LIA meeting, ITA 13 June 2018

Hadron interactions studied with effective field theories

Kanchan P. Khemchandani (Unifesp) and Alberto Martínez Torres (IFUSP)

Dynamical generation of resonances in two, three (and more) hadron systems

- Weakly bound two, three and more hadron systems
- Coupled channel solution of Bethe-Salpeter equation for two hadron systems
- Faddeev equations for three-hadron system
- For more than 3-hadrons, we solve Faddeev equations for 3-body subsystem(s) and parameterize as a two-hadron amplitude—> solve Faddeev equations again.

Examples: Two light hadron system

 \boldsymbol{B}

Formalism:

SU(3):

$$\mathcal{L}_{VB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V_{8}^{\mu}, B \right] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V_{8}^{\mu} \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[V_{8}^{\mu\nu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ V_{8}^{\mu\nu}, B \right\} \rangle \right) \right\} + \langle \bar{B}\gamma_{\mu}B \rangle \langle V_{0}^{\mu} \rangle + \frac{C_{0}}{4M} \langle \bar{B}\sigma_{\mu\nu}V_{0}^{\mu\nu}B \rangle \right\}$$

$$\begin{array}{c} \mathsf{D} = 2.4 \\ \longrightarrow \\ \mathsf{F} = 0.82 \end{array} \xrightarrow{} \mathsf{D} + \mathsf{F} = 3.22 \\ \end{array} \approx \kappa_{\rho} \quad \mathsf{C}_0 = 3\mathsf{F} - \mathsf{D} \quad g = \frac{m_v}{\sqrt{2}f_\pi}$$

$$V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$$

$$V = \begin{pmatrix} \frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{\rho^{+}}{\sqrt{2}} & \frac{K^{*+}}{\sqrt{2}} \\ \frac{\rho^{-}}{\sqrt{2}} & -\frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{K^{*0}}{\sqrt{2}} \\ \frac{K^{*-}}{\sqrt{2}} & \frac{\bar{K}^{*0}}{\sqrt{2}} & \frac{\phi}{\sqrt{2}} \end{pmatrix} \qquad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^{-} & \Xi^{0} & \frac{-2\Lambda}{\sqrt{6}} \end{pmatrix}$$

Formalism:

$PB \rightarrow VB$

Extension of Kroll-Ruderman term $\gamma \Rightarrow V$ in $\gamma N \rightarrow \pi N$ and introducing it in the non-linear sigma model:

Formalism:

For light pseudoscalar baryon interaction, we use standard chiral Lagrangian

$$\mathcal{L}_{PB} = \langle \bar{B}i\gamma^{\mu}\partial_{\mu}B + \bar{B}i\gamma^{\mu}[\Gamma_{\mu}, B] \rangle - M_{B}\langle \bar{B}B \rangle + \frac{1}{2}D'\langle \bar{B}\gamma^{\mu}\gamma_{5}\{u_{\mu}, B\} \rangle + \frac{1}{2}F'\langle \bar{B}\gamma^{\mu}\gamma_{5}[u_{\mu}, B] \rangle$$

$$\Gamma_{\mu} = \frac{1}{2} \left(u^{\dagger} \partial_{\mu} u + u \partial_{\mu} u^{\dagger} \right), \ u_{\mu} = i u^{\dagger} \partial_{\mu} U u^{\dagger},$$
$$U = u^{2} = \exp \left(i \frac{P}{f_{P}} \right).$$

$$P = \begin{pmatrix} \pi^{0} + \frac{1}{\sqrt{3}}\eta & \sqrt{2}\pi^{+} & \sqrt{2}K^{+} \\ \sqrt{2}\pi^{-} & -\pi^{0} + \frac{1}{\sqrt{3}}\eta & \sqrt{2}K^{0} \\ \sqrt{2}K^{-} & \sqrt{2}\bar{K}^{0} & \frac{-2}{\sqrt{3}}\eta \end{pmatrix}$$

Examples: Two light hadron systems

PHYSICAL REVIEW D 97, 034005 (2018)

Recent publication:

Why $\Xi(1690)$ and $\Xi(2120)$ are so narrow

K. P. Khemchandani,^{1,2,*} A. Martínez Torres,³ A. Hosaka,⁴ H. Nagahiro,^{4,5} F. S. Navarra,³ and M. Nielsen³

	K. P. Khemchandani, A. Martínez. Torres, H. Kaneko, H. Nagahiro, A. Hosaka, Phys. Rev. D 84, 094018 (2011)
Other systems:	K. P. Khemchandani, A. Martínez Torres,H. Nagahiro, A. Hosaka, Phys.Rev. D88 (2013) 114016.
	K. P. Khemchandani, A. Martínez Torres, H. Nagahiro, A. Hosaka, Phys.Rev. D85 (2012) 114020.
	K. P. Khemchandani, A. Martínez Torres, F.S.Navarra, M.Nielsen, L.Tolos Phys.Rev. D91 (2015) 094008.

Very important finding of our work

The sum of these three-body forces cancels (exactly, analytically) in SU(3)/Chiral limit ⇒ study of multichannel three (and more) hadron systems possible.

 $\pi\pi \mathbf{N}$ and coupled channel system

 $\pi^{0}\pi^{0}n, \pi^{0}\pi^{-}p, \pi^{0}K^{+}\Sigma^{-}, \pi^{0}K^{0}\Sigma^{0},$ Coupled channels: $\pi^{0}K^{0}\Lambda, \pi^{0}\eta n, \pi^{+}\pi^{-}n, \pi^{+}K^{0}\Sigma^{-}, \pi^{-}\pi^{+}n, \pi^{-}\pi^{0}p, \pi^{-}K^{+}\Sigma^{0}, \pi^{-}K^{0}\Sigma^{+}, \pi^{-}K^{+}\Lambda, \pi^{-}\eta p$

RESULTS: I=1/2, $I_{\pi\pi} = 0$ 1704 - *i*375/2 *MeV* $N^*(1710) P_{11}[I(J^p) = 1/2(1/2)^+]^{***}$

We found a scalar resonance in the study of $\pi\pi KK$

arXiv:1805.08330v1 [hep-ph] 22 May 2018

 K^* mesons with hidden charm arising from KX(3872) and $KZ_c(3900)$ dynamics

Xiu-Lei Ren,¹ Brenda B. Malabarba,² Li-Sheng Geng,^{3,4,*} K. P. Khemchandani,^{5,3,†} and A. Martínez Torres^{2,3}

Many other systems have been studied:

- Searching for exotic states in the N(pi)K system: K.P. Khemchandani, A. Martınez Torres, E. Oset, Phys. Lett. B 675 (2009) 407; arXiv:0902.4425 [nucl-th].
- S=-1 Meson-meson-baryon systems : A. Martinez, K. P. Khemchandani and E. Oset, Phys. Rev. C (Rapid Communication) 77 (2008) 042203; arXiv:0706.2330 [nucl-th]
- The X(2175) as a resonant state of the phi K anti-K system: A. Martinez Torres, K.P. Khemchandani, L.S. Geng, M. Napsuciale, E. Oset, Phys. Rev. D 78 (2008) 074031; arXiv:0801.3635 [nucl-th].
- Testing the three-hadron nature of the N*(1920) resonance A. Martinez Torres, K.P. Khemchandani, Ulf-G. Meissner, E. Oset, Eur. Phys. J. A 41,361-368 (2009); arXiv:0902.3633 [nucl-th].
- Solution to Faddeev equations with two-body experimental amplitudes as input and application to J**P = 1/2+, S = 0 baryon resonances A. Martinez Torres, K.P. Khemchandani, E. Oset, Phys. Rev. C 79 (2009) 065207; arXiv:0812.2235 [nucl-th].
- The Y(4260) as a J/psi K anti-K system A. Martınez Torres, K.P. Khemchandani, D. Gamermann, E. Oset, submitted to Phys. Rev. D 80 (2009) 094012, arXiv:0906.5333 [nuclth].
- Theoretical support for the (1300) and the recently claimed f0(1790) as molecular resonances, A. Martınez Torres, K. P. Khemchandani, D. Jido, A. Hosaka, Phys. Rev. D 84 (2011) 074027, arXiv:1106.6101 [nucl-th].

Reactions with hadron in final state

Reactions with hadron in final state

Applications to heavy ion collisions

PHYSICAL REVIEW D 97, 056001 (2018)

Absorption and production cross sections of K and K^*

A. Martínez Torres^{*}

Instituto de Física, Universidade de São Paulo, C.P. 66318, 05389-970 São Paulo, São Paulo, Brazil

K. P. Khemchandani[†] Universidade Federal de São Paulo, C.P. 01302-907 São Paulo, São Paulo, Brazil

L. M. Abreu[‡]

Instituto de Física, Universidade Federal da Bahia, Campus Universitário de Ondina, 40170-115 Bahia, Brazil

F. S. Navarra[§] and M. Nielsen^{||}

Instituto de Física, Universidade de São Paulo, C.P. 66318, 05389-970 São Paulo, São Paulo, Brazil

EEDINGS IFNCE finite OF volume: ASK Alberto

PR

An analysis of the Lattice QCD spectra for $D_{s0}^*(2317)$ and $D_{s1}^{*}(2460)$

A. Martínez Torres^{*a}, E. Oset^b, S. Prelovsek^{c,d,e}, A. Ramos^f

Unstable hadrons in finite volume: ASK Alberto

PHYSICAL REVIEW C 86, 055201 (2012)

Strategy to find the two $\Lambda(1405)$ states from lattice QCD simulations

A. Martínez Torres,¹ M. Bayar,^{2,3} D. Jido,^{1,4} and E. Oset²

