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• LISA 
• Data Analysis 

• Differences to the ground based detectors 
• Past, present & future
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Laser Interferometer Space Antenna
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• LISA 
• The most simple way to 

look at the idea of LISA, is 
take the concept of a 
ground based detector, 
and put it into space. 

• But this is a very rough 
approximation. LISA is 
very different from GBD in 
the 
• Nature of the data stream 
• Science Operations 
• Types of Sources 
• Data Analysis requirements
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The measurement concept

• test-mass to test-
mass measurement 
is synthesised from: 
• test-mass to SC 
• SC to SC 
• SC to test-mass 

• Combine 6 links on 
ground 

• Time Delay 
Interferometry

3

Laser Interferometer Space Antenna
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• Nature of the data stream/Science Operations: 
• A constellation of three Space Crafts, forming an equilateral triangle 

with arms of 2.5^6 km. 
• Each SC contains free falling test masses where their position is being 

constantly monitored via means of laser interferometry. 
• The constellation orbits the sun following Earth.
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Laser Interferometer Space Antenna
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• Nature of the data stream/Science Operations: 
• Data size is quite small (low rate) 
• Before SCi Op we need to point, calibrate, optimise (~1 yr of commissioning). 
• We need to perform a Time Delayed Interferometry (TDI) algorithm to get rid 

of the laser frequency noise. 
• Ideally undisturbed measurements for timespans of 10 days, allowing for short 

~hr data gaps for SC maintenance.  
• Data artefacts (lines, glitches, bursts)  

• All the above sound good, but how could be proven that LISA is going 
to be successful? 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LISA Pathfinder (LPF)
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• But how could be proven that LISA was going to be 
successful? 
• ESA decided to fly the LPF mission, a technology demonstrator for 

LISA (Launched Dec 2015, decommissioned Jul 2017). 
• Basically a lab in space, shrinks a LISA arm from 2.5^6 km to 30 cm. 
• Aim: prove technologies & characterise and model noise sources.

Phys.	Rev.	Lett.	116,	231101
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Phys.	Rev.	Lett.	116,	231101

arXiv:1305.5720
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Projection to LISA sensitivity
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• Now we have a more complete prediction of the 
noise of the instrument.  

Laser Interferometer Space Antenna: noise
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By	M.	Hewitson
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Laser Interferometer Space Antenna: Sources
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• And being more confident about the noise, we 
start to list the possible sources of  the GW 
signals: 
• Massive Black Hole Binaries (MBHB) 
• Extreme Mass Ratio Inspirals (EMRIs) 
• Galactic Binaries  
• Stochastic GW Background 
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Sources: MBHB
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• Expect events with high SNR 
• Signal duration varies from weeks to ~year. 
• Typically ~15 dimensions parameter space. 

Taken	from	the	new	Radler	LDC
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Sources: EMRIs
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• Events with typical mass ratio of 10^-5 to 10^-7 
• Usually a pair of MBH with a NS, BH, or WD. 
• The result is a huge number of orbits in the LISA 

band and a characteristic waveform. 

By	J.	Gair
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Sources: Galactic White Dwarf Binaries
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• Expect 10^7 binaries with slow evolution in 
frequency. 

• Almost monochromatic  
• Verification Binaries - calibration.
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Laser Interferometer Space Antenna: Sources

arXiv:1305.5720
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Complete Signal
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• To sum them up, we expect 
• MBHB: 10 -100 per yr 
• EMRIs: 10 -1000 per yr 
• SOBHB: 30 - 100 per yr 
• GB: ~60 millions 
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Complete Signal
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• Now we can sum up all the predicted sources in what we 
call the enchilada:

Source: http://tsgcookin.com

Class.	Quantum	Grav.	24	(2007)	S551–S564
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Data Analysis
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• For that reason, the LISA Data Challenges (LDCs) have been organised. 
• Solve the “enchilada”, also take into account the parametrisation of the 

noise. 
• Which causes further increase of the dimensionality of the problem.  

• Matched filtering has been widely used for the analysis.  
• Model the sources and search the data stream for patterns. 
• Need to “whiten” the data  

• Calibrate to the detectors’ noise spectral shape. 

• Make use of Bayes Theorem:  
 

• Necessary tools need to be adopted / developed. 
• So far, stochastic search methods are preferred to the more straightforward grid 

methods (huge parameter space). 
• Traditional MCMC and its variants, PT, Nested Sampling (MultiNest, CPNest, 

PolyChord , … ), Multimodal Genetic algorithm. 

p(~✓|d) = p(d|~✓,M)p(~✓)

p(d|M)
.
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LISA Data Challenges - The Past
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• Started 2006, last one at 2010.
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LISA Data Challenges - The Past
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• The attendees: 

By	S.	Babak
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LISA Data Challenges - The Past
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• The menu: 
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LISA Data Challenges - The Past
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• The results for MBHB as an example: 

The Mock LISA Data Challenges: from Challenge 3 to Challenge 4 6

φS1
φS2

θS1 θS2

φL

θL

Figure 1. Distribution of reported modes for MBH-3 along the spin and orbital–
angular-momentum angles. Each mode is annotated with the SNR. ×: true value;
!: AEI; ": CambAEI; #: MTGWAGAPC; $: JPLCITNWU.

• BabakGair (a collaboration between the Albert Einstein Institute and
Cambridge University) used stochastic sampling and MCMC to identify EMRI
harmonics, then carried out an F -statistic search in the space of harmonics, and
performed a final MCMC fit in source parameter space. This search improved on
the method described in [21], adding more sophisticated harmonic identification.

• EtfAG (researchers at Cambridge and Northwestern Universities) searched for
harmonics in the time–frequency spectrogram using the Chirp-based Algorithm
for Track Search (CATS, [22]) developed for earlier MLDCs [23], and improved
for this search to deal with intersecting tracks from multiple sources.

• MTAPCIOA (a collaboration between Montana State University, APC–Paris,
and Cambridge University) improved the MLDC algorithm used in previous
rounds [24] to include parallel tempering as described in [25], and to enhance
the implementation of “harmonic jumps” between secondary likelihood maxima.

Parameter-estimation errors are presented in Table 2. Altogether, all EMRIs were
found by at least one group, and masses were estimated accurately; more work remains
to be done on improving the estimates of EMRI parameters for relatively weak and
overlapping signals.

MTAPCIOA recovered all five EMRI signals, generally with very good parameter-
estimation accuracies: errors of a few tenths % in the masses of both bodies, and
sky-position errors of a few deg (13 for EMRI-4). Their second solution for EMRI-1
was particularly impressive, with fractional errors of a few 10−5 in masses, initial
eccentricity, and spin. However, their other solution exemplifies the difficulty of
resolving secondary maxima: the SNR is almost the same (21.794 vs. 21.804), but
parameter errors are two orders of magnitude greater.

The time–frequency analysis carried out by EtfAG was particularly hard-hit by
the simultaneous lowering of the SNR and the presence of multiple overlapping signals
in MLDC 3.3. The group was unable to find the low-frequency, low-SNR EMRI-
1; while EtfAG did find a medium-frequency source, the relatively large parameter-
estimation errors suggest that the time–frequency approach did not adequately resolve
between the overlapping harmonics of EMRI-2 and EMRI-3.

BabakGair submitted three (relatively close) solutions for each of EMRI-2 and
EMRI-3. For EMRI-3, their estimates are better than those of EtfAG and comparable
to those of MTAPCIOA, albeit somewhat less accurate for the initial parameter values
and distance. For EMRI-2, BabakGair had errors of a few % in the masses and
initial eccentricity, and had significant errors in spin-orientation angle and in distance,
although sky location was still found correctly, within 3.5 deg.

The high-frequency EMRI-4 and EMRI-5 presented a challenge for all groups.
Although MTAPCIOA found them and estimated their masses fairly accurately, the

GW landscape Observing GWs with LIGO Observing GW from space: LISA GW sources in LISA band LISA data analysis

Spinning BBHs [Babak+ 2009]

source group ”Mc/Mc ”÷/÷ ”tc ”sky ”a1 ”a2 ”D/D FF
(SNRtrue) ◊10≠5 ◊10≠4 (sec) (deg) ◊10≠3 ◊10≠3 ◊10≠2

MBH-1 AEI 2.4 6.1 62.9 11.6 7.6 47.4 8.0 0.9936
(1670.58) CambAEI 3.4 40.7 24.8 2.0 8.5 79.6 0.7 0.9925

MTAPC 24.8 41.2 619.2 171.0 13.3 28.7 4.0 0.9996
JPL 40.5 186.6 23.0 26.9 39.4 66.1 6.9 0.9981

GSFC 1904.0 593.2 183.9 82.5 5.7 124.3 94.9 0.1827
MBH-3 AEI 9.0 5.2 100.8 175.9 6.2 18.6 2.7 0.9995
(847.61) CambAEI 13.5 57.4 138.9 179.0 21.3 7.2 1.5 0.9993

MTAPC 333.0 234.1 615.7 80.2 71.6 177.2 16.1 0.9945
JPL 153.0 51.4 356.8 11.2 187.7 414.9 2.7 0.9898

GSFC 8168.4 2489.9 3276.9 77.9 316.3 69.9 95.6 0.2815
MBH-4 AEI 4.5 75.2 31.4 0.1 47.1 173.6 9.1 0.9994
(160.05) CambAEI 3.2 171.9 30.7 0.2 52.9 346.1 21.6 0.9991

MTAPC 48.6 2861.0 5.8 7.3 33.1 321.1 33.0 0.9352
JPL 302.6 262.0 289.3 4.0 47.6 184.5 28.3 0.9925

GSFC 831.3 1589.2 1597.6 94.4 59.8 566.7 95.4 ≠0.1725
MBH-2 AEI 1114.1 952.2 38160.8 171.1 331.7 409.0 15.3 0.9469
(18.95) CambAEI 88.7 386.6 6139.7 172.4 210.8 130.7 24.4 0.9697

MTAPC 128.6 45.8 16612.0 8.9 321.4 242.4 13.1 0.9260
JPL 287.0 597.7 11015.7 11.8 375.3 146.3 9.9 0.9709

MBH-6 AEI 1042.3 1235.6 82343.2 2.1 258.2 191.6 26.0 0.9293
(12.82) CambAEI 5253.2 1598.8 953108.0 158.3 350.8 215.4 29.4 0.4399

MTAPC 56608.7 296.7 180458.8 119.7 369.2 297.6 25.1 0.0016

31 / 36

Babak	et	al,	arXiv:0912.0548
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LISA Data Challenges - The Past
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• The results for MBHB: 

Petiteau	et	al,	PRD	81,	104016,	2010

7

2. Maximization over the time of coalescence

In order to efficiently find the time of coalescence, we use correlation in place of the inner products. Given a
template h which is constructed with the initial value (usually taken at the edge of the prior) tc,0 and using the
inverse Fourier transform, we find the value of τmax which maximizes (32) or which is equivalent to maximizing

c(τ) = 2

∫ ∞

0
df

h̃(f) s̃∗(f) + h̃∗(f) s̃(f)

Sn(f)
e−2iπfτ . (33)

Note that the amplitude of the signal depends on the choice of tc via annual modulation caused by LISA’s orbital
motion, therefore the new value tc,1 = tc,0 + τmax is not necessarily the final answer. The time of coalescence which
maximizes the quality (32) for given other parameters should correspond to maximum of (33) at zero (or almost zero)
lag. Using the new value of tc we repeat the maximization, and we stop iterations when the difference |tc,i − tc,i−1|
is sufficiently small. Usually few iterations are sufficient to find tc which maximizes the quality.

3. The waveform termination

The signal from MBH binaries is band limited, the lower frequency limit is defined approximately by twice the
orbital phase at t = 0.
The upper frequency is introduced somewhat arbitrarily. To terminate both the signal and the template smoothly

an exponential taper is applied. The taper affects the data when two black holes are separated by a distance R = 7M
and kills the signal completely around R = 6M (which is the last stable orbit for the test mass in Schwarzschild
space-time). Therefore, in computing the overlaps, we use the maximum frequency in the integration corresponding
to the orbital separation 6M :

fmax =
1

πM(R/M)3/2
=

η3/5

π(R/M)3/2Mc
. (34)

The exponential taper causes problems for the long-wavelength approximation, and our template deviates from
the signal during the last cycle. Unfortunately these small deviations fall in the most sensitive part of the LISA
band and are further enhanced by high SNR. This causes a significant problem: the bias caused by this deviation is
unacceptably large because there is a large region of the parameter space that produces templates which fit the end
part of the signal perfectly (using incorrect parameters) but fail to reproduce the low frequency part of the signal.
In order to solve this problem we terminate the template waveform few cycles earlier by fixing cutoff frequency which

corresponds to the orbital separation R > 7M . Our approximation becomes better as we go to lower frequencies,
however we start losing power of the signal (SNR) which is highly undesirable. We automatically readjust the frequency
cut-off if the SNR drops below a certain threshold.
We want to emphasize a very important feature which accompany the earlier termination of the waveform. The

map of the quality changes: in the Figure 1 we show the map of the quality in the “chirp mass” - “eta” plane keeping
other parameters fixed to their true values. On the left panel we show Ffull (we use no frequency cut off other that
introduced by the taper), and, on the right panel, we plot Fcut with template cut at fmax = fcut = 0.26mHz. One
can see multiple maxima in both plots, but(!) the position of the secondary maxima are different whereas the location
of the true (global) maximum (indicated by an arrow) is the same. It can also be seen that the size of the secondary
maxima on the right panel is smaller. We will use these features later in our search.

4. A-statistic

Chopping the template at lower frequency solves the problems mentioned above but is not completely satisfactory.
We lose some SNR and consequently some accuracy in the parameter estimation, we also lose information stored at
the end of the signal which is especially important to recover spin-related parameters. In order to reduce the impact
of the coalescence part, without killing it completely. For that, we introduce a new function, called A-statistic which
is simply a geometrical mean of the Maximized Likelihood of the cut waveform and the Maximized Likelihood of the
full waveform:

A =
√
Fcut × Ffull. (35)

A-statistic is not log likelihood anymore, but one of its advantages is that it keeps the information from the full
waveform including the coalescence but at the same time it enhances the information coming from the low-frequency
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FIG. 1. Distribution over Mc and η, of the Maximized Likelihood (quality) computed with the full waveform on left panel and
with the waveform cut at fmax = 0.26 on the right panel. This example corresponds to a signal with the following parameters:
β = −0.38896 rad, λ = 3.28992 rad, tc = 19706568.3273 sec, Mc = 1589213.34 M⊙, η = 0.23647, θL = 2.78243 rad,
φL = 1.53286 rad, χ1 = 0.24115, χ2 = 0.16145, θS1 = 1.20839 rad, φS1 = 5.61808 rad, θS2 = 0.39487 rad, φS2 = 5.82937 rad,
DL = 6856164697.8 parsec, φc = 4.96746 rad . The arrow points to the true parameters.

part. A-statistic also reduces the number of local maxima as can be seen in the Figure 2. In this example we have
reduced the size and number of maxima from five to three.
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FIG. 2. Distribution of A-statistic over Mc and η. This example corresponds to the same signal as in Figure 1. The arrow
points to the true location of parameters of the signal.

III. GENETIC ALGORITHM

A. The basic principle

In order to find all the parameters of the signal, we need an effective algorithm to search over the 13 dimensional
parameter space. Building the grid in the multi-dimensional parameter space is a highly non-trivial problem. The use
of the stochastic/random bank [46–49] is a feasible method for the template placement, however a full grid scan over
the whole parameter space would be prohibitively computationally expensive. Alternative would be to use variations
of the Markov chain Monte-Carlo [29] or nested sampling [30] methods. Here we have chosen to use genetic algorithm
(GA) (adjusted to our needs) to search for the global maximum of the likelihood in multi-dimensional parameter
space.
The GA is derived from the computer simulations of the biological system, which were originally introduced by

Professor Holland and his students in Michigan University. It is a method for the global search (optimization method)
based on the natural selection principle – the basis for the evolution theory established by C. Darwin. In the nature,
organisms adapt themselves to their environment: the smartest/strongest/healthiest organisms are more likely to
survive and participate in the breeding to produce the offsprings. These two processes, selection and breeding, are
used in genetic algorithms to produce a new generation of organisms. Since the best organisms are more likely to
participate in breeding, the new generation should be better than the previous one (at least no worse). So this
procedure induces the evolution of the organism, just like in the nature, the good qualities of the parents can be
transferred to their offsprings. In the biological world, besides these two basic operations, among every generation,

8

 0.16  0.17  0.18  0.19  0.2  0.21  0.22  0.23  0.24  0.25
Eta

 1.5e+06

 1.52e+06

 1.54e+06

 1.56e+06

 1.58e+06

 1.6e+06

 1.62e+06

C
hi

rp
 M

as
s

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0.16  0.17  0.18  0.19  0.2  0.21  0.22  0.23  0.24  0.25
Eta

 1.5e+06

 1.52e+06

 1.54e+06

 1.56e+06

 1.58e+06

 1.6e+06

 1.62e+06

C
hi

rp
 M

as
s

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

FIG. 1. Distribution over Mc and η, of the Maximized Likelihood (quality) computed with the full waveform on left panel and
with the waveform cut at fmax = 0.26 on the right panel. This example corresponds to a signal with the following parameters:
β = −0.38896 rad, λ = 3.28992 rad, tc = 19706568.3273 sec, Mc = 1589213.34 M⊙, η = 0.23647, θL = 2.78243 rad,
φL = 1.53286 rad, χ1 = 0.24115, χ2 = 0.16145, θS1 = 1.20839 rad, φS1 = 5.61808 rad, θS2 = 0.39487 rad, φS2 = 5.82937 rad,
DL = 6856164697.8 parsec, φc = 4.96746 rad . The arrow points to the true parameters.

part. A-statistic also reduces the number of local maxima as can be seen in the Figure 2. In this example we have
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In order to find all the parameters of the signal, we need an effective algorithm to search over the 13 dimensional
parameter space. Building the grid in the multi-dimensional parameter space is a highly non-trivial problem. The use
of the stochastic/random bank [46–49] is a feasible method for the template placement, however a full grid scan over
the whole parameter space would be prohibitively computationally expensive. Alternative would be to use variations
of the Markov chain Monte-Carlo [29] or nested sampling [30] methods. Here we have chosen to use genetic algorithm
(GA) (adjusted to our needs) to search for the global maximum of the likelihood in multi-dimensional parameter
space.
The GA is derived from the computer simulations of the biological system, which were originally introduced by

Professor Holland and his students in Michigan University. It is a method for the global search (optimization method)
based on the natural selection principle – the basis for the evolution theory established by C. Darwin. In the nature,
organisms adapt themselves to their environment: the smartest/strongest/healthiest organisms are more likely to
survive and participate in the breeding to produce the offsprings. These two processes, selection and breeding, are
used in genetic algorithms to produce a new generation of organisms. Since the best organisms are more likely to
participate in breeding, the new generation should be better than the previous one (at least no worse). So this
procedure induces the evolution of the organism, just like in the nature, the good qualities of the parents can be
transferred to their offsprings. In the biological world, besides these two basic operations, among every generation,
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LDCs and What have we learned so far?
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• Multimodal posterior surfaces. 
• High dimensionality. 
• Source separation. 
• Efficient samplers/methods.  

• Efficiently map the posterior surface. 

• Take into account non-stationarity of the noise. 
• Parametrisation of slow fluctuation, bursts, transients. 

• Iterative Global Fit Scheme: 
• As data is transmitted on ground, we update 

uncertainties, discover new signals, improve the 
quality of the fit.

Perform Model Selection  
at the same time.
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LISA Data Challenges - The Present
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LISA Data Challenges - The Present
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• The last couple of years things have started to 
accelerate again. 
• GW Detection & events, LPF, LISA L3 selection 

• The LDC Working Group   
• Part of the  Consortium. 

• The “Radler” data sets are already online:  
 
 
 
 
 

https://www.seriouseats.com

• Aim is to gather the people again, and get up to 
speed. 

• Resurrect & update old ideas, propose & develop 
new ideas, gather the tools and codes for the 
analysis. 

• Re-start the LDC in a new framework under the wings 
of the Consortium. 

• Establish a common playground to test algorithms 
• Introduce software standards
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LISA Data Challenges - The Present
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• The “Radler” data sets are already online:  
 
 
 
 
 

https://lisa-ldc.lal.in2p3.fr/ldc

• Join our efforts! 
• LDC Code and docker 

images to download. 
• Results are submitted &  
• Tutorials & examples to 

be published soon.
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The future
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• LDC2: Increase realism with a “mild enchilada” 
• Mix of sources: Galaxy + MBHB + EMRIs, Galaxy + 

Stochastic + SOBHBs 

• More realistic scenario from the point of 
instrument characteristics 

• Release source catalogues  
• Support further development  

activities.
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Summary

�27

• Signal from the LISA instrument is of different 
nature compared to the ground based detectors 
case. 
• Signal dominated data, long lived overlapping signals. 
• High dimensionality, multimodality  

• source separation & model selection. 

• Work has been done within the LDC context. 
• Now in the process of reviving the community  

• And the tools and methods that come together. 

• Welcome to join our efforts!  
https://lisa-ldc.lal.in2p3.fr/ldc
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Extra Material
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• TDI channels
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Laser Interferometer Space Antenna
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• The results for EMRIs: 

The Mock LISA Data Challenges: from Challenge 3 to Challenge 4 7

Table 2. Parameter-estimation errors for the EMRIs in MLDC 3.3. M and µ are
the masses of the central and inspiraling bodies; ν0 and e are the initial azimuthal
orbital frequency and eccentricity; |S| is the dimensionless central-body spin; λSL
is the spin–orbit misalignment angle, and D the luminosity distance. ∆spin and
∆sky are the geodesic angular distances between the estimated and true spin
direction and sky position. SNRtrue is computed with the LISA Simulator; the
SNR for each entry with the simulator used in that search (the LISA Simulator
[26] for MTAPCIOA, Synthetic LISA [27] for EtfAG and BabakGair).

Source Group SNR ∆M
M

∆µ
µ

∆ν0
ν0

∆e0 ∆|S|
∆λSL
λSL

∆spin ∆sky ∆D
D

(SNRtrue) ×10−3 ×10−3 ×10−5 ×10−3 ×10−3 ×10−3 (deg) (deg)

EMRI-1 MTAPCIOA 21.794 5.05 3.29 1.61 −5.1 −1.4 −19 23 2.0 0.07
(21.673) MTAPCIOA 21.804 −0.06 −0.01 −0.08 −0.05 0.02 0.54 3.5 1.0 0.13

EMRI-2 MTAPCIOA 32.387 −3.64 −2.61 −3.09 3.8 0.87 12 11 3.7 3×10−3

(32.935) BabakGair 22.790 33.1 −19.7 10.1 −33 −7.3 250 47 3.5 −0.25
BabakGair 22.850 32.7 −20.0 9.94 −32 −7.2 250 58 3.5 −0.24
BabakGair 22.801 33.5 −19.5 10.5 −33 −7.4 240 40 3.5 −0.25

EMRI-3 MTAPCIOA 19.598 1.62 0.38 −0.10 −0.35 −0.94 −3.0 5.0 3.0 −0.04
(19.507) BabakGair 21.392 1.77 1.01 1.95 −1.2 −0.68 −2.3 116 4.5 0.13

BabakGair 21.364 2.26 1.88 2.71 −2.0 −0.69 −2.5 65 6.1 0.14
BabakGair 21.362 1.51 1.01 2.09 −1.3 −0.50 −1.7 7.6 6.2 0.14
EtfAG — 54.0 4.88 −7375 26 17 — — 32 0.83

EMRI-4 MTAPCIOA −0.441 −8.77 −10.1 −6.03 −3.7 144 950 99 13 −2.3
(26.650)

EMRI-5 MTAPCIOA 17.480 −3.32 5.00 −1.80 0.22 55 62 43 1.8 −1.3
(36.173)

errors in spin magnitude and orientation were significantly larger than for other
sources, and the distance to both sources was overestimated by factors of 2 or 3
(vs. errors ! 10% for the other EMRIs). Furthermore, the negative SNR for claimed
EMRI-4 and the low FFs between the recovered and injected noiseless waveforms
indicate that the MTAPCIOA search could not resolve these sources individually, but
converged on two parameter sets that jointly fit the combination of the two injected
sources.

5. Cosmic-string–cusp bursts (MLDC 3.4)

Challenge dataset 3.4 contained three burst signals from cosmic-string cusps, immersed
in instrument noise with slightly randomized levels for each individual noise (i.e., from
the six proof masses and photodetectors). The dataset was less than a month long (221

s), with a higher sampling rate (1 s) than the others, to accommodate the potential
high-frequency content of these signals, which have power-law spectrum up to an fmax

determined by the characteristic length scale of the string and the viewing angle (see
[7] for more details about the waveforms and the random choice of their parameters).
Four collaborations submitted entries:

• CAM (a collaboration between Cambridge U. and APC–Paris) used MultiNest.

• CaNoe (researchers at Cambridge and Northwestern Universities) implemented
a time–frequency algorithm, a modified version of CATS [22].

• JPLCIT (Caltech/JPL) experimented with MCMC and MultiNest, but only
submitted entries based on the latter [28].

• MTGWAG (Montana State University) used a parallel-tempering MCMC [25].

Babak	et	al,	arXiv:0912.0548
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• The results for Galactic Binaries: 
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• The results for SGWB: 
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• Expect events with high SNR 
• Signal duration varies from weeks to ~year. 
• Typically ~15 dimensions parameter space. 

Taken	from	the	new	Radler	LDC

http://gmunu.mit.edu/
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• Working in a Bayesian framework we have to explore 
the posterior probability of the parameters. 

• The posterior is defined as: 
 
 

• where          encapsulates the prior information we 
might have.   
• (or not have, so we use non-informative priors) 

• The evidence is calculated as 

p(~✓|d) = p(d|~✓,M)p(~✓)

p(d|M)
.

p(d|M) =

Z
p(~✓, d|M)p(~✓)d~✓.

p(~✓)
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• We need to measure a stochastic signal, 
• where it essentially is buried in the noise of the 

instrument. 
• In general we can assume that we measure  
 
 
Then we can approximate  
 

• where 

(a|b) = 2

1Z

0

df
h
ã⇤(f)b̃(f) + ã(f)b̃⇤(f)

i
/S̃n(f)

p (n) = C ⇥ exp

✓
�1

2
(n|n)

◆

d(t) = s(t, ~✓) + n(t)
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