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The context: analyzing multivalued data
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Different scientific fields but …

common problems: mixtures of elementary signals or sources

Mars express

Hyperspectral data in astrophysics
Mars Express, Cassini, etc.

Multispectral data in astrophysics
Planck, Fermi, etc.

Chandra

Radio-interferometric data
LoFar, SKA, etc.
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A key application in cosmology
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- The CMB is fundamental to study the
dawn of our universe !

- PLANCK provides full-sky data in 
9 channels in the range 30GHz - 857GHz

… and 7 are sensitive to polarization 
(30GHz - 353GHz)

- High resolution data of (up to 5 arcmin)

The Cosmic Microwave Background (CMB) is a relic 
radiation (with a temperature equals to 2.726 Kelvin) 
emitted 13 billion  years ago when the Universe was 
about 370 000 years old. 

DEPUIS LE BIG-BANG
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CMB estimation as a BSS problem
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Estimating the CMB 
is a BSS problem
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The model and its main characters
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The linear mixture model
The sources 

The mixture weights 
e.g. spectral signatures, electromagnetic spectra, etc. 
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BSS: Blind Source Separation
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The source matrix 

The mixing matrix Noise 

Blind Source Separation: 
Estimation both A and S from X only

Non-negative Matrix Factorization, Clustering, Classification, Dictionary Learning

This is an ill-posed matrix factorization problem
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Sparse signal modeling at a glance
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Wavelet transform for spherical data 

sparse  
representation

Histogram in the wavelet domain

Statistical independence, non-negativity, etc.

Prior information on S and/or A Sparse signal modeling
Zibulevsky01, Cichocki06, Bobin07
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The building block: GMCA
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Gist: looking for the  
sparsest sources

Regularization params., 
weight matrix, etc. 

Data fidelity term Sparse regularization 

Bobin, Starck, Fadili, and Moudden, Sparsity, Morphological Diversity and Blind Source Separation, IEEE Trans. on Image Processing,  Vol 
16, No 11, pp 2662 - 2674, 2007. 
Bobin, Starck, Fadili, and Moudden, Blind Source Separation: The Sparsity Revolution, Advances in Imaging and Electron Physics , Vol 152, 
pp 221 -- 306, 2008.

Generalized Morphological Component Analysis (GMCA):

- Thresholding strategy, robustness to Gaussian noise/local stationary points

- Iterative soft/hard thresholding algorithm

- No parameters to tune

- S-BSS with redundant sparse representations



October, 8th 2018

Applications to the Planck data
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A very clean estimation of the CMB map

Bobin J., Sureau F., Starck J-L, Rassat A. and Paykari P., Joint Planck and WMAP CMB map reconstruction, A&A, 563, 2014
Bobin J., Sureau F., Starck, CMB reconstruction from the WMAP and Planck PR2 data, A&A, 2016
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Applications to the Planck data
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SMICA

L-GMCASEVEM

NILC
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Applications to the Planck data
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The thermal SZ effect vanishes 
at 217Ghz

The difference between a CMB estimate  
and the 217Ghz channel  

should not show any tSZ residual Free of 
detectable SZ effect

SMICA

L-GMCASEVEM

NILC
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Applications to the Planck data

 12

The GMCA CMB map has been used for several cosmological studies

- Evaluation of primordial power spectrum
Lanusse, 2014

- Large-scale CMB anomalies
Rassat, 2014; Ben-David and Kovetz, 2014 
Aiola, 2014; Notari and Quartin, 2015 

ISW map

- kSZ studies
Luzzi 2014; Hill, 2015

CMB temperature as a function of redshift



October, 8th 2018

A highly flexible framework
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- The global linear mixture does not hold true 

Local-GMCA: local/multiscale mixture model, handles spectral variabilities
Bobin J., Sureau F., Starck, CMB reconstruction from the WMAP and Planck PR2 data, A&A, 2016

- Galactic components are partially correlated

AMCA: robustness w/r to partial correlations
Bobin J., et al., IEEE Tr. on signal processing, 2015

- Many point sources as outliers

rGMCA: robustness w/r to outliers, based on morphological diversity
Chenot, et al., SIAM Imaging Sciences, 2018

- Accounting for sparse parametric non-linear physical models

premise: include astrophysical models for a more precise estimation of the  
               galactic sources

Irfan, et al., MNRAS, 2018

Planck data

Synchrotron Dust

Dust  
Temperature

Dust 
Spectral index



JIONC - March, 16th 2017

Imaging the dawn of the Universe
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Radio-interferometric measurements
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FOURIER  

xb

{b = ⇥x+ n

M N
observations variables

This is a compressed sensing reconstruction problem
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Combining CS and BSS
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Combining CS and BSS
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A naive approach would consist in solving independently each problem:

=

⇥
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Multichannel CS

Blind source separation

min
X
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Standard L1 minimization
Matrix completion …

min
A,S

K(S) + kX�ASk2F
K(S) = k⇤� (S�T )kp
Positivity …
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The DecGMCA algorithm

 18

min
A,S

k⇤� (S�T )kp +
X

i

������
bi �

0

@
X

j

aijsj

1

A⇥i

������

2

2

Ming et al,  Joint Multichannel Deconvolution and Blind Source Separation,  SIAM Imaging Science, 2017.

The DecGMCA aims at solving the multi-convex problem:

Iteratively alternates between:
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Application to radio-interferometric data
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Combines CS and deconvolution:

- incomplete measurement in the Fourier domain

- Each observation has a different resolution
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Application to radio-interferometric data
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Application to radio-interferometric data
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Potential links with GW data analysis
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Regularization params., 
weight matrix, etc. 

Data fidelity term Sparse regularization 

- Strong connections with dictionary learning

- Learn elementary waveforms that yield a sparse decomposition

Extensions: robustness w/r glitches, account for missing data, etc.

- Preliminary application to GW denoising Torres-Forné, et al., 2016
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Potential links with GW data analysis
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- Signature unmixing will be challenging for the LISA data processing

Sparse combination 
waveforms of different categories 

(EMRI, MBHB, etc.)

x =
PX

p

KpX

k

↵pk�pk + n

=
PX

p

↵p�p + n

Waveforms from different categories are sparse in different domains
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Potential links with GW data analysis
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Analogy in image processing: Morphological Component Analysis

 

The separation task: decomposition of an image
 
into a texture and a natural (piecewise smooth)

scene part.

Separation of Texture from 
Piecewise Smooth Content

•Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on Image Proces., 14, 10,  pp 1570--1582, 2005
Curvelets DCT/L-DCT

x =
KX

i=1

�i↵i '1 = �1↵1 '2 = �2↵2

min
↵1,··· ,↵K

KX

i=1
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where 8i = 1, · · · ,K; 'i = �i↵i

Starck, et al., 04

Bobin, et al., 07
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Take-away messages
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Codes are made publicly available at www.cosmostat.org

- pyGMCALab: python implementation of GMCA and its extensions

- As part of ISAP package: GMCA (C++) and L-GMCA (IDL)

Exploit sparsity and morphological diversity

- A highly flexible framework to tackle Sparse MF problems

- Highly reliable algorithms in real-world applications in astrophysics

- Potential connections to tackle GW unmixing problems

http://www.cosmostat.org
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Thanks !


