Hadron interactions studied with effective field theories

Kanchan P. Khemchandani
(Unifesp)
and
Alberto Martínez Torres
(IFUSP)

Dynamical generation of resonances in two, three (and more) hadron systems

- Weakly bound two, three and more hadron systems
- Coupled channel solution of Bethe-Salpeter equation for two hadron systems
- Faddeev equations for three-hadron system
- For more than 3-hadrons, we solve Faddeev equations for 3-body subsystem(s) and parameterize as a two-hadron amplitude -> solve Faddeev equations again.

Examples: Two light hadron system

Formalism:

SU(3):

$$
\begin{aligned}
\mathcal{L}_{\mathrm{V} B}=-g\left\{\left\langle\bar{B} \gamma_{\mu}\left[V_{8}^{\mu}, B\right]\right\rangle+\left\langle\bar{B} \gamma_{\mu} B\right\rangle\left\langle V_{8}^{\mu}\right\rangle+\frac{1}{4 M}(\right. & \left.F\left\langle\bar{B} \sigma_{\mu \nu}\left[V_{8}^{\mu \nu}, B\right]\right\rangle+D\left\langle\bar{B} \sigma_{\mu \nu}\left\{V_{8}^{\mu \nu}, B\right\}\right\rangle\right) \\
& \left.+\left\langle\bar{B} \gamma_{\mu} B\right\rangle\left\langle V_{0}^{\mu}\right\rangle+\frac{C_{0}}{4 M}\left\langle\bar{B} \sigma_{\mu \nu} V_{0}^{\mu \nu} B\right\rangle\right\}
\end{aligned} \quad \begin{aligned}
\mathrm{D}=2.4 \\
\mathrm{~F}=0.82
\end{aligned} \longrightarrow \mathrm{D}+\mathrm{F}=3.22 \approx \kappa_{\rho} \quad \mathrm{C}_{0}=3 \mathrm{~F}-\mathrm{D} \quad g=\frac{m_{v}}{\sqrt{2} f_{\pi}} .
$$

$$
\begin{gathered}
V^{\mu \nu}=\partial^{\mu} V^{\nu}-\partial^{\nu} V^{\mu}+i g\left[V^{\mu}, V^{\nu}\right] \\
V=\left(\begin{array}{ccc}
\frac{\rho^{0}}{2}+\frac{\omega}{2} & \frac{\rho^{+}}{\sqrt{2}} & \frac{K^{*+}}{\sqrt{2}} \\
\frac{\rho^{-}}{\sqrt{2}} & -\frac{\rho^{0}}{2}+\frac{\omega}{2} & \frac{K^{* 0}}{\sqrt{2}} \\
\frac{K^{*-}}{\sqrt{2}} & \frac{\bar{K}^{* 0}}{\sqrt{2}} & \frac{\phi}{\sqrt{2}}
\end{array}\right) \quad B=\left(\begin{array}{ccc}
\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & n \\
\Xi^{-} & \Xi^{0} & \frac{-2 \Lambda}{\sqrt{6}}
\end{array}\right)
\end{gathered}
$$

Formalism:

$$
\mathrm{PB} \rightarrow \mathrm{VB}
$$

Extension of Kroll-Ruderman term $\boldsymbol{\gamma} \leftrightarrows \mathrm{V}$ in $\boldsymbol{\gamma} \boldsymbol{N} \rightarrow \pi \mathrm{N}$ and introducing it in the non-linear sigma model:

Formalism:

For light pseudoscalar baryon interaction, we use standard chiral Lagrangian

$$
\begin{aligned}
\mathcal{L}_{P B} & =\left\langle\bar{B} i \gamma^{\mu} \partial_{\mu} B+\bar{B} i \gamma^{\mu}\left[\Gamma_{\mu}, B\right]\right\rangle-M_{B}\langle\bar{B} B\rangle \\
& +\frac{1}{2} D^{\prime}\left\langle\bar{B} \gamma^{\mu} \gamma_{5}\left\{u_{\mu}, B\right\}\right\rangle+\frac{1}{2} F^{\prime}\left\langle\bar{B} \gamma^{\mu} \gamma_{5}\left[u_{\mu}, B\right]\right\rangle \\
\Gamma_{\mu} & =\frac{1}{2}\left(u^{\dagger} \partial_{\mu} u+u \partial_{\mu} u^{\dagger}\right), u_{\mu}=i u^{\dagger} \partial_{\mu} U u^{\dagger}, \\
U & =u^{2}=\exp \left(i \frac{P}{f_{P}}\right) \cdot \\
P & =\left(\begin{array}{ccc}
\pi^{0}+\frac{1}{\sqrt{3}} \eta & \sqrt{2} \pi^{+} & \sqrt{2} K^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}+\frac{1}{\sqrt{3}} \eta & \sqrt{2} K^{0} \\
\sqrt{2} K^{-} & \sqrt{2} \bar{K}^{0} & \frac{-2}{\sqrt{3}} \eta
\end{array}\right)
\end{aligned}
$$

Examples: Two light hadron system

Solving Bethe-Salpeter equation in coupled channel approach for S = - 2 systems: $\pi \Xi, \eta \Xi, \bar{K} \Sigma, \bar{K} \Lambda, \rho \Xi, \omega \Xi, \phi \Xi, \bar{K}^{*} \Sigma$ and $\bar{K}^{*} \Lambda$

$$
\begin{aligned}
& \begin{array}{lll}
& & \\
1000 \\
\hline
\end{array} \\
& \begin{array}{l}
M=\left(1684.7 \pm 1.3_{-1.6}^{+2.2}\right) \Gamma=\left(8.1_{-3.5-0.9}^{+3.9+1.0}\right) \mathrm{MeV} \text { BABAR } \\
M=(1688 \pm 2) \mathrm{MeV}, \quad \Gamma=(11 \pm 4) \mathrm{MeV} \text { BELLE }
\end{array}
\end{aligned}
$$

Examples: Two light hadron systems

PHYSICAL REVIEW D 97, 034005 (2018)

Recent publication:

> Why $\mathbf{\Xi}(\mathbf{1 6 9 0})$ and $\mathbf{\Xi}(\mathbf{2 1 2 0})$ are so narrow
> K. P. Khemchandani, ${ }^{1,2,{ }^{*}}$ A. Martínez Torres, ${ }^{3}$ A. Hosaka, ${ }^{4}$ H. Nagahiro, ${ }^{4,5}$ F. S. Navarra, ${ }^{3}$ and M. Nielsen ${ }^{3}$
K. P. Khemchandani, A. Martínez. Torres, H. Kaneko, H. Nagahiro, A. Hosaka, Phys. Rev. D 84, 094018 (2011)

Other systems:
K. P. Khemchandani, A. Martínez Torres,H. Nagahiro, A. Hosaka, Phys.Rev. D88 (2013) 114016.
K. P. Khemchandani, A. Martínez Torres,H. Nagahiro, A. Hosaka, Phys.Rev. D85 (2012) 114020.
K. P. Khemchandani, A. Martínez Torres, F.S.Navarra, M.Nielsen, L.Tolos Phys.Rev. D91 (2015) 094008.

Examples: Three hadron systems

$$
\begin{gathered}
T=T^{1}+T^{2}+T^{3} \\
T^{i}=t^{i} \delta^{3}\left(\overrightarrow{k_{i}^{\prime}}-\overrightarrow{k_{i}}\right)+t^{i} g\left(T^{j}+T^{k}\right) \\
T^{1}=\frac{T^{1}=t^{1} \delta^{3}\left(\overrightarrow{k_{1}^{\prime}}-\overrightarrow{k_{1}}\right)+t^{1} g\left(T^{2}+T^{3}\right)}{\square}+\frac{\square}{\square}+\bar{\square}+\cdots
\end{gathered}
$$

Examples: Three hadron systems

Very important finding of our work

kind of a 3 body force!
+3 body forces from the chiral Lagrangian

The sum of these three-body forces cancels (exactly, analytically) in SU(3)/Chiral limit \Rightarrow study of multichannel three (and more) hadron systems possible.

Examples: Three hadron systems

$\pi \pi \mathbf{N}$ and coupled channel system

$$
\pi^{0} \pi^{0} n, \pi^{0} \pi^{-} p, \pi^{0} K^{+} \Sigma^{-}, \pi^{0} K^{0} \Sigma^{0}
$$

Coupled channels: $\pi^{0} K^{0} \Lambda, \pi^{0} \eta n, \pi^{+} \pi^{-} n, \pi^{+} K^{0} \Sigma^{-}, \pi^{-} \pi^{+} n$,

$$
\pi^{-} \pi^{0} p, \pi^{-} K^{+} \Sigma^{0}, \pi^{-} K^{0} \Sigma^{+}, \pi^{-} K^{+} \Lambda, \pi^{-} \eta p
$$

RESULTS: $\mathrm{I}=1 / 2, \mathrm{I}_{\pi \pi}=0$
1704-i375/2 MeV
$N^{*}(1710) P_{11}\left[I\left(J^{p}\right)=1 / 2(1 / 2)^{+}\right]^{* * *}$

Examples: More hadron systems

We found a scalar resonance in the study of $\pi \pi K \bar{K}$

$$
\sqrt{s}(\mathrm{MeV}) \quad \sqrt{s_{12}}(\mathrm{MeV})
$$

Examples: Three hadron systems

arXiv:1805.08330v1 [hep-ph] 22 May 2018

K^{*} mesons with hidden charm arising from $K X(3872)$ and $K Z_{c}(3900)$ dynamics
Xiu-Lei Ren, ${ }^{1}$ Brenda B. Malabarba, ${ }^{2}$ Li-Sheng Geng, ${ }^{3,4, *}$ K. P. Khemchandani, ${ }^{5,3, \dagger}$ and A. Martínez Torres ${ }^{2,3}$

Examples: Three hadron systems

Many other systems have been studied:

- Searching for exotic states in the N(pi)K system: K.P. Khemchandani, A. Martınez Torres, E. Oset, Phys. Lett. B 675 (2009) 407; arXiv:0902.4425 [nucl-th].
- S=-1 Meson-meson-baryon systems : A. Martınez, K. P. Khemchandani and E. Oset, Phys. Rev. C (Rapid Communication) 77 (2008) 042203; arXiv:0706.2330 [nucl-th]
- The $X(2175)$ as a resonant state of the phi K anti-K system: A. Martınez Torres, K.P. Khemchandani, L.S. Geng, M. Napsuciale, E. Oset, Phys. Rev. D 78 (2008) 074031; arXiv:0801.3635 [nucl-th].
- Testing the three-hadron nature of the $\mathrm{N}^{*}(1920)$ resonance A. Martınez Torres, K.P. Khemchandani, Ulf-G. Meissner, E. Oset, Eur. Phys. J. A 41,361-368 (2009); arXiv:0902.3633 [nucl-th].
- Solution to Faddeev equations with two-body experimental amplitudes as input and application to $\mathrm{J}^{* *} \mathrm{P}=$ $1 / 2+$, S = 0 baryon resonances A. Martınez Torres, K.P. Khemchandani, E. Oset, Phys. Rev. C 79 (2009) 065207; arXiv:0812.2235 [nucl-th].
- The Y(4260) as a J/psi K anti-K system A. Martınez Torres, K.P. Khemchandani, D. Gamermann, E. Oset, submitted to Phys. Rev. D 80 (2009) 094012, arXiv:0906.5333 [nuclth].
- Theoretical support for the (1300) and the recently claimed $\mathrm{f} 0(1790)$ as molecular resonances, A. Martınez Torres, K. P. Khemchandani, D. Jido, A. Hosaka, Phys. Rev. D 84 (2011) 074027, arXiv:1106.6101 [nucl-th].

Reactions with hadron in final state

Mesic-nuclei production

Reactions with hadron in final state

Applications to heavy ion collisions

PHYSICAL REVIEW D 97, 056001 (2018)

Absorption and production cross sections of K and K^{*}
A. Martínez Torres*
Instituto de Física, Universidade de São Paulo, C.P. 66318, 05389-970 São Paulo, São Paulo, Brazil
K. P. Khemchandani
Universidade Federal de São Paulo, C.P. 01302-907 São Paulo, São Paulo, Brazil
L. M. Abreu ${ }^{\ddagger}$
Instituto de Física, Universidade Federal da Bahia, Campus Universitário de Ondina,
40170-115 Bahia, Brazil
F. S. Navarra § and M. Nielsen ${ }^{\|}$
Instituto de Física, Universidade de São Paulo, C.P. 66318, 05389-970 São Paulo, São Paulo, Brazil

Applications to heavy ion collisions

(a)

(b)

(c)

Unstable hadrons in finite volume: ASK Alberto

An analysis of the Lattice QCD spectra for $D_{s 0}^{*}(2317)$ and $D_{s 1}^{*}(2460)$

A. Martínez Torres ${ }^{* a}$, E. Oset ${ }^{b}$, S. Prelovsek $^{c, d, e}$, A. Ramos ${ }^{f}$

Unstable hadrons in finite volume: ASK Alberto

PHYSICAL REVIEW C 86, 055201 (2012)
Strategy to find the two $\boldsymbol{\Lambda}(1405)$ states from lattice $\mathbf{Q C D}$ simulations
A. Martínez Torres, ${ }^{1}$ M. Bayar, ${ }^{2,3}$ D. Jido, ${ }^{1,4}$ and E. Oset ${ }^{2}$

