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Reminder: Machine Learning
Machine learning (ML): algorithms that can learn from data and 
make predictions on it


SUPERVISED: classification and regression by learning from labeled data

UNSUPERVISED: learning from data without labels


Deep learning: subfield of machine learning 

use of raw data (no feature engineering) 

typically based on artificial neural networks
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Recurrent Neural Networks

Convolutional Neural Networks

SUPERVISED

Random Forests

Support Vector 
Machines

UNSUPERVISED

Genetic 
Programming

Generative 
adversarial 
networks Principal Component Analysis

Gaussian Mixture Models

Autoencoders

Deep learning
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Why ML in GW interferometers (I)?
“Data” in a gravitational wave interferometer:


Strain: h(t) 

It is a time series

It is highly contaminated by noise:


• Stationary noise (detector sensitivity, detector upgrade and tuning)


• Transient Noise or glitches: short duration artefacts that can obscure or mimic the 
gravitational wave signal


➡ Glitches vary widely in duration, frequency range and morphology


➡ No statistical model is able to capture the complexity of the glitch population


➡ Separating the glitches from the astrophysical signal is a challenging task that could 
be achieved with machine learning algorithms!  
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Why ML in GW interferometers (I)?
“Data” in a gravitational wave interferometer:


Strain: h(t) 

It is a time series

It is highly contaminated by noise:


• Stationary noise (detector sensitivity, detector upgrade and tuning)


• Transient Noise or glitches: short duration artefacts that can obscure or mimic the 
gravitational wave signal


➡ Glitches vary widely in duration, frequency range and morphology


➡ No statistical model is able to capture the complexity of the glitch population


➡ Separating the glitches from the astrophysical signal is a challenging task that could 
be achieved with machine learning algorithms!  


Auxiliary channels (Hundreds of thousands auxiliary data streams: monitors status of 
the detector and of its physical environment)

Could provide information about the source of the glitches and coupling with h(t)

Detector characterisation

Deep-learning algorithms: in principle able to learn and evidence non-linear couplings
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Glitches identification and subtraction
Some ML methods tested:


Convolutional neural networks:

Used to classify of glitches —> only strain info

Glitches represented usually as spectrograms


Tree-based algorithms (Genetic programming and Random Forests)

Determine the origin of glitches though the auxiliary channels

 Test with two classes of transients with known instrumental origin

Use features of the time series


Long Short Term Memory (LSTM)

Data denoising using time evolution of the auxiliary channels

Test done on calibration lines and 60 Hz mains with few selected witness 
channels
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Why ML in GW interferometers (II)?
Data analysis: extract small signal buried into a much larger 
noise


Big-data: ML algorithms could provide a fast way to analyse the 
increasing volume of data produced by GW detectors
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Modelled Searches
Matched filtering

• Time consuming 

• Specific waveform families/type of objects


Machine learning

• Faster —> could allow to test wider 

parameter space/more objects

Un-modelled Searches
“Burst” searches

• More sensible to glitches


Machine learning

• Could provide techniques intermediate 

between modelled and unmodeled

• Better glitch discrimination
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ML for gravitational wave detectors
Main applications:


Transient Noise classification and subtraction

 citizen science (Gravity Spy, Class. Quantum Gravity 34 (2017) 064003) 

Class. Quantum Grav. 32 (2015) 215012; Class. Quantum Grav. 34 (2017) 034002; Class. Quantum Grav. 35 (2018) 095016; Phys. Rev. 
D 95 (2017) 104059; Phys. Rev. D 97 (2018) 101501(R) 

Astrophysical signal searches

Detecting Compact Binary Coalescence (Phys. Rev. Lett. 120 (2018) 141103; Physics Letters B 778 (2018) 64; 
Phys. Rev. D 91 (2015) 062004; Phys. Rev. D 96 (2017) 104015) 

Detecting Bursts (Class. Quantum Grav. 32 (2015) 245002; ) 

Supernova searches (2 papers in preparation)

 Continuous waves searches (papers in prearation) 

Parameter estimation (Mon. Not. Roy. Astron. Soc. 421 (2012) 169; Phys. Rev. D 97 (2018) 044039;) 

System Control

Lock acquisition, beam spot position control


Data

strain h(t) and/or auxiliary channels

Data representation: spectrograms or time series 
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Gravity Spy
Citizen Science and Glitch Classification


LIGO looks for variation 1000 times smaller than the diameter of a 
proton.


Susceptible to a great deal of instrumental and environmental noise.

Transient noise (glitches) can mimic astrophysical signals.

Machine Learning is incredibly helpful, but does not alone resolve all noise.


Human intuition remains a valuable asset in the effort to characterise 
glitches


Web + glitch classification + Deep Learning = citizen science done 
right!


Two way path: human classification provides labeled classes as 
training data for ML + LIGO glitches classified by CNN with lowest 
“confidence score” back to the citizen scientists for further analysis = 
final label.
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Gravity Spy dataset
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Glitches represented as spectrograms 
Only high SNR (SNR>7.5)



GRAVITY SPY

@gravityspyzoo

LIGO Citizen Science: >2.9 million classifications

LVC Members: Scotty Coughlin, Mike Zevin, Josh 
Smith, Andy Lundgren, Duncan MacLeod, Vicky Kalogera

Clustering algorithms / 
identification of novel glitch classes

Combining Machine Learning & Crowdsourcing

www.gravityspy.orgarXiv: 1611.04596

http://www.gravityspy.org
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Deep Filtering
Autors: Daniel George & E. A. Huerta Physics Letters B 778 (2018) 64, Phys. Rev. D 97 
(2018) 044039; 

Data: raw time series (no spectrograms)


System of two deep convolutional neural networks:

1. Find a signal in a highly noisy time-series data stream

2. Estimate parameters of signals 


 Training with injections of GW templates originating from quasi-
circular, non-spinning, stellar mass BBH systems
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Example of LIGO whitened data (noise) + 
injected signal (SNR=7.5)



Deep Filtering (plots)
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100% sensitivity when SNR is greater than 
10 (false alarm rate tuned to be less than 
1%, i.e., 1 per 100 seconds of noise in the 
test set was classified as signals

Errors follow a Gaussian distribution for 
each region of the parameter space for 
SNR greater than 10. 

Deep Filtering error < 5% for SNR>50 

Matched-Filtering error with same template 
bank is always > 11% 
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Deep Filtering (conclusion)
Similar performance compared to matched-filtering while being 
several orders of magnitude faster


Demo of real-time detection of GW150914 https://
www.youtube.com/watch?v=87zEll_hkBE&feature=youtu.be


Not integrated in the current pipelines but promising results


Possible extension for online searches


Tests ongoing with other classes of signals
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Conclusion
ML in GW astronomy looks very promising!


It will be fundamental for the next future and to handle in a fast 
way the high volume of data we expect


BUT:


None of the ML methods have been integrated in the current 
detection pipelines/production


Tests with a limited volume of data


Frequency-time representations usually used: not necessarily 
optimal


Auxiliary channels mainly used for detector characterisation/
denoising —>no application for signal detection
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