South Pole

U.S. CMB Stage 3 Efforts

John Carlstrom CMB-S4 Co-Spokesperson U.Chicago / Argonne

1000

A.

Photo credit Cynthia Chiang

Atacama, Chile

Photo provided by Mark Devlin

Long history of US ground-based CMB experiments

- We've been at this for decades
- Many lessons learned
- Highly complementary to Space and Balloon experiments
- Effort has consolidated on two sites: South Pole & Atacama Plateau in Chile
- Produced a lot of science, with the best yet to come.
 Stage 3 results coming over next 5 years.
- Efforts are all leading to CMB-S4

"Moore's Law" of CMB sensitivity

But need more than detectors...

South Pole CMB efforts started in 1980's

Python CMB Telescope

1994 Winter-over John Kovac

NSERVICE FORMATION

South Pole CMB efforts started in 1980's

Many lessons learned

1994 Winter-over John Kovac

Atacama, Chile efforts started in late 90's

TOCO 1998

Amber Miller Mark Devlin Randy Doriese

it's been a busy and exciting couple of decades

- Detector and readout technology greatly advanced, especially multiplexed, background-limited TES detectors
- Telescopes have advanced
- Data sets and analyses have advanced; theory has advanced
- Teams have coalesced and grown

High resolution CMB experiments

Exceptional high and dry sites for dedicated CMB observations. Exploiting and driving ongoing revolution in low-noise bolometer cameras

high angular resolution from the ground

Small aperture (big beam) CMB telescopes

Status of CMB primary anisotropy temperature and polarization measurements Angular scale

Status of CMB polarization measurements

Broad Science Reach

- Cosmological model and parameters (Temperature and Polarization power spectra)
- Primordial gravitational waves (B-mode polarization)
- Determine neutrino mass scale (CMB lensing & Clusters)
- Light relic particles

- Dark Energy/non-GR: CMB lensing correlation with galaxy density & shear maps; cluster CMB lensing mass calibration; kSZ large scale flows
- **Reionization**: When and how? optical depth τ_e , diffuse kSZ, bi-spectrum
- Galaxy cluster astrophysics and cosmology: redshift independent SZ discovered clusters catalogs; intracluster medium measurements
- Galaxy formation and evolution: unique handle on baryonic feedback via stacked SZ effects on galaxy populations; catalogs of high-z lensed dusty star forming galaxies, and high-z protoclusters
- and much more...

POLARBEAR / Simons Array

Key Technologies:

- frequency domain multiplexing (fdm)
- **PB:** Continuous half-wave plate modulation
- SA: Lenslet coupled sinuous planar antennas, dual polarization, two freq band pixels

Polarbear:

- 150 GHz array
- 2 seasons of 700 deg² on BICEP field at 20 uK arcm Simons Array (3 PB telescopes):
- 22,764 bolometers in total
- 4 frequency bands (95/150/220/270 GHz)
- Single survey (fsky=10%)
- Schedule:
 - PB-2a: Deploy 11/18
 - PB-2b: Deploy 7/19
 - PB-2c: Deploy 12/19
 - **Observations through 2022**

Slide material from A. Lee

SQUID Printed Circuit

POLARBEAR / Simons Array Collaboration

Yoshiki Akiba

Kaori Hattori

Yuki Inoue

Takaho Hamada

KEK

SIMONS FOUNDATION

UC Berkeley

Brian Barch Yuji Chinone Ari Cukierman Tijmen de Haan Josquin Errard Neil Goeckner-Wald John Groh **Grantland Hall Charles Hill** William Holzapfel Yasuto Hori **Oliver** Jeona Adrian Lee Mike Myers Chris Raum **Paul Richards** Blake Sherwin Ian Shirley Bryan Steinbach Aritoki Suzuki Nathan Whitehorn Oliver Zahn

CU Boulder Nils Halverson Greg Jaehnig David Schenck

UC San Diego Chris Aleman Matt Atlas **Darcy Barron Tucker Elleflot** George Fuller Logan Howe Jon Kaufman Kavon Kazemzadeh **Brian Keating** David Leon Lindsay Lowry Frederick Matsuda Martin Navaroli Hans Paar **Gabriel Rebeiz** Praween Siritanasak Nathan Stebor **Grant Teply** Alex Zahn

UW-Madison Kam Arnold Anh Phan

Haruki Nishino Yuuko Segawa Jun-ichi Suzuki Osamu Tajima Satoru Takakura Sayuri Takatori Takayuki Tomaru Laboratoire Astroparticule & Cosmologie Maude Le Jeune Julien Peloton Davide Poletti **Radek Stompor**

Imperial College Anne Ducout Stephen Feeney Andrew Jaffe

years past...

Amy Bender

Slide from A. Lee

Atacama Cosmology Telescope (ACT)

Key Technologies:

- Three optics tubes, one cryostat
 ~ 1000 TES detector array / tube
- NIST Feedhorn coupled arrays
 & dichroic arrays
- 90 mK dilution fridge
- large silicon AR machined lenses **ACTPol (2013-2017):**
- 2 arrays @ 150 GHz and one dichroic
 90 & 150 GHz array

ADVACT (2017 - 2021):

- 2 multifreq arrays @ 90 & 150 GHz;
 1 array at 150 & 220 GHz
- Swap out 90 & 150 GHz array for 30 & 40 GHz array next year
- Wide survey: ~17,000 deg² (Fsky 0.4)
- Plan to observe to 2021

Atacama Cosmology Telescope (ACT)

Key Technologies:

- Three optics tubes, one cryostat
 ~ 1000 TES detector array / tube
- NIST Feedhorn coupled arrays
 & dichroic arrays
- 90 mK dilution fridge
- large silicon AR machined lenses ACTPol (2013-2017):
- 2 arrays @ 150 GHz and one dichroic
 90 & 150 GHz array

ADVACT (2017 - 2021):

- 2 multifreq arrays @ 90 & 150 GHz;
 1 array at 150 & 220 GHz
- Swap out 90 & 150 GHz array for 30 & 40 GHz array next year
- Wide survey: ~17,000 deg²
- Plan to observe to 2021

de Bernardis, Stevens, Hasselfield, et al, 2016; arXiv: 1607.02120

Slide material from S. Staggs

Atacama Cosmology Telescope Collaboration

ACT MEETING JANUARY 2018

22 institutions & ~80 collaborators

Cosmology Large Angular Scale Surveyor (CLASS)

Targeting the reionization feature at 2 < I < 10 from the ground!

(covering 75% of sky)

Key Technologies:

- Rapid front-end polarization modulation
- Horn-coupled 150 mK TES bolometers (Goddard)
- boresight rotation and comoving forebaffles
- Four telescopes: 40 GHz, 2x90 GHz, 150/220 GHz (dichroic) in Atacama Desert
- Schedule:2016: 40 GHz Telescope installed
- 2016: 40 GHz Telescope installed
- 2018: 90 GHz Telescope installed
- 2019: Second 90 GHz and 150/220 GHz Telescopes to be installed
- Observing planned through Sept 2021

"Variable-delay Polarization Modulators for the CLASS Telescopes," ArXiv e-prints, July 2018

Slide material from T. Marriage

Cryogenic Receiver

Class Collaboration ~ 50 people

Slide from J. Appel

Simons Observatory

One 6m Large Aperture Telescope Three 0.5m Small Aperture Telescopes Five-year survey planned 2021-26, six frequencies 30-280 GHz

Large telescope: resolution needed for all science goals except tensor-to-scalar ratio Small telescopes: lower noise at the few-degree-scale B-mode signal, for tensor-to-scalar ratio slide from J. Dunkley

Simons Observatory

Key Technologies:

- uMux readout
- 100 mK dilution fridge
- Mix of SA (sinuous) and ACT (feedhorn) coupled TES detectors **60,000 total detectors**
- 1 large 6m high throughput 6m Cross Dragone Telescope (LAT) with one cryostat containing up to 13 optics tubes, 7 in baseline design:
 - 1 x 27/39 GHz
 - 4 x 90/150 GHz
 - 2 x 220/270 GHz
- 3 small 42cm degree scale telescopes (SAT) baseline dichroic pixels arrays:
 - 27/39 GHz, 90/150 GHz & 220/270 GHz

Two Surveys

- Broad LAT survey f_{sky} = 0.4 with 90+150 -> ~6uK arcm
- Deep SAT survey f_{sky} = 0.1, with 90+150 -> ~2uK arm targeting σ(r) = 0.003

Schedule:

- Construction now though 2021
- Observations 2022 2026

slide info from A. Lee

Spline feed horns coupled to OMT detectors (NIST)

Anti-reflection coated silicon lenslets coupled to sinuous detectors (Berkeley)

Simons Observatory

Key Technologies:

- uMux readout
- 100 mK dilution fridge
- Mix of SA (sinuous) and ACT (feedhorn) coupled TES detectors — 60,000 total detectors
- 1 large **6m high throughput 6m Cross Dragone Telescope** (LAT) with one cryostat containing up to 13 optics tubes, 7 in baseline design:
 - 1 x 27/39 GHz
 - 4 x 90/150 GHz
 - 2 x 220/270 GHz
- 3 small 42cm degree scale telescopes (SAT) baseline dichroic pixels arrays:
 - 27/39 GHz, 90/150 GHz & 220/270 GHz

Two Surveys

- Broad LAT survey f_{sky} = 0.4 with 90+150 -> ~6uK arcm
- Deep SAT survey f_{sky} = 0.1, with 90+150 -> ~2uK arm targeting σ(r) = 0.003

Schedule:

- Construction now though 2021
- **Observations 2022 2026**

slide info from A. Lee

SO – Instruments and Technology

50 m

Small Aperture Telescopes

Three 42 cm aperture refractors, baseline dichroic pixels: 27/39 90/150 90/150 220/270 GHz slide from A. Lee

2.8 m

Large Aperture Telescope 6 m crossed Dragone telescope coupled to up to 13, 36 cm optics tubes. SO baseline has 7 tubes populated with baseline dichroic pixels:

- 1 x 27/39 GHz
- 4 x 90/150 GHz
- 2 x 220/270 GHz

15

Ш

The Simons Observatory collaboration

United States

- Arizona State University
- Carnegie Mellon University
- Center for Computational Astrophysics
- Cornell University
- Florida State
- Haverford College
- Lawrence Berkeley National Laboratory
- NASA/GSFC
- NIST
- Princeton University
- Rutgers University
- Stanford University/SLAC
- Stony Brook
- University of California Berkeley
- University of California San Diego
- University of Michigan
- University of Pennsylvania
- University of Pittsburgh
- University of Southern California
- West Chester University
- Yale University

Japan

- KEK
- IPMU
- Tohoku
- Tokyo

10 Countries

•

- 40+ Institutions
- 160+ Researchers

Canada

- CITA/Toronto
- Dunlap Institute/Toronto
- McGill University
- Simon Fraser University
- University of British Columbia

Chile

Pontificia Universidad Catolica

slidefrom A. Lee

- University of Chile
- Europe
- APC France
- Cambridge University
- Cardiff University
- Imperial College
- Manchester University
- Oxford University
- SISSA Italy
- University of Sussex

South Africa

• Kwazulu-Natal, SA

Australia

- Melbourne
- Middle East
- Tel Aviv

The South Pole Telescope (SPT)

Key Technologies:

- Precision 10m CF supported primary (< 20 um rms)
- Adaptation to extreme thermal environment
- Large (700mm) 3-layer AR coated alumina lens
- 3-layer AR coated lenslet coupled antennas
- Sinuous planar antenna (Berkeley design)
 3 band dual polarization TES pixels (fabricated at Argonne)
- 68x freq domain (fdm) readout

SPTpol (2012 - 2016):

- 1600 detectors: 90 GHz and 150 GHz
- 500 deg² survey at 6uK arcm at 150 GHz
- 100 deg² survey at 4uK arcm at 150 GHz

SPT-3G (2017 - 2023):

- 16,000 detectors; 90 GHz, 150 GHz and 220 GHz
- Deep 1500 deg² survey
 - 2.2 uK arcm at 150 GHz
 - Same field as BICEP Array field to allow de-lensing and joint analysis
- Observations planned through 2023

SPT-3G Stage 3 (10x SPT pol) **16,000** detectors at T = 250mK

The South Pole Telescope (SPT)

Key Technologies:

- Precision 10m CF supported primary (< 20 um rms)
- Adaptation to extreme thermal environment
- Large (700mm) 3-layer AR coated alumina lens
- 3-layer AR coated lenslet coupled antennas
- Sinuous planar antenna (Berkeley design)
 3 band dual polarization TES pixels (fabricated at Argonne)
- 68x freq domain (fdm) readout

SPTpol (2012 - 2016):

- 1600 detectors: 90 GHz and 150 GHz
- 500 deg² survey at 6uK arcm at 150 GHz
- 100 deg² survey at 4uK arcm at 150 GHz

SPT-3G (2017 - 2023):

- 16,000 detectors; 90 GHz, 150 GHz and 220 GHz
- Deep 1500 deg² survey
 - 2.2 uK arcm at 150 GHz
 - Same field as BICEP Array field to allow de-lensing and joint analysis
- Observations planned through 2023

058

The South Pole Telescope Collaboration

BICEP3, BICEP Array

BICEP3 0.55m refractor

Key Technologies:

- Pioneered degree-angular scale refractor telescopes
- Large alumina cooled lenses (550 mm)
- dual-pol planar "patch" antennas coupled TES (JPL)
- precision beam measurements / calibration to control systematics
- boresight rotation (from DASI), no $\lambda/2$ pol modulation
- comoving forebaffle and fixed ground shield

BICEP/KECK program (2006 -

 deep 90 GHz, 150 GHz, 220 GHz and 270 GHz measurements of ~500 deg² field

BICEP3 and BICEP Array:

- 2015: BICEP3 replaced BICEP2; 2560 detectors at 95 GHz (10x BICEP2); Shifted to larger 1500 deg² field
- 2020: BICEP Array mount with staged BICEP3-like replacement of Keck Array receivers:
 - 2020: 30/40 GHz rx and 150 GHz rx
 - 2021: Second 95 GHz rx and 220/270 GHz rx
- Observations planned through 2023

BICEP Array Under Construction

The BICEP/Keck Collaboration ~50 scientists (at least half postdocs and students) across ~12 institutions

VIST

RI

TAS

ARVA

Cez

VE

Funded By:

DIFF

NSF

UB

Stage 4: CMB-S4 Start operations

Stage 4: CMB-S4 Start operations

One Option: Modified Simons Obs 6-m Cross Dragone telescope

Arc minute resolution with high throughput.

For 6-m design:

- 80 deg² field of view at λ 3mm
- 1.7' resolution at 150 GHz

SO and CCAT developing for use in Chile, raising Technical Readiness Level (TRL) Currently the "reference design" for CMB-S4 large aperture telescope (LAT). For South Pole will need significant modifications primarily for thermal issues.

Niemack, Appl. Opt. 55, 1688–1696 (2016).

2nd Option: Three Mirror Anastigmat for CMB observations

Degree B-modes *and* arc minute resolution with extremely high throughput.

For 5-m design:

- 100 deg² field of view, could support
 424k/136k/63k Fλ pixels at λ=1/2/3mm
- Monolithic mirrors (low scattering)
- Boresight rotation for polarization modulation
- Comoving baffle (low pickup)
- 1.6' resolution at 150 GHz

3.5 m diameter focal plane

Designed compatible for South Pole and CMB-S4 (similar in cost and scope to 10-m SPT) Need to further develop and prototype soon to raise TRL so it can be viable option for CMB-S4

2nd Option: Three Mirror Anastigmat for CMB observations

Degree B-modes *and* arc minute resolution with extremely high throughput.

For 5-m design:

- 100 deg² field of view, could support
 424k/136k/63k Fλ pixels at λ=1/2/3mm
- Monolithic mirrors (low scattering)
- Boresight rotation for polarization modulation
- Comoving baffle (low pickup)
- 1.6' resolution at 150 GHz

3.5 m diameter focal plane

Designed compatible for South Pole and CMB-S4 (similar in cost and scope to 10-m SPT) Need to further develop and prototype soon to raise TRL so it can be viable option for CMB-S4

Padin, Applied Optics, 57, 9, 2314 2018 https://www.osapublishing.org/ao/upcoming_pdf.cfm?id=320108

2nd Option: Three Mirror Anastigmat for CMB observations

Wrap up U.S. Stage 3

- U.S. Stage 3 is making substantial progress, with experiments deployed and science results coming
- Stage 3 is field testing Stage 4 technology and methods
- Stage 3 is training the next generation for CMB-S4
- The best is yet to come, and that is CMB-S4
- We are all headed toward CMB-S4