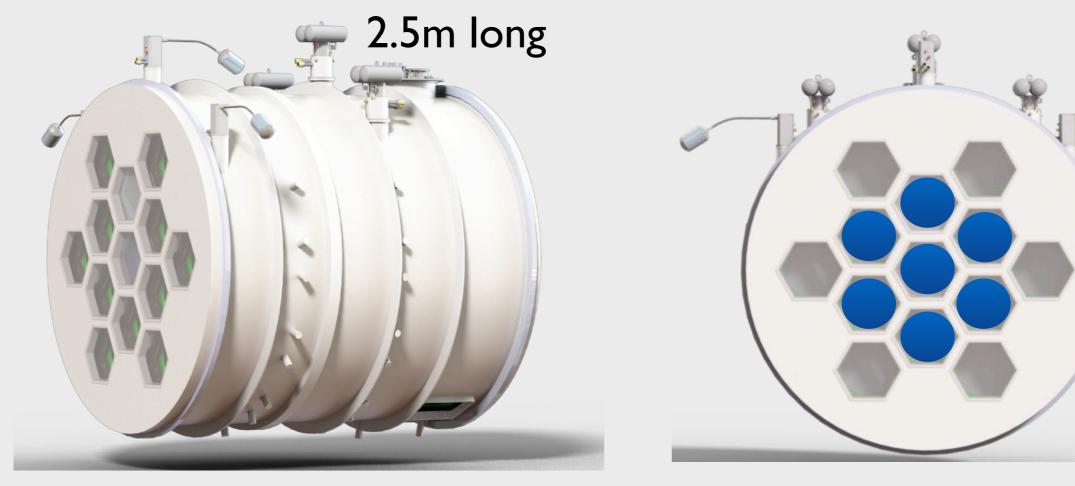

6 m crossed Dragone fed by up to 13, 38 cm optics tubes. baseline=7 tubes for SO, with baseline pixels:

- One tube: 30/40 GHz
- Four tubes: 90/150 GHz
- Two tubes: 220/270 GHz



small aperture telescopes (3 "SATs")<sub>20m</sub> <sup>30,000 detectors</sup>




Three 42 cm diameter refractors, baseline dichroic pixels: 30/40 | 90/150 | 90/150 | 220/270 GHz



Same concept as CMB-S4: mixture of large and small aperture telescopes

- Have assessed the potential science impact of two options for a major European instrumental contribution to SO.
- Forecasts & conclusions that follow are not those of SO they are those of the UK/European proposal team.

**Option I: Adding 6 European optics tubes to LAT receiver:** 



2.4m diameter

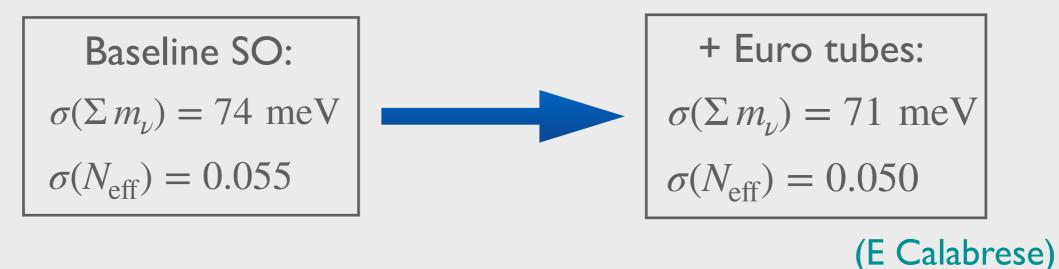
~5,000 kg

30,000 detectors

- Have assessed the potential science impact of two options for a major European instrumental contribution to SO.
- Forecasts & conclusions that follow are not those of SO they are those of the UK/European proposal team.

**Option I: Adding 6 European optics tubes to LAT receiver:** 

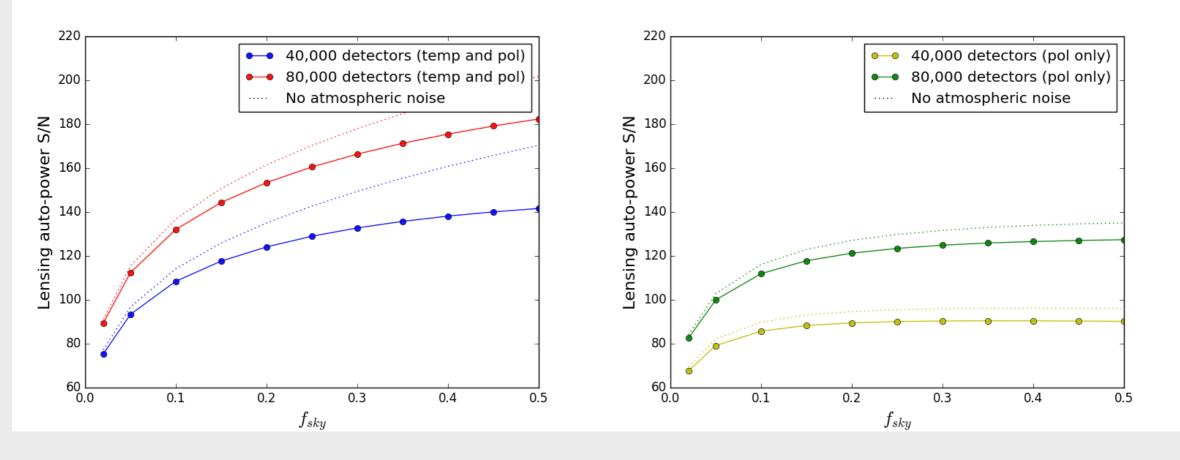



2.4m diameter

~5,000 kg

~60,000 detectors

# **Option I: Adding 6 European optics tubes to LAT receiver:**

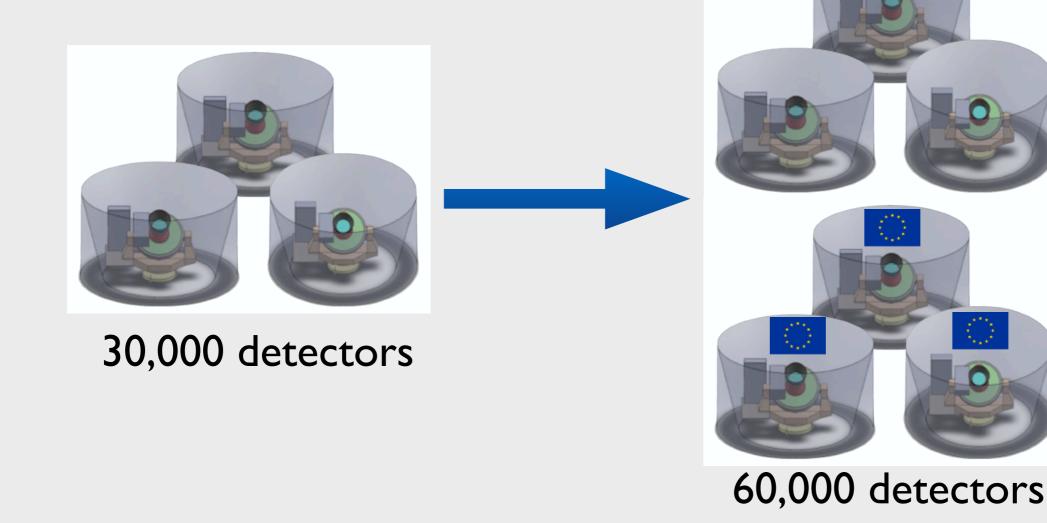

- Focussed on high-ell science and de-lensing for "r".
- $\bullet$  Forecasts for neutrino mass and  $N_{\text{eff}}$  after five year survey covering 40% of sky:



- Even doubling the mapping speed of the LAT, difficult to make a large impact on headline science goals.
- Sample variance dominated at these noise levels so going deeper doesn't help much. (Also limited by external degeneracies, e.g. with optical depth, τ.)

#### **Option I: Adding 6 European optics tubes to LAT receiver:**

• Improvement looks better in terms of S/N ratio of lensing potential reconstruction:




(D Han)

• Doesn't translate to better neutrino mass constraints, but useful for cross-correlations with LSS surveys.

- Have assessed the potential science impact of two options for a major European instrumental contribution to SO.
- Forecasts & conclusions that follow are not those of SO they are those of the UK/European proposal team.

# **Option 2: Adding three European SATs:**



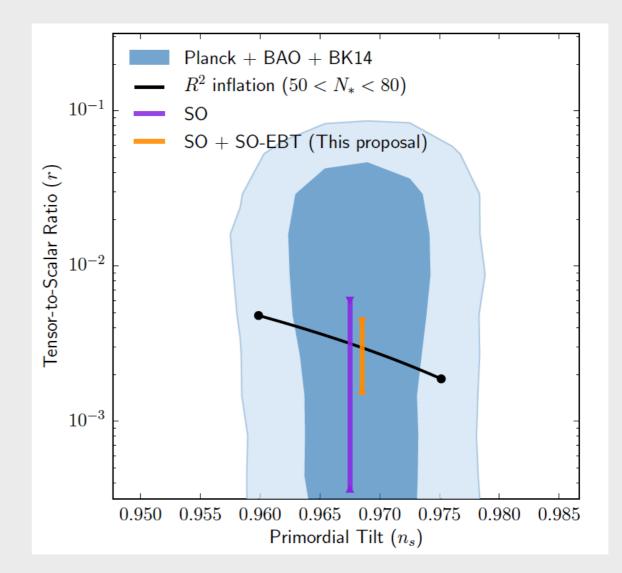
# **Option 2: Adding three European SATs:**

- Focussed on search for primordial gravitational waves.
- Forecasts for "r" after five year survey covering 5% of sky:

| Instrument<br>Configuration | SO<br>σ(r)           | $SO + SO-EBT \sigma(r)$ |  |
|-----------------------------|----------------------|-------------------------|--|
| No delensing:               | 4.8×10 <sup>-3</sup> | 3.3×10 <sup>-3</sup>    |  |
| 50% delensing:              | 3.5×10 <sup>-3</sup> | 2.1×10 <sup>-3</sup>    |  |
| 75% delensing:              | 2.8×10 <sup>-3</sup> | 1.4×10 <sup>-3</sup>    |  |

Based on three forecasting pipelines:

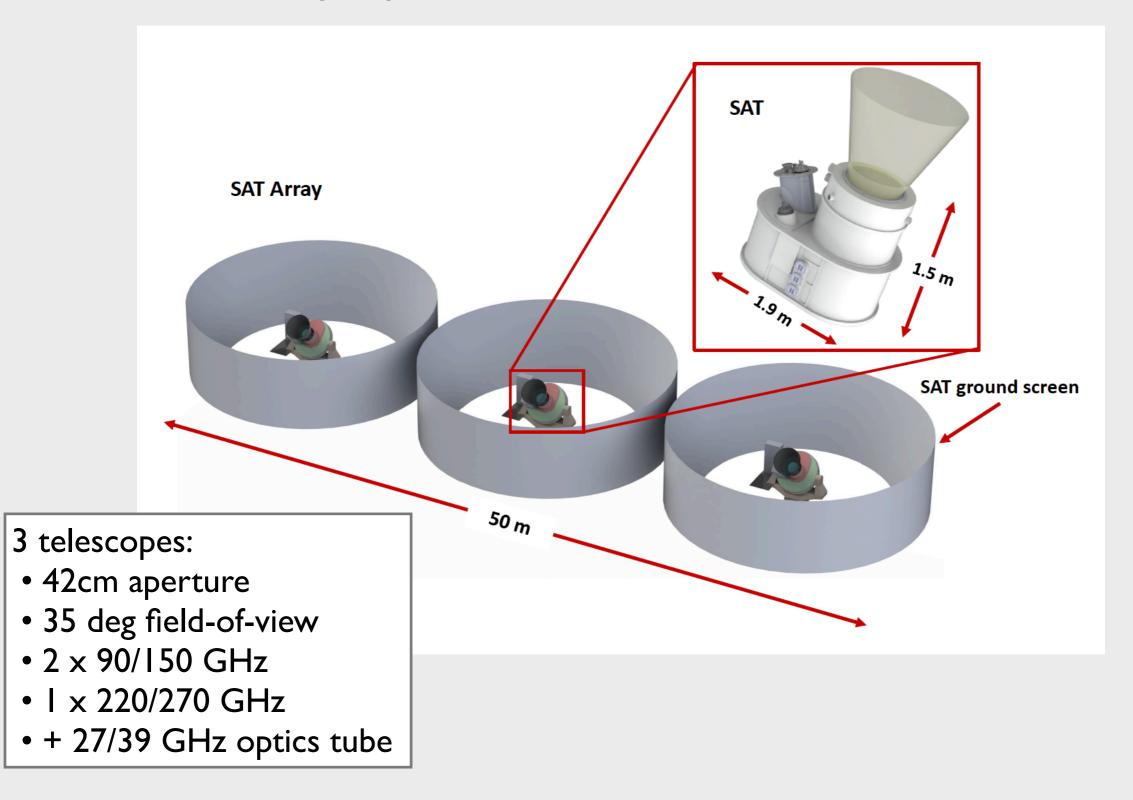
- D Alonso
- J Errard
- C Hervias-Caimapo


- These results are for case where all Euro SATs are at 90/150 GHz (and existing SO SATs are spread across the 27 < v < 280 GHz range).
- Also explored other options for Euro SAT frequencies but above was best-performing configuration.

# **Option 2: Adding three European SATs:**

•  $1/N_*^2$  models (e.g.  $R^2$  inflation) typically predict:

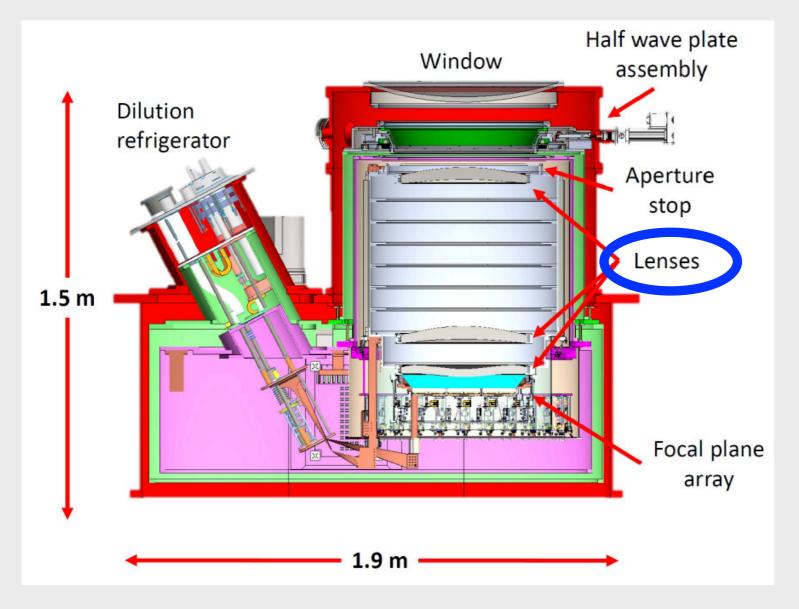
 $2 \times 10^{-3} < r < 5 \times 10^{-3}$ 


• Euro SATs can potentially bring this important class of models within reach of SO.



• Euro SATs providing 50% of SO sensitivity to primordial B-modes and potentially bringing important candidate inflation models within reach.

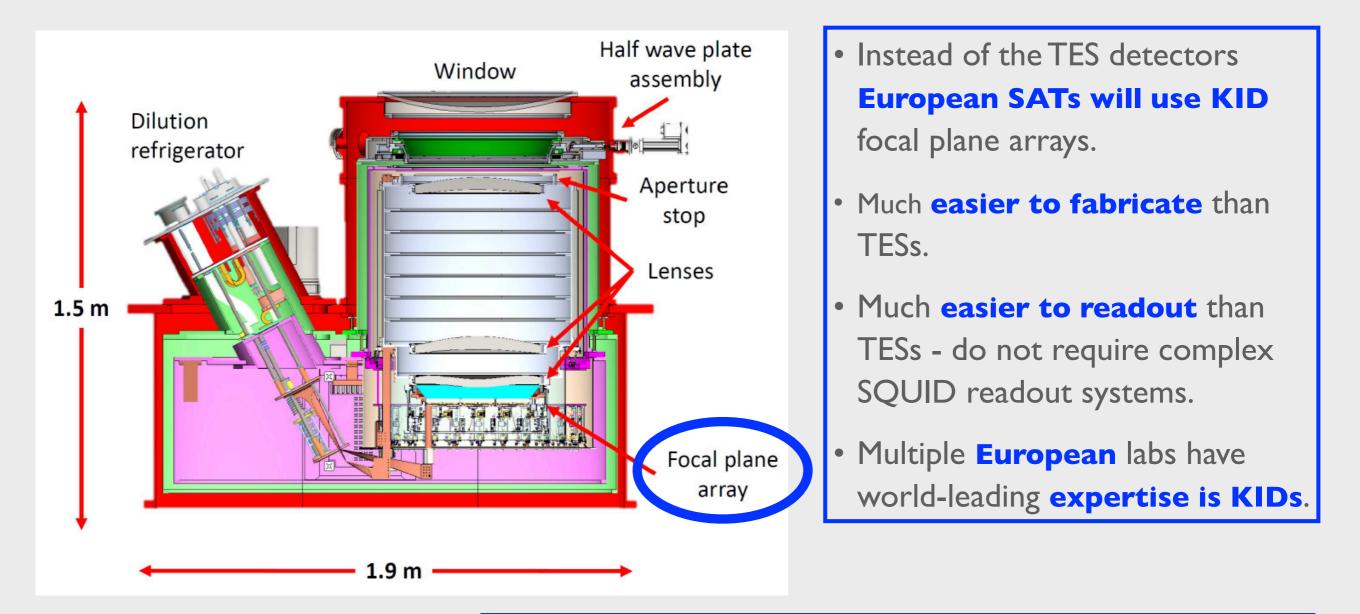
## Instrument Concept


• Great deal of work already put into designing SO SATs. Will obviously want to use many aspects of that work...



#### **Instrument Concept**

 ...but also include key distinguishing features in SO:Europe Telescope Array (SO:ETA) design:


# **1. Meta-materials for optical components:**



- Rather than traditional (curved) silicon lenses, will use metamaterial (MM) lenses.
- MM lenses are fraction of mass of silicon lenses and are flat ⇒ much easier to AR coat.
- Likely to become key enabling technology for CMB-S4.
- Also use metal-mesh filters and HWPs - key technology developed in Europe.

# **2. Kinetic Inductance Detectors for focal plane arrays:**

(See talks by Catalano and Camus this morning.)



• Likely to become key enabling technology for CMB-S4.

## **Proposed operations model**

- Design, construction, deployment, commissioning and operations of the SO:ETA led by the European team.
- No separate arrangements required with **Chilean authorities** since we will be part of wider SO.
- SO:ETA pays a fee to SO in return for **site-related facilities** (e.g. foundations & concrete pads, power, internet, accommodation etc.).
- European team will also lead a separate **analysis pipeline** for the SO:ETA data processing, up to the production of frequency maps.
- **Higher-level science exploitation** (which requires combination with other SO SATs and LAT and **publications** will be done at the SO project-wide level.

#### **Estimated schedule**

| TASK                                | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 |
|-------------------------------------|------|------|------|------|------|------|------|
| INSTRUMENT BUILD:                   |      |      | •    | -    |      |      |      |
| MOUNT (WP 1.1)                      |      |      |      |      |      |      |      |
| CRYOSTAT (WP 1.2)                   |      |      |      |      |      |      |      |
| QUASI-OPTICS (WP 1.3)               |      |      |      |      |      |      |      |
| DETECTORS (WP 1.4)                  |      |      |      |      |      |      |      |
| READOUT (WP 1.5)                    |      |      | -    |      |      |      |      |
| INTEGRATION (WP 1.6)                |      |      |      |      |      |      |      |
| DEPLOYMENT &<br>COMMISSION (WP 1.7) |      |      |      |      |      |      |      |
|                                     |      |      |      |      |      |      |      |
| OPERATIONS / ANALYSIS:              |      |      |      |      |      |      |      |
| PIPELINE DEVELOPMENT                |      |      |      |      |      |      |      |
| OPERATIONS                          |      |      |      |      |      |      |      |

- Procure major components (e.g. mount, cryostats) from industry free up University labs to concentrate on bespoke items (detectors, optical components), integration & commissioning.
- **Re-purpose** much of **existing SO design work** to save time (and money!).
- Existing SO schedule has **first SO SAT** installed on site in **mid-2020**.
- A 2019 start to SO:ETA project would put us ~one year behind.

# **Estimated budget**

#### Task 1 - Instrument Build & Commissioning:

#### Task 2 - Operations and Analysis: (assuming 5-year survey)

| WP 1.0 (Project                                          |                   | (assuming J-year survey)               |               |  |  |
|----------------------------------------------------------|-------------------|----------------------------------------|---------------|--|--|
| Management)                                              | 3 FTE             | WP 2.0 (Data analysis                  | 3 FTE         |  |  |
| WP 1.1 (Telescope                                        | 2 FTE + €2.5M     | management)                            | 1 FTE + €0.5M |  |  |
| Mounts)<br>WP 1.2 (Cryostats)                            | 3.5 FTE + €1M     | WP 2.1 (Analysis computing support)    |               |  |  |
| WP 1.3 (Quasi-Optics)                                    | 8.5 FTE + €0.1M   | WP 2.2 (Observations)                  | 10 FTE        |  |  |
| WP 1.4 (Detectors)                                       | 15.5 FTE + €0.3M  | WP 2.3 (Low-level processing)          | 6 FTE         |  |  |
| WP 1.5 (Readout)                                         | 3 FTE + €1M       | WP 2.4 (Map-making)                    | 8 FTE         |  |  |
| WP 1.6 (Integration)                                     | 6 FTE             | WP 2.5 (Power spectra                  |               |  |  |
| WP 1.7 (Deployment &                                     | 2.5 FTE + €0.025M | + likelihood)                          | 7 FTE         |  |  |
| commissioning)<br>WP 1.8 (Site access<br>and operations) | €0.5M / year      | WP 2.6 (Theoretical<br>Interpretation) | 2 FTE         |  |  |
| Total                                                    | €11M              | Total                                  | €3.5M         |  |  |

• Add 25% contingency  $\Rightarrow \sim \in 18M$  total.

# Summary

- The SO:Europe Telescope Array will be a **distinctive**, **stand-alone facility** within the wider Simons Observatory.
- Major enhancement of SO's science reach in terms of primordial B-mode and inflation model constraints.
- Leverage leading role for Europe in SO (including representation on SO Planning Committee / Executive Board).
- Position Europe for becoming major player in CMB-S4 (SO:ETA telescopes will be constructed as "S4-ready" telescopes).





# THE END