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Remlnder Machlne Learning

6 Machlne Iearnlng (ML) algorithms that can learn from data and
make predictions on it

- .

v SUPERVISED: classification and regression by learning from labeled data
v UNSUPERVISED: learning from data without labels

@ Deep learning: subfield of machine learning

v use of raw data (no feature engineering)

v typically based on artificial neural networks

Deep learning
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Why ML in GW interferometers (l)?

@ “Data” in a gravitational wave interferometer: /-\\
d Ad
v Strain: h(t) ( ' /' 2
> It is a time series ~ S
i | | " Ad  change in relative position
> It is highly contaminated by noise: e separation

e Stationary noise (detector sensitivity, detector upgrade and tuning)

e Transient Noise or glitches: short duration artefacts that can obscure or mimic the
gravitational wave signal

= Glitches vary widely in duration, frequency range and morphology
= No statistical model is able to capture the complexity of the glitch population

= Separating the glitches from the astrophysical signal is a challenging task that could
be achieved with machine learning algorithms!
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e Stationary noise (detector sensitivity, detector upgrade and tuning)

e Transient Noise or glitches: short duration artefacts that can obscure or mimic the
gravitational wave signal

= Glitches vary widely in duration, frequency range and morphology

= No statistical model is able to capture the complexity of the glitch population

= Separating the glitches from the astrophysical signal is a challenging task that could
be achieved with machine learning algorithms!

v Auxiliary channels (Hundreds of thousands auxiliary data streams: monitors status of
the detector and of its physical environment)

» Could provide information about the source of the glitches and coupling with h(t)
» Detector characterisation

> Deep-learning algorithms: in principle able to learn and evidence non-linear couplings
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Glitches identification and subtraction

@ Some ML methods tested:

v Convolutional neural networks:

» Used to classify of glitches —> only strain info
> Glitches represented usually as spectrograms

v Tree-based algorithms (Genetic programming and Random Forests)

» Determine the origin of glitches though the auxiliary channels
» Test with two classes of transients with known instrumental origin
» Use features of the time series

v Long Short Term Memory (LSTM)

» Data denoising using time evolution of the auxiliary channels

» Test done on calibration lines and 60 Hz mains with few selected withess
channels
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Why ML m GW mterferometers (11)?

@ Data analy3|s extract small signhal buried into a much larger
~noise

- @ Big-data: ML algorithms could provide a fast way to analyse the
"~ increasing volume of data produced by GW detectors
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ML for gravitational wave detectors

@ Main applications:

v Transient Noise classification and subtraction

P cCitizen science (Gravity Spy, Class. Quantum Gravity 34 (2017) 064003)

» Class. Quantum Grav. 32 (2015) 215012; Class. Quantum Grav. 34 (2017) 034002; Class. Quantum Grav. 35 (2018) 095016; Phys. Rev.
D 95 (2017) 104059; Phys. Rev. D 97 (2018) 101501(R)

v Astrophysical signal searches

» Detecting Compact Binary Coalescence (Phys. Rev. Lett. 120 (2018) 141103; Physics Letters B 778 (2018) 64;
Phys. Rev. D 91 (2015) 062004; Phys. Rev. D 96 (2017) 104015)

> Detecting Bursts (Class. Quantum Grav. 32 (2015) 245002; )
> Supernova searches (2 papers in preparation)
» Continuous waves searches (papers in prearation)

v Parameter estimation (Mon. Not. Roy. Astron. Soc. 421 (2012) 169; Phys. Rev. D 97 (2018) 044039;)

v System Control

» Lock acquisition, beam spot position control

@ Data

v strain h(t) and/or auxiliary channels

v Data representation: spectrograms or time series
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Gravity Spy

@ Citizen Science and Glitch Classification

@ LIGO looks for variation
proton.

1000 times smaller than the diameter of a

v Susceptible to a great deal of instrumental and environmental noise.

v Transient noise (glitches) can mimic astrophysical signals.

v Machine Learning is incredi

bly helpful, but does not alone resolve all noise.

@ Human intuition remains a valuable asset in the effort to characterise

glitches

@ Web + glitch classification + Deep Learning = citizen science done

right!

@ Two way path: human c
training data for ML + L
“confidence score” bac
final label.

assification provides labeled classes as
GO glitches classified by CNN with lowest

K to the citizen scientists for further analysis =
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Gravity Spy dataset

* Glitches represented as spectrograms
* Only high SNR (SNR>7.5)
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http://www.gravityspy.org

Deep Filtering

@ Autors: Daniel George & E. A. Huerta pnysics Letters B 778 (2018) 64, Phys. Rev. D 97
(2018) 044039:

@ Data: raw time series (no spectrograms)

Example of LIGO whitened data (noise) +
injected signal (SNR=7.5)
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@ System of two deep convolutional neural networks:
1. Find a signal in a highly noisy time-series data stream
2. Estimate parameters of signals
@ Training with injections of GW templates originating from quasi-
circular, non-spinning, stellar mass BBH systems
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Deep Filtering (plots)

2 100% sensitivity when SNR is greater than
10 (false alarm rate tuned to be less than
1%, i.e., 1 per 100 seconds of noise in the
test set was classified as signals
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Deep Filtering (conclusion)

@ Similar performance compared to matched-filtering while being
several orders of magnitude faster

@ Demo of real-time detection of GW150914 https://
www.youtube.com/watch?v=87zEIll hkBE&feature=youtu.be

@ Not integrated in the current pipelines but promising results
@ Possible extension for online searches

@ Tests ongoing with other classes of signals
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Conclusion

@ ML in GW astronomy looks very promising!

@ |t will be fundamental for the next future and to handle in a fast
way the high volume of data we expect

BUT:

— None of the ML methods have been integrated in the current
detection pipelines/production

— Tests with a limited volume of data

— Frequency-time representations usually used: not necessarily
optimal

— Auxiliary channels mainly used for detector characterisation/
denoising —>no application for signal detection
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