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Dynamical generation of resonances in 
two, three (and more) hadron systems

• Weakly bound two, three and more hadron systems


• Coupled channel solution of Bethe-Salpeter equation for 
two hadron systems


• Faddeev equations for three-hadron system


• For more than 3-hadrons, we solve Faddeev equations for 
3-body subsystem(s) and parameterize as a two-hadron 
amplitude—> solve Faddeev equations again.   



Examples: Two light hadron 
system
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baryon coupled systems. As we shall show in this article,
⌅(1690) can be understood as a state generated due to
meson-baryon coupled channel dynamics and it is possi-
ble to straightforwardly understand all the recent exper-
imental results reported in Refs. [2, 5, 6]. In this work
we find an evidence for another resonance, which is also
narrower than expected (due to the existence of several
open channels for decay) and can be related to ⌅(2120).
We find that the nature of this state is such that it can be
di�cult to identify its presence in the experimental data.
We suggest possible ways to detect ⌅(2120). Further,
we show that the presence of these resonances a↵ects the
K̄⇤ ! ⇡⌅ and K̄⌃ ! ⇡⌅ cross sections which can be
important in understanding the enhanced ⌅ production
found in the Ar + KCl collisions by the HADES collab-
oration [11].

A study of doubly strange meson-baryon systems has
been made earlier within di↵erent formalisms [12–20]. In
the subsequent discussions we will compare our results
and formalism with those obtained in such previous stud-
ies.

The formalism of the present study is based on solv-
ing the Bethe-Salpeter equation in a coupled channel
approach. To do this we consider all systems with
strangeness �2 formed by a pseudoscalar/vector meson
with an octet baryon: ⇡⌅, ⌘⌅, K̄⌃, K̄⇤, ⇢⌅, !⌅, �⌅,
K̄⇤⌃ and K̄⇤⇤.

We obtain the amplitudes for di↵erent transitions
among these channels using Lagrangians based on ef-
fective field theories. To determine the vector-meson–
baryon interaction we use the formalism developed in
our previous work [23]. A detailed analysis of the low
energy vector meson interaction with octet baryons was
carried out in Ref [23] by calculating s-, t- and u-channel
diagrams and a contact interaction, using a Lagrangian
invariant under the gauge transformations of the hidden-
local symmetry. It was found that the contribution of
all the diagrams is of comparable size and that the full
(summed) amplitude depended on the total spin as well
as the isospin of the system. Following Ref. [23], thus,
we write vector-baryon amplitudes for each spin-isospin
configuration as

V I,S
VB = V I,S

t,VB + V I,S
s,VB + V I,S

u,VB + V I,S
CT,VB. (2)

These amplitudes can be obtained from the general La-
grangian

LVB = �g

(
hB̄�µ [V µ

8 , B]i + hB̄�µBihV µ
8 i (3)

+
1

4M

�
F hB̄�µ⌫ [V µ⌫

8 , B]i + DhB̄�µ⌫ {V µ⌫
8 , B}i

�
,

+hB̄�µBihV µ
0 i +

C0

4M
hB̄�µ⌫V

µ⌫
0 Bi

)
,

where the subscript 8 (0) on the meson fields denotes the
octet (singlet) part of their wave function (relevant in

case of ! and �, for which we assume an ideal mixing).
V µ⌫ represents the tensor field of the vector mesons,

V µ⌫ = @µV ⌫ � @⌫V µ + ig [V µ, V ⌫ ] , (4)

where V and B denote the SU(3) matrices for the (phys-
ical) vector mesons and octet baryons
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In Eq.(3), the coupling g is related to meson decay con-
stants as

g =
mp
2f

, (7)

and the constants D = 2.4, F = 0.82 and C0 = 3F �D
are such that the anomalous magnetic couplings of ⇢NN ,
!NN and �NN vertices are correctly reproduced. These
values have also been found useful in calculations of the
magnetic moments of the baryons in Ref. [24].

It is easy to see that a contact interaction arises from
the commutator part of the vector meson tensor. The
resulting amplitude has a form

V I,S
CT,VB = i CI

CT,VB
g1g2

2
p
M1M2

~� · ~✏2 ⇥ ~✏1, (8)

where M1 (M2) is the mass of the baryon in the initial
(final) state, ✏1 (✏2) represents the polarization vector
of the meson in the initial (final) state, and CI

CT,VB are
isospin dependent coe�cients whose values are given in
the Appendix, in Tables III, IV for the di↵erent rele-
vant channels. In Eq. (8) g1 (g2) is related to the decay
constant of the vector meson in the initial (final) state
through Eq. (7). We recall that the main purpose of the
present article is to study the formation of resonances in
a coupled meson-baryon system. We are, thus, interested
in low energy dynamics of such a system and, as is cus-
tomary, obtain all the amplitudes within a nonrelativistic
approach.

Using the Yukawa-type vertices obtained from Eq. (3),
the s- and u-channel amplitudes are deduced to be

V I,S
s,VB = CI

s,VB

✓
g1g2

2M̄ + m̄

◆
~✏2 · ~� ~✏1 · ~�, (9)

V I,S
u,VB = CI

u,VB

✓
g1g2

2M̄ � m̄

◆
~✏1 · ~� ~✏2 · ~�, (10)

where SU(3) averaged masses of baryons and vector
mesons, respectively, are used for M̄ and m̄, for prac-
tical purposes. To obtain these amplitudes we consider
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Formalism:



Formalism:
PB →VB

Extension of Kroll-Ruderman term γ ➩ V  in γ N  → π N and introducing it in 
the non-linear sigma model:

II. INTERACTIONS

The purpose of the present paper is to study the PB-VB coupled channel interaction

with the motivation to find dynamical generation of resonances in such systems. For this

purpose, it is reasonable to consider that the relative motion in the meson-baryon system is

dominantly in s-wave. The new development of this work is the inclusion of the transition

between PB and VB systems in s-wave. This is done by using the KR theorem to write

the Lagrangian for the γN → πN process and by replacing the γ by a vector meson via

the notion of the vector meson dominance. To show this procedure we start with the πN

Lagrangian from the Gell-Mann-Levi’s linear sigma model,

LπN = ψ̄ [iγµ∂µ − gπNN (σ + iτ⃗ .π⃗γ5)]ψ, (1)

and define

fU5 = σ + iτ⃗ .π⃗γ5, (2)

with

U5 = ξ25 = e(iτ⃗ ·π⃗/f)γ5 , (3)

where f is the field length

f =
(

σ2 + π⃗2
)1/2

. (4)

Further, considering the non-linear constraint

f 2 → f 2
π , (5)

where fπ = 93 MeV is the pion decay constant, we can rewrite the Lagrangian in Eq.(1) as

LπN = ψ̄ [iγµ∂µ − gπNNfπξ5ξ5]ψ.

= N̄ξ†5i/∂ξ
†
5N − gπNNfπN̄N, (6)

where to obtain the last expression we have defined ξ5ψ ≡ N , ψ̄ξ5 ≡ N̄ (which implies

ψ = ξ†5N , ψ̄ = N̄ξ†5). Subsequently, expanding ξ5 in Eq.(6) up to one pion field and

introducing a vector meson field as a gauge boson of the hidden local symmetry

i/∂ −→ i/∂ − g/ρ, (7)
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we obtain

LπNρN = −i
g

2fπ
N̄ [π, ρµ] γµγ5N

→ −i
ggA
2fπ

N̄ [π, ρµ] γµγ5N, (8)

where π = τ⃗ · π and ρ = τ⃗ ·
ρ

2
. In the last expression above we have introduced an arbitrary

value of the nucleon axial coupling constant gA, which was unity (gA = 1) in the Gell-Mann-

Levi’s linear sigma model. Thus, Eq. (8) with gA is the general Lagrangian for πN → ρN

to the leading order in the soft meson regime.

Next, generalizing the Lagrangian in Eq. (8) for the SU(3) case, we get

LPBV B =
−ig

2fπ

(

F ⟨B̄γµγ5 [[P, Vµ] , B]⟩+D⟨B̄γµγ5 {[P, Vµ] , B}⟩
)

, (9)

where the trace ⟨...⟩ has to be calculated in the flavor space and F = 0.46, D = 0.8 such

that F + D ≃ gA = 1.26. The ratio D/(F + D) ∼ 0.63 here is close to the quark model

value of 0.6, and the empirical values of F and D can be found, for example, in Ref. [22].

In our normalization scheme, the SU(3) matrices for the pseudoscalar (P ) and vector

mesons (V ) are written as

V =
1
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and for the baryon (B)

B =

⎛
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The Lagrangian in Eq. (9) leads to the amplitude

V PBV B
ij = i

√
3

g

2fπ
CPBV B

ij , (12)
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value of the nucleon axial coupling constant gA, which was unity (gA = 1) in the Gell-Mann-

Levi’s linear sigma model. Thus, Eq. (8) with gA is the general Lagrangian for πN → ρN

to the leading order in the soft meson regime.
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where the trace ⟨...⟩ has to be calculated in the flavor space and F = 0.46, D = 0.8 such

that F + D ≃ gA = 1.26. The ratio D/(F + D) ∼ 0.63 here is close to the quark model

value of 0.6, and the empirical values of F and D can be found, for example, in Ref. [22].
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3

the exchange of octet baryons. Thus, s-channel diagram
(Eq. (9)) is null for the configurations with isospin 3/2

or spin 3/2. The values of the isospin coe�cients C1/2
s,VB

and CI
u,VB are given in the Appendix, in Table V, and

Tables VI, VII, respectively.
The amplitudes for the t-channel are obtained, as in

Ref. [14],

V I,S
t,VB = �

CI
t,V B

4f2
V

(! + !0)~✏1 · ~✏2, (11)

where !(!0) and ✏1(✏2) are the energy and the polar-
ization vector of the meson in the initial (final) state,
respectively. As can be seen, this amplitude contributes
equally to spin 1/2 as well as spin 3/2 configurations.
The values of CI

t,V B are as given in Ref. [14].
Next, we need the amplitudes for transition between

the pseudoscalar-baryon and vector-baryon channels. A
formalism to obtain such amplitudes was developed in
our previous work [25], where the Kroll-Ruderman term
for the photoproduction of a pion was modified, in consis-
tency with the the vector meson dominance phenomenon,
by replacing the photon by a vector meson. The de-
duction was extended to the SU(3) case in Ref. [25] to
obtain a general Lagrangian for the transitions among
pseudoscalar-baryon (PB) and vector-baryon (VB) chan-
nels

LPBVB =
�igKR

2f⇡

�
F 0hB̄�µ�5 [[P, V µ] , B]i (12)

+ D0hB̄�µ�5 {[P, V µ] , B}i
�
,

where F 0 = 0.46, D0 = 0.8 , reproduce the axial coupling
constant of the nucleon: F 0 + D0 ' gA = 1.26 [25].

In the present work we need the transition amplitudes
between pseudoscalar-baryon and vector-baryon channels
with strangeness �2. We obtain them using Eq. (12) to
get

V I
PBV B = �i CI

PBVB
gKR

2
p
fP fV

~� · ~✏, (13)

where gKR is defined as the Kroll-Ruderman coupling [25]

gKR =
mVp
2fP fV

, (14)

and where mV , fP and fV denote the mass of the vec-
tor meson, the decay constants of the pseudoscalar- and
vector-meson, respectively, in each channel. The values
of the decay constants used in our work are: f⇡ = 93
MeV, f⌘ = 120.9 MeV, fk = 113.46 MeV, f⇢, f! = 153.45,
f� = 168.33 MeV, fK⇤ = 159.96 MeV [26, 27]. The val-
ues of the isospin coe�cients CI

PBVB for isospin 1/2 and
3/2 are listed in Table IX and VIII in the appendix, re-
spectively. The PB $ VB transitions given by Eq. (13)
for both isospin configurations are spin 1/2 amplitudes.
The PB $ VB transitions for total spin 3/2 is zero (as
in Refs. [10, 25, 28]). This is consistent with the results
obtained within a di↵erent formalism [13], where the VB

amplitudes in spin 3/2 have been found to change weakly
when coupled to pseudoscalar baryon systems.

Finally, the pseudoscalar meson-baryon amplitudes are
obtained from the lowest order chiral Lagrangian [21, 22]

LPB = hB̄i�µ@µB + B̄i�µ[�µ, B]i �MBhB̄Bi (15)

+
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D0hB̄�µ�5{uµ, B}i +

1

2
F 0hB̄�µ�5[uµ, B]i,

where

�µ =
1

2

�
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†� , uµ = iu†@µUu†,
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◆
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As defined earlier, fP in Eq. (16) is the pseudoscalar
decay constant, and P is
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The resulting amplitudes are consistent with those ob-
tained earlier in Ref. [12],

V I
PB = � CI

PB

4f1f2

�
2
p
s�M1 �M2

�
s

(M1 + E1) (M2 + E2)

4M1M2
,

(17)
where M1 (M2), E1 (E2) represent the mass and energy
of the baryon in the initial (final) state, respectively, and
f1 (f2) is the decay constant of the meson in the initial
(final) state. We do not give the values of CI

PB here since
they are same as those given in Ref. [12].

With the kernels prepared we solve the Bethe-Salpeter
equation, in its on-shell factorization form [29, 30]

T = (1 � V G)�1V, (18)

where G is a loop of two hadrons which is divergent
in nature. It is possible to evaluate the loop function
by using the dimensional regularization or with a three-
momentum cut-o↵. In the former case, the subtraction
constants can be fixed to have natural values following
Refs. [16, 31, 32], to ensure the interpretation of the res-
onances found in the calculations as those arising from
the dynamics of the system. It is also possible to find a
corresponding cut-o↵ (⇤) to regularize the loop function
using a Gaussian form factor as

G =

1Z

0

d3q

(2⇡)3
1

2E1 (~q)

2M

2E2 (~q)

e[�(q2�q2on)/⇤2]
p
s� E1 (~q) � E2 (~q)

,

(19)

where qon is the on-shell momentum in the center of mass.
We have calculated the amplitudes using both methods
and find that the results obtained and conclusions are
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where qon is the on-shell momentum in the center of mass.
We have calculated the amplitudes using both methods
and find that the results obtained and conclusions are

For light pseudoscalar baryon interaction, we use standard chiral Lagrangian 
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very similar. In the following we show the results ob-
tained by calculating the loop function using Eq. (19)
with ⇤ = 800 MeV. Although, later on, we will present
the values of the poles found within the dimensional reg-
ularization scheme too.

We begin the discussion of the results by showing the
squared amplitudes for di↵erent coupled channels in the
isospin 1/2, spin 1/2 configuration in Fig. 2. It can be
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FIG. 2: Squared amplitudes for the total isospin and
spin 1/2.

seen from Fig. 2 that a clear narrow peak is present
around 1690 MeV in all the channels except in ⇡⌅. This
peak corresponds to a pole in the complex plane at

M � i�/2 = 1682 � i3 MeV. (20)

This pole position is in excellent agreement with the re-
cently determined mass and width of ⌅(1690) by the
BABAR Collaboration: M =

�
1684.7 ± 1.3+2.2

�1.6

�
MeV,

� =
�
8.1+3.9+1.0

�3.5�0.9

�
MeV [6] and those determined by

the BELLE Collaboration: M = (1688 ± 2) MeV, � =
(11 ± 4) MeV [5]. The spin-parity 1/2+ also coincides
with the experimental data analysis of Ref. [6].

We have also calculated the decay rates of our state
to di↵erent open channels and we find the partial widths
(in percentage) to ⇡⌅, K̄⇤ and K̄⌃ as 17.6%, 27.1% and
55.3%, respectively. Using these values we can see that
the branching fraction defined by Eq. (1) is 0.49, which
is remarkably similar to the experimental value [5].

Further, we show the coupling of the di↵erent channels
to the state we associate with ⌅(1690) in Table. I. It can
be seen from the values of these couplings that the pole

TABLE I: Couplings of di↵erent channels to ⌅(1690).
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⇡⌅ �0.1� i0.1

⌘⌅ 1.2 + i0.1
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given by Eq. (20) couples very weakly to ⇡⌅ and K̄⇤,
which naturally explains the small value of the branching
ratio in Eq. (1) as well as the di�culty of identifying the
state in the data on ⇡⌅ mass spectrum [6]. Thus, all the
findings related to ⌅(1690) can be well explained within
the coupled channel dynamics of meson-baryon systems
which indicate that this state should be interpreted as
a dynamically generated state. It should be mentioned
that similar suggestions have also been made in Refs. [16,
19, 20], although the results found on other ⌅ states and
conclusions drawn in these latter works are di↵erent from
those shown below.

We have also solved Bethe-Salpeter equations by calcu-
lating the loop function within the dimensional regular-
ization scheme by using natural values of the subtraction
constants:

a⇡⌅ = �1.05 a⌘⌅ = �2.30 aK̄⌃ = �1.90

aK̄⇤ = �1.65 a⇢⌅ = �2.63 a!⌅ = �2.64

a�⌅ = �2.93 aK̄⇤⌃ = �2.60 aK̄⇤⇤ = �2.50.
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These constants have been obtained by using the condi-
tion

G[µ = 630 MeV,
p
sthr,min] = 0, (22)

for all the channels, where
p
sthr,min is the lowest thresh-

old. Such a calculation leads to a pole at 1686� i2 MeV,
which is similar to Eq. (20). All other results obtained
in our work are comparable in a similar way when ob-
tained by using a cut-o↵ or dimensional regularization
to calculate the loop integrals. We, thus, would show
only the results obtained with a cut-o↵ in the following
discussions.

As can be seen from Fig. 2 we find one more spin 1/2
isospin 1/2 resonance around 2100 MeV. A pole is found
in the complex plane at 2086 � i22 MeV, although the
consideration of the width of the ⇢-meson leads to peak
around 2050 MeV with half width �/2 ⇠ 60 MeV. This
state seems to couple weakly to almost all channels ex-
cept for ⇢⌅ (see Table II). There is a poorly known state
⌅(2120) listed in Ref [1], whose existence is based on
a signal found in the K̄⇤ mass spectrum [1]. A bump

4

very similar. In the following we show the results ob-
tained by calculating the loop function using Eq. (19)
with ⇤ = 800 MeV. Although, later on, we will present
the values of the poles found within the dimensional reg-
ularization scheme too.

We begin the discussion of the results by showing the
squared amplitudes for di↵erent coupled channels in the
isospin 1/2, spin 1/2 configuration in Fig. 2. It can be
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FIG. 2: Squared amplitudes for the total isospin and
spin 1/2.

seen from Fig. 2 that a clear narrow peak is present
around 1690 MeV in all the channels except in ⇡⌅. This
peak corresponds to a pole in the complex plane at

M � i�/2 = 1682 � i3 MeV. (20)
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cently determined mass and width of ⌅(1690) by the
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�1.6

�
MeV,

� =
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MeV [6] and those determined by

the BELLE Collaboration: M = (1688 ± 2) MeV, � =
(11 ± 4) MeV [5]. The spin-parity 1/2+ also coincides
with the experimental data analysis of Ref. [6].
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around 2050 MeV with half width �/2 ⇠ 60 MeV. This
state seems to couple weakly to almost all channels ex-
cept for ⇢⌅ (see Table II). There is a poorly known state
⌅(2120) listed in Ref [1], whose existence is based on
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to di↵erent open channels and we find the partial widths
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55.3%, respectively. Using these values we can see that
the branching fraction defined by Eq. (1) is 0.49, which
is remarkably similar to the experimental value [5].

Further, we show the coupling of the di↵erent channels
to the state we associate with ⌅(1690) in Table. I. It can
be seen from the values of these couplings that the pole
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given by Eq. (20) couples very weakly to ⇡⌅ and K̄⇤,
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ratio in Eq. (1) as well as the di�culty of identifying the
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which indicate that this state should be interpreted as
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conclusions drawn in these latter works are di↵erent from
those shown below.
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which is similar to Eq. (20). All other results obtained
in our work are comparable in a similar way when ob-
tained by using a cut-o↵ or dimensional regularization
to calculate the loop integrals. We, thus, would show
only the results obtained with a cut-o↵ in the following
discussions.

As can be seen from Fig. 2 we find one more spin 1/2
isospin 1/2 resonance around 2100 MeV. A pole is found
in the complex plane at 2086 � i22 MeV, although the
consideration of the width of the ⇢-meson leads to peak
around 2050 MeV with half width �/2 ⇠ 60 MeV. This
state seems to couple weakly to almost all channels ex-
cept for ⇢⌅ (see Table II). There is a poorly known state
⌅(2120) listed in Ref [1], whose existence is based on
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4

very similar. In the following we show the results ob-
tained by calculating the loop function using Eq. (19)
with ⇤ = 800 MeV. Although, later on, we will present
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seen from Fig. 2 that a clear narrow peak is present
around 1690 MeV in all the channels except in ⇡⌅. This
peak corresponds to a pole in the complex plane at

M � i�/2 = 1682 � i3 MeV. (20)
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MeV [6] and those determined by

the BELLE Collaboration: M = (1688 ± 2) MeV, � =
(11 ± 4) MeV [5]. The spin-parity 1/2+ also coincides
with the experimental data analysis of Ref. [6].

We have also calculated the decay rates of our state
to di↵erent open channels and we find the partial widths
(in percentage) to ⇡⌅, K̄⇤ and K̄⌃ as 17.6%, 27.1% and
55.3%, respectively. Using these values we can see that
the branching fraction defined by Eq. (1) is 0.49, which
is remarkably similar to the experimental value [5].

Further, we show the coupling of the di↵erent channels
to the state we associate with ⌅(1690) in Table. I. It can
be seen from the values of these couplings that the pole
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given by Eq. (20) couples very weakly to ⇡⌅ and K̄⇤,
which naturally explains the small value of the branching
ratio in Eq. (1) as well as the di�culty of identifying the
state in the data on ⇡⌅ mass spectrum [6]. Thus, all the
findings related to ⌅(1690) can be well explained within
the coupled channel dynamics of meson-baryon systems
which indicate that this state should be interpreted as
a dynamically generated state. It should be mentioned
that similar suggestions have also been made in Refs. [16,
19, 20], although the results found on other ⌅ states and
conclusions drawn in these latter works are di↵erent from
those shown below.

We have also solved Bethe-Salpeter equations by calcu-
lating the loop function within the dimensional regular-
ization scheme by using natural values of the subtraction
constants:

a⇡⌅ = �1.05 a⌘⌅ = �2.30 aK̄⌃ = �1.90
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These constants have been obtained by using the condi-
tion

G[µ = 630 MeV,
p
sthr,min] = 0, (22)

for all the channels, where
p
sthr,min is the lowest thresh-

old. Such a calculation leads to a pole at 1686� i2 MeV,
which is similar to Eq. (20). All other results obtained
in our work are comparable in a similar way when ob-
tained by using a cut-o↵ or dimensional regularization
to calculate the loop integrals. We, thus, would show
only the results obtained with a cut-o↵ in the following
discussions.

As can be seen from Fig. 2 we find one more spin 1/2
isospin 1/2 resonance around 2100 MeV. A pole is found
in the complex plane at 2086 � i22 MeV, although the
consideration of the width of the ⇢-meson leads to peak
around 2050 MeV with half width �/2 ⇠ 60 MeV. This
state seems to couple weakly to almost all channels ex-
cept for ⇢⌅ (see Table II). There is a poorly known state
⌅(2120) listed in Ref [1], whose existence is based on
a signal found in the K̄⇤ mass spectrum [1]. A bump
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baryon coupled systems. As we shall show in this article,
⌅(1690) can be understood as a state generated due to
meson-baryon coupled channel dynamics and it is possi-
ble to straightforwardly understand all the recent exper-
imental results reported in Refs. [2, 5, 6]. In this work
we find an evidence for another resonance, which is also
narrower than expected (due to the existence of several
open channels for decay) and can be related to ⌅(2120).
We find that the nature of this state is such that it can be
di�cult to identify its presence in the experimental data.
We suggest possible ways to detect ⌅(2120). Further,
we show that the presence of these resonances a↵ects the
K̄⇤ ! ⇡⌅ and K̄⌃ ! ⇡⌅ cross sections which can be
important in understanding the enhanced ⌅ production
found in the Ar + KCl collisions by the HADES collab-
oration [11].

A study of doubly strange meson-baryon systems has
been made earlier within di↵erent formalisms [12–20]. In
the subsequent discussions we will compare our results
and formalism with those obtained in such previous stud-
ies.

The formalism of the present study is based on solv-
ing the Bethe-Salpeter equation in a coupled channel
approach. To do this we consider all systems with
strangeness �2 formed by a pseudoscalar/vector meson
with an octet baryon: ⇡⌅, ⌘⌅, K̄⌃, K̄⇤, ⇢⌅, !⌅, �⌅,
K̄⇤⌃ and K̄⇤⇤.

We obtain the amplitudes for di↵erent transitions
among these channels using Lagrangians based on ef-
fective field theories. To determine the vector-meson–
baryon interaction we use the formalism developed in
our previous work [23]. A detailed analysis of the low
energy vector meson interaction with octet baryons was
carried out in Ref [23] by calculating s-, t- and u-channel
diagrams and a contact interaction, using a Lagrangian
invariant under the gauge transformations of the hidden-
local symmetry. It was found that the contribution of
all the diagrams is of comparable size and that the full
(summed) amplitude depended on the total spin as well
as the isospin of the system. Following Ref. [23], thus,
we write vector-baryon amplitudes for each spin-isospin
configuration as

V I,S
VB = V I,S

t,VB + V I,S
s,VB + V I,S

u,VB + V I,S
CT,VB. (2)

These amplitudes can be obtained from the general La-
grangian

LVB = �g

(
hB̄�µ [V µ

8 , B]i + hB̄�µBihV µ
8 i (3)

+
1

4M

�
F hB̄�µ⌫ [V µ⌫

8 , B]i + DhB̄�µ⌫ {V µ⌫
8 , B}i

�
,

+hB̄�µBihV µ
0 i +

C0

4M
hB̄�µ⌫V

µ⌫
0 Bi

)
,

where the subscript 8 (0) on the meson fields denotes the
octet (singlet) part of their wave function (relevant in

case of ! and �, for which we assume an ideal mixing).
V µ⌫ represents the tensor field of the vector mesons,

V µ⌫ = @µV ⌫ � @⌫V µ + ig [V µ, V ⌫ ] , (4)

where V and B denote the SU(3) matrices for the (phys-
ical) vector mesons and octet baryons

V =
1

2

0

BBBB@

⇢0 + !
p

2⇢+
p

2K⇤+

p
2⇢� �⇢0 + !

p
2K⇤0

p
2K⇤� p

2K̄⇤0 p
2�

1

CCCCA
; (5)

B =

0

BBBBB@

1p
6
⇤ + 1p

2
⌃0 ⌃+ p

⌃� 1p
6
⇤ � 1p

2
⌃0 n

⌅� ⌅0 �
q

2
3⇤

1

CCCCCA
. (6)

In Eq.(3), the coupling g is related to meson decay con-
stants as

g =
mp
2f

, (7)

and the constants D = 2.4, F = 0.82 and C0 = 3F �D
are such that the anomalous magnetic couplings of ⇢NN ,
!NN and �NN vertices are correctly reproduced. These
values have also been found useful in calculations of the
magnetic moments of the baryons in Ref. [24].

It is easy to see that a contact interaction arises from
the commutator part of the vector meson tensor. The
resulting amplitude has a form

V I,S
CT,VB = i CI

CT,VB
g1g2

2
p
M1M2

~� · ~✏2 ⇥ ~✏1, (8)

where M1 (M2) is the mass of the baryon in the initial
(final) state, ✏1 (✏2) represents the polarization vector
of the meson in the initial (final) state, and CI

CT,VB are
isospin dependent coe�cients whose values are given in
the Appendix, in Tables III, IV for the di↵erent rele-
vant channels. In Eq. (8) g1 (g2) is related to the decay
constant of the vector meson in the initial (final) state
through Eq. (7). We recall that the main purpose of the
present article is to study the formation of resonances in
a coupled meson-baryon system. We are, thus, interested
in low energy dynamics of such a system and, as is cus-
tomary, obtain all the amplitudes within a nonrelativistic
approach.

Using the Yukawa-type vertices obtained from Eq. (3),
the s- and u-channel amplitudes are deduced to be

V I,S
s,VB = CI

s,VB

✓
g1g2

2M̄ + m̄

◆
~✏2 · ~� ~✏1 · ~�, (9)

V I,S
u,VB = CI

u,VB

✓
g1g2

2M̄ � m̄

◆
~✏1 · ~� ~✏2 · ~�, (10)

where SU(3) averaged masses of baryons and vector
mesons, respectively, are used for M̄ and m̄, for prac-
tical purposes. To obtain these amplitudes we consider
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8 , B]i + DhB̄�µ⌫ {V µ⌫
8 , B}i

�
,

+hB̄�µBihV µ
0 i +

C0

4M
hB̄�µ⌫V

µ⌫
0 Bi

)
,

where the subscript 8 (0) on the meson fields denotes the
octet (singlet) part of their wave function (relevant in

case of ! and �, for which we assume an ideal mixing).
V µ⌫ represents the tensor field of the vector mesons,

V µ⌫ = @µV ⌫ � @⌫V µ + ig [V µ, V ⌫ ] , (4)

where V and B denote the SU(3) matrices for the (phys-
ical) vector mesons and octet baryons
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⌃� 1p
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2
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1

CCCCCA
. (6)

In Eq.(3), the coupling g is related to meson decay con-
stants as

g =
mp
2f

, (7)

and the constants D = 2.4, F = 0.82 and C0 = 3F �D
are such that the anomalous magnetic couplings of ⇢NN ,
!NN and �NN vertices are correctly reproduced. These
values have also been found useful in calculations of the
magnetic moments of the baryons in Ref. [24].

It is easy to see that a contact interaction arises from
the commutator part of the vector meson tensor. The
resulting amplitude has a form

V I,S
CT,VB = i CI

CT,VB
g1g2

2
p
M1M2

~� · ~✏2 ⇥ ~✏1, (8)

where M1 (M2) is the mass of the baryon in the initial
(final) state, ✏1 (✏2) represents the polarization vector
of the meson in the initial (final) state, and CI

CT,VB are
isospin dependent coe�cients whose values are given in
the Appendix, in Tables III, IV for the di↵erent rele-
vant channels. In Eq. (8) g1 (g2) is related to the decay
constant of the vector meson in the initial (final) state
through Eq. (7). We recall that the main purpose of the
present article is to study the formation of resonances in
a coupled meson-baryon system. We are, thus, interested
in low energy dynamics of such a system and, as is cus-
tomary, obtain all the amplitudes within a nonrelativistic
approach.

Using the Yukawa-type vertices obtained from Eq. (3),
the s- and u-channel amplitudes are deduced to be

V I,S
s,VB = CI

s,VB

✓
g1g2

2M̄ + m̄

◆
~✏2 · ~� ~✏1 · ~�, (9)

V I,S
u,VB = CI

u,VB

✓
g1g2

2M̄ � m̄

◆
~✏1 · ~� ~✏2 · ~�, (10)

where SU(3) averaged masses of baryons and vector
mesons, respectively, are used for M̄ and m̄, for prac-
tical purposes. To obtain these amplitudes we consider

Solving Bethe-Salpeter equation in coupled channel approach for
S = -2 systems:
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The Ξ baryons are expected to be naturally narrower as compared to their nonstrange and strange
counterparts since they have only one light quark and, thus, their decay involves producing either a light
meson and doubly strange baryon or both meson and baryon with strangeness which involves, relatively,
more energy. In fact, some Ξ’s have full widths of the order of even 10–20 MeV when, in principle, they
have a large phase space to decay to some open channels. Such is the case of Ξð1690Þ, for which the width
has been found to be of the order of 10 MeV in the latest BABAR and BELLE data. In this manuscript we
study why some Ξ’s are so narrow. Based on a coupled channel calculation of the pseudoscalar meson-
baryon and vector meson-baryon systems with chiral and hidden local symmetry Lagrangians, we find that
the answer lies in the intricate hadron dynamics. We find that the known mass, width, spin-parity, and
branching ratios of Ξð1690Þ can be naturally explained in terms of coupled channel meson-baryon
dynamics. We find another narrow resonance which can be related to Ξð2120Þ. We also look for exotic
states Ξþ and Ξ−− but find none. In addition we provide the cross sections for K̄Λ; K̄Σ → πΞ which can be
useful for understanding the enhanced yield of Ξ reported in recent studies of heavy ion collisions.

DOI: 10.1103/PhysRevD.97.034005

I. INTRODUCTION

Little is known about Ξ resonances [1] since it is difficult
to produce them in the laboratory directly. There are limited
facilities around the world which have anti-kaon beams and
a beam of nonstrange nature on a nucleon leads to low
yields of Ξ baryons as two pairs of strange quarks are
required to be produced in this case. However, efforts are
being made to improve this situation. For example, the
photoproduction of Ξ’s on nucleons is being explored
currently at the Jefferson laboratory [2] considering the
possibility of the production of a hyperon resonance in the
intermediate state, thus producing the strange quark pairs in
two steps. Also, more information is expected to come in
the future from the J-PARC [3] and P̄ANDA [4] facilities.
In addition, studies made by BELLE [5] and BABAR [6]

collaborations show that it is possible to extract useful
information on this subject from rare processes too.
Specifically, some intriguing findings related to the proper-
ties of Ξð1690Þ have been reported in such studies. We find
it useful to list these findings, and other relevant informa-
tion on Ξð1690Þ, in a separate subsection dedicated to
Ξð1690Þ below.

A. Ξð1690 Þ
The first observation of Ξð1690Þ in the K̄Σ invariant

mass spectrum was reported in Ref. [7], where the mass and
width were determined to be M ¼ ð1694% 6Þ MeV, Γ ¼
ð26% 6Þ MeV in the negatively charged channel and
M ¼ ð1684% 5Þ MeV, Γ ¼ ð20% 4Þ MeV in the neutral
channel. The spin-parity of this state was not determined in
Ref. [7]. Although the mass values obtained by the latest
investigations [5,6] are not very different, the width of
Ξð1690Þ has been determined to be even narrower, of the
order of 10 MeV [5,6]. To mention explicit results,
the BABAR collaboration deduced the mass and width
of Ξð1690Þ to be: M ¼ ð1684.7% 1.3þ2.2

−1.6Þ MeV, Γ ¼
ð8.1þ3.9þ1.0

−3.5−0.9 Þ MeV [6], and the BELLE Collaboration
reported: M ¼ ð1688% 2Þ MeV, Γ ¼ ð11% 4Þ MeV [5].
Both studies obtained spin-parity of this state as 1=2−. It
was also found in Ref. [6] that a clear evidence for
Ξ0ð1690Þ is found in the K̄0Λ invariant mass spectrum
but not in the πþΞ− spectrum. The information on the ratio
of Ξ0ð1690Þ to K̄Λ and K̄Σ has been updated in Ref. [5] to,

BðΞ0ð1690Þ → K−ΣþÞ
BðΞ0ð1690Þ → K̄0ΛÞ

¼ 0.50% 0.26: ð1Þ
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T 1 = t1�3( ⇥k�
1 � ⇥k1) + t1g(T 2 + T 3)

T = T 1 + T 2 + T 3

T i = ti�3(⇥k�
i � ⇥ki) + tig(T j + T k)

T 1 = + + +

+ + + ....
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kind of a 3 body force!

+  3 body forces from 
the chiral Lagrangian

The sum of these three-body forces cancels (exactly, analytically) 
in SU(3)/Chiral limit ⇒ study of multichannel three (and more) 

hadron systems possible.

Very important finding of our work
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Coupled channels:

�0�0n, �0��p, �0K+��,�0K0�0,

⇥0K0�,⇥0�n,⇥+⇥�n, ⇥+K0⇥�,���+n,

⇥�⇥0p, ⇥�K+⇥0,⇥�K0⇥+,⇥�K+�,⇥��p

⇡⇡Nand coupled channel system

1704 � i 375 / 2 M eV

N�(1710) P11[I(Jp) = 1/2(1/2)+]���

RESULTS: I=1/2, I!! =0



f0(1790)

π(1300)

π

f0(980)

π

π

f0(1790)

π(1300)

π

f0(980)

π

π

π (K̄)

π (K)

π

Figure 6: Decay modes of the f0(1790) found in this work.

4 Conclusions

We have investigated the πKK̄ system and coupled channels in S-wave using an approach based on
solving the Faddeev equations within the use of unitary chiral dynamics to determine the two-body
input t-matrices. The study has revealed the formation of a state within isospin 1, Jπ = 0−, mass
around 1400 MeV and width of 85 MeV which can be associated with the π(1300) listed in the
Particle Data Book. The generation of this state configures the KK̄ subsystem as the f0(980)
resonance. Later on, considering the state found at 1400 MeV as an effective π-f0(980) system,
we have related the πKK̄ and πf0(980) amplitudes using the coupling of the f0(980) to the KK̄
system in isospin 0.

Further, we have used this amplitude to study the f0(980)ππ system and coupled channels
treating them like effective three-body systems. This system is found to generate dynamically a
0++ resonance with mass ∼ 1773 MeV and width ∼ 100 MeV. The formation of this state in
the f0(980)ππ system occurs when both f0(980)π subsystems are found to generate the π(1300).
Such a structure makes that this 0++ resonance decays to ππ, ππππ and ππKK̄, but not to KK̄.
These findings are not in agreement with the known scalar resonance in the 1700 MeV region,
i.e., f0(1710), but are strikingly similar to the features of the recently claimed f0(1790) in the
experimental data [23,24,26]. Thus, we relate our 0++ state with the f0(1790).

We have also studied the ηKK̄, ηππ systems in S-wave and no η resonances or bound states
are found in the energy region considered (1200-1900 MeV). It is worth mentioning here that we
have studied several three hadron systems consisting of a meson or a baryon and a KK̄ pair
(φKK̄ [35], NKK̄ [37, 46], KKK̄ [32] and now πKK̄) and in all these cases we found that the
f0(980) configuration of the KK̄ pair gives rise to a strong attraction in the three-body system
which leads to the dynamical generation of a state. However, not enough attraction gets developed
in the ηf0(980) configuration of the ηKK̄ system to form a bound state or resonance. One thing
to be noticed is that the interaction of the spin, isospin zero η meson with other hadrons is rather
weak, which could be an explanation for our findings.

12
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Figure 4: (Upper panel) Squared amplitude for the f0(980)ππ channel for total isospin zero, thus, with
the ππ subsystem in isospin zero. (Lower panel) Contour plots as a function of the total energy of the
f0(980)ππ system,

√
s, and the invariant mass of the ππ subsystem,

√
s23 (Left side) and as a function

of the ππ and f0(980)π invariant masses,
√
s23 and

√
s12, respectively (Right side).

and use Eq. (15) and Eq. (16) as inputs for Eq. (6) to study the coupled channel system f0(980)ππ
and f0(980)KK̄ .

In Fig. 4 we show the result obtained for the f0(980)ππ amplitude with the ππ subsystem in
isospin zero. As one can see, a peak around 1773 MeV with 100 MeV width develops when the ππ
system is in isospin zero with an invariant mass around 450 MeV, while the invariant mass of the

9

the invariant mass of the ππ and KK̄ subsystems, around the region of the f0(980) and a0(980), we
do not find a clear structure which could be associated with higher scalar resonances, like f0(2000)
or f0(2100).

π π

f0(980)π(1300) π(1300){ {

{Mππ ∼ σ region

Figure 5: Internal structure of the f0(1790).

The scalar resonance found at 1773 MeV can be interpreted as a molecular state of π-π(1300),
with π(1300) being a πf0(980) molecular resonance (see Fig. 5). A state with this structure will
decay dominantly to ππ, ππππ and ππKK̄, as shown in Fig. 6, having larger phase space for the
ππ channel. If we try to associate this resonance with one of the scalar states listed in the PDB,
there is only one possibility: the f0(1710). But this state is known to decay dominantly to KK̄
and its decay to pions is suppressed [12]. This fact is in contradiction with the properties of the
scalar resonance found in the present work, which can not decay to KK̄ (as is clear from Fig. 6).
However, a new f0 with mass around 1790 MeV has been found in two pion spectrum by the BES
collaboration in Ref. [23] and it has also been indicated in an analysis [26] of the 4π data from
the BES collaboration [24]. One peculiarity of the f0(1790) observed in Refs. [23,24,26] is that its
decay to KK̄ is strongly suppressed as compare to its decay to ππ or ππππ, which is strikingly
similar to the characteristics of the f0 resonance found in our present work. Thus, we associate the
scalar resonance found at 1773 MeV with the f0(1790) found in Refs. [23, 24,26].

One comment is here in order. The resolution of Eq. (6) for the f0(980)ππ system implies
consideration of intermediate states in which two pions and a f0(980) are propagating. This does
not have to be necessarily true always, since we could have enough energy to excite the f0(980)
resonance and have then intermediate states of four particles, i.e., ππKK̄. However, the fact that a
signal is observed around 1773 MeV when we rely only on the propagation of the f0(980) resonance
and not of a K and a K̄ indicates that the consideration of ππKK̄ intermediate states contributes
mainly to the background, which basically could produce an increase in the width of the state.

11

We found a scalar resonance in the  study of ⇡⇡KK̄
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Inspired by the recent discovery of the pentaquark states Pc(4450) and Pc(4380), which can be viewed as
excited nucleon states with hidden charm, we study the three-body interaction of a kaon and a pair of DD̄⇤+c.c.
We show that the two body interactions stringently constrained by the existence of the D⇤

s0(2317), D⇤
s1(2460),

X(3872), and Zc(3900), which are widely believed to contain large DK, D⇤K, and DD̄⇤ + c.c. compo-
nents, inevitably lead to the existence of two heavy K⇤ mesons with hidden charm. Concrete coupled channel
three-body calculations yield their masses and widths as 4337.0 � i3.3 MeV and 4277.6 � i14.0 MeV with
I(JP ) = 1/2(1�). These states, if found experimentally, definitely cannot be accommodated in a qq̄ picture,
and therefore presents a clear case of exotic hadrons.

PACS numbers: 14.40.Rt,14.40.Df,12.39.Hg,11.10.St
Keywords: Heavy quark symmetry, few body systems, exotic hadrons

Understanding the nature of hadronic resonances/bound
states is one of the most challenging issues in the frontiers of
hadron physics. In recent years, experimental [1–5] and theo-
retical [6–10] efforts have been focusing on the nontraditional
hadronic states, which cannot be (easily) explained either as
qq̄ or qqq states. One of the most recent claims on such kind
of states is the Pc(4380) and Pc(4450) pentaquark states ob-
served by the LHCb collaboration in the J/ p invariant mass
distribution of the ⇤0

b ! J/ K�p decay [11]. Curiously
the existence of such states of molecular D̄(D̄⇤)⌃c/⇤c nature
was predicted prior to the experimental claim [12].

The possible existence of such non-conventional mesons
and baryons dates back to the original quark model of Gell-
Mann and Zweig, in which the existence of multiquark states
was already anticipated [13, 14]. In spite of such a long lapse
of time, the recent intensified theoretical and experimental ef-
forts show clearly that the topic is still controversial.

Regardless of all these efforts, there is still a vast unex-
plored energy region and systems in which states of non-
conventional quark content could be found, especially at en-
ergies of 4⇠5 GeV. For instance, in the meson sector, heavy
mesons of strangeness 0 with hidden charm, such as X(3872)
or Zc(3900), have been found, and they are widely regarded,
particularly the X(3872), as moleculelike states of DD̄⇤+c.c.
in isospin 0 and 1, respectively (see, e.g., Refs. [15–19]).
However, in the strange sector, there is surprisingly no experi-
mental data available on heavy K or K⇤ meson states around
this energy region, leaving the heavy strange physics experi-
mentally unexplored.

In this letter, we explore the possibility of the existence of
K⇤ moleculelike states (bound states/resonances) with hidden
charm in a three-meson system formed from a kaon and a pair
of DD̄⇤+ c.c., when the latter is organized either as X(3872)
or as Zc(3900). Different from other three-body studies, the
interactions of the two-body subsystems in the present case,

FIG. 1. Internal structure of the K⇤ states found. The interaction
DD̄⇤ + c.c. forms the states X(3872) in isospin 0 and Zc(3900)
in isospin 1. When a K is added to the system, the interaction be-
tween the KD (D̄) and KD̄⇤ (D⇤) systems is such that bound states
around 4300 MeV are formed whose internal structure correspond to
a K �X or K � Z moleculelike states.

namely, the DK, D̄K, D⇤K, D̄⇤K, and DD̄⇤/D̄D⇤ are
stringently constrained by a large number of experimental as
well as lattice QCD data. For instance, it is a known fact that
the DK, D⇤K, and DD̄⇤/D̄D⇤ interactions are attractive
such that the D⇤

s0(2317), D⇤
s1(2460), X(3872), and Zc(3900)

can be understood as molecular states of the respective pair of
hadrons [17, 20–26]. In addition, studies in both lattice QCD
as well as chiral perturbation theory show that the D̄K and
D̄⇤K interactions in I = 0 are moderately attractive while in
I = 1 are slightly repulsive [27, 28]. Given such informa-
tion, the existence of K(DD̄⇤ + c.c.) bound states, depicted
in Fig. 1, depend on the possibility of the attractive pair in-
teractions dominating over the repulsive ones. It is the pur-
pose of the present work to perform concrete coupled-channel
three body studies to confirm such a scenario and to find their
masses and widths.

Furthermore, it is interesting to note the similarity of our
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Understanding the nature of hadronic resonances/bound
states is one of the most challenging issues in the frontiers of
hadron physics. In recent years, experimental [1–5] and theo-
retical [6–10] efforts have been focusing on the nontraditional
hadronic states, which cannot be (easily) explained either as
qq̄ or qqq states. One of the most recent claims on such kind
of states is the Pc(4380) and Pc(4450) pentaquark states ob-
served by the LHCb collaboration in the J/ p invariant mass
distribution of the ⇤0

b ! J/ K�p decay [11]. Curiously
the existence of such states of molecular D̄(D̄⇤)⌃c/⇤c nature
was predicted prior to the experimental claim [12].

The possible existence of such non-conventional mesons
and baryons dates back to the original quark model of Gell-
Mann and Zweig, in which the existence of multiquark states
was already anticipated [13, 14]. In spite of such a long lapse
of time, the recent intensified theoretical and experimental ef-
forts show clearly that the topic is still controversial.

Regardless of all these efforts, there is still a vast unex-
plored energy region and systems in which states of non-
conventional quark content could be found, especially at en-
ergies of 4⇠5 GeV. For instance, in the meson sector, heavy
mesons of strangeness 0 with hidden charm, such as X(3872)
or Zc(3900), have been found, and they are widely regarded,
particularly the X(3872), as moleculelike states of DD̄⇤+c.c.
in isospin 0 and 1, respectively (see, e.g., Refs. [15–19]).
However, in the strange sector, there is surprisingly no experi-
mental data available on heavy K or K⇤ meson states around
this energy region, leaving the heavy strange physics experi-
mentally unexplored.

In this letter, we explore the possibility of the existence of
K⇤ moleculelike states (bound states/resonances) with hidden
charm in a three-meson system formed from a kaon and a pair
of DD̄⇤+ c.c., when the latter is organized either as X(3872)
or as Zc(3900). Different from other three-body studies, the
interactions of the two-body subsystems in the present case,

FIG. 1. Internal structure of the K⇤ states found. The interaction
DD̄⇤ + c.c. forms the states X(3872) in isospin 0 and Zc(3900)
in isospin 1. When a K is added to the system, the interaction be-
tween the KD (D̄) and KD̄⇤ (D⇤) systems is such that bound states
around 4300 MeV are formed whose internal structure correspond to
a K �X or K � Z moleculelike states.

namely, the DK, D̄K, D⇤K, D̄⇤K, and DD̄⇤/D̄D⇤ are
stringently constrained by a large number of experimental as
well as lattice QCD data. For instance, it is a known fact that
the DK, D⇤K, and DD̄⇤/D̄D⇤ interactions are attractive
such that the D⇤

s0(2317), D⇤
s1(2460), X(3872), and Zc(3900)

can be understood as molecular states of the respective pair of
hadrons [17, 20–26]. In addition, studies in both lattice QCD
as well as chiral perturbation theory show that the D̄K and
D̄⇤K interactions in I = 0 are moderately attractive while in
I = 1 are slightly repulsive [27, 28]. Given such informa-
tion, the existence of K(DD̄⇤ + c.c.) bound states, depicted
in Fig. 1, depend on the possibility of the attractive pair in-
teractions dominating over the repulsive ones. It is the pur-
pose of the present work to perform concrete coupled-channel
three body studies to confirm such a scenario and to find their
masses and widths.

Furthermore, it is interesting to note the similarity of our
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nature

of
hadronic

resonances/bound
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frontiers
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Examples: Three hadron 
systems

Many other systems have been studied:
• Searching for exotic states in the N(pi)K system:  K.P. Khemchandani, A. Martınez Torres, E. Oset, Phys. 

Lett. B 675  (2009) 407; arXiv:0902.4425 [nucl-th].

• S=-1 Meson-meson-baryon systems : A. Martınez, K. P. Khemchandani and E. Oset, Phys. Rev. C (Rapid 
Communication) 77 (2008) 042203; arXiv:0706.2330 [nucl-th]

• The X(2175) as a resonant state of the phi K anti-K system: A. Martınez Torres, K.P. Khemchandani, L.S. 
Geng, M. Napsuciale, E. Oset, Phys. Rev. D 78 (2008) 074031; arXiv:0801.3635 [nucl-th].

• Testing the three-hadron nature of the N*(1920) resonance A. Martınez Torres, K.P. Khemchandani, Ulf-G. 
Meissner, E. Oset, Eur. Phys. J. A 41,361-368 (2009); arXiv:0902.3633 [nucl-th].

•  Solution to Faddeev equations with two-body experimental amplitudes as input and application to J**P = 
1/2+, S = 0 baryon resonances A. Martınez Torres, K.P. Khemchandani, E. Oset, Phys. Rev. C 79 (2009) 
065207; arXiv:0812.2235 [nucl-th].

• The Y(4260) as a J/psi K anti-K system A. Martınez Torres, K.P. Khemchandani, D. Gamermann, E. Oset, 
submitted to Phys. Rev. D 80 (2009) 094012, arXiv:0906.5333 [nuclth].

• Theoretical support for the (1300) and the recently claimed f0(1790) as molecular resonances, A. Martınez 
Torres, K. P. Khemchandani, D. Jido, A. Hosaka, Phys. Rev. D 84 (2011) 074027, arXiv:1106.6101 [nucl-th].



Reactions with hadron in 
final state

reaction [Kom-98] and it was found that the cross sections calculated from

one and two body mechanisms were orders of magnitude smaller than those

calculated with the three body mechanism. Similar results have been ob-

tained from the first calculations of the p + d → 3He + η reaction by Laget

and Lecolley [Lag-88].

The p + d → 3He + η reaction can proceed in the following two steps

(Fig.3.9);

1. interaction of the beam proton with the proton in the deuteron to

produce a pion via p + p(n) → π+(π0) + d reaction in the first step

and

2. interaction of pion with neutron in the target to produce η in the final

state via π+(π0) + n(p) → η + p reaction.

kπp

d

η

3He

(k
p
/2

 +
 p

1
, m

p
)

(−k
p
/2 − 
p 1

, m n
)

(−k
η /3 + p

2 , m
p # )  

(−(2k
η /3) − p

2 , m
2 # ) 

(kp, m1)

(−kp, m2) (−kη, m3)

kη

Figure 3.9: Diagram of η production in the p d → 3He η reaction with a two
step process. The ellipse indicates the final state interaction of 3He and η.

Since pion scattering on a T = 1 pair is strongly suppressed [?], the scattering

on T = 0 pair only has been considered. It has been found [Kil-90] that the

kinematics for the p + p(n) → π+(π0) + d and the π+(π0) + n(p) → η + p

reactions are almost consistent2 near the threshold and that the relative

energy of the deuteron produced in the first step and proton produced in the

2This means that the kinematics (angles and energies) of the reaction partners in both
the steps are such that they give rise to small values of the ϵ (defined in the previous
footnote) for the d+p system.
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0.1 0.2 0.3 0.4

pη (fm
−1)
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3

 |f
|2  (µ

b/
sr

)

 Mayer et al.
 Berger et al.
 TFSI(full) 
 No FSI
 TFSI(only pole term)

p d → 3He η

Figure 4.2: The solid and dotted line and the data are as in Fig.4.1. The dash
dotted line is the FSI calculation retaining only the pole term in Eq.(4.26).
We have used the elementary t-matrix of Ref. [Fix-00] with parameter set
(II).

the prescription of Ref. [Fix-00] with parameter set (II) for the elementary

t-matrix. Thus we see that including the off shell effects produces the proper

energy dependence of |f |2 in addition to increasing its magnitude as compared

to the pole term calculation. The other two prescriptions of tη N → η N (Fix et

al. (I) and Bhalerao et al.) show similar off-shell effects. However, as can be

seen from the curves in Fig.4.1, the increase in magnitude as compared to

the pole term is smaller.

Next, in Fig.4.3, we study the effect of the FSI on the angular distri-

butions at different energies. As observed in Fig.4.1 too, we see that the

FSI increases the magnitude of the cross sections with the increase being

maximum at threshold (Fig.4.3a). The angular dependence of the cross sec-

tions without FSI (dashed lines) is isotropic at threshold and deviates by a

small amount from the isotropy with increase in beam energy. The small

anisotropy at a few MeV above threshold is somewhat amplified by the final

65
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Reactions with hadron in 
final state

e+

e−
γ(k)

D(q)

D̄∗(k − q)

D∗(q − p)

π(p)

FIG. 1. Feynman diagram of a mechanism allowing the production of D∗D̄∗ in D-waves. Momenta
are shown in brackets.

where p, k, q are the momenta depicted in Fig. 1 and

Lν ≡ v̄(p+)γνu(p
−). (2)

In Eq. (2), p+ (p−) represents the momentum of the e+ (e−). To determine the amplitude of
Eq. (1), it is convenient to work in the e+e− center of mass (CM) frame, in which the three
momentum of the photon, k⃗, is zero, leaving in this way only the contribution from the k0

component in Eq. (1). On the other hand, in the reaction depicted in Fig. 1, the external
three momenta of the D∗ and D̄∗ are small, a fact which allows us to drop the ϵ0 component
of the polarization vectors, as done in Ref. [15]. Thus, Eq. (1) gets simplified to,

t ∝ k0ϵijkLiqj(q + p)m
1

q2 −m2
D + iϵ

ϵk(D̄
∗)ϵm(D

∗). (3)

As can be seen, Eq. (3) contains the term qjqm, which carries D-wave. On the other hand
it is also interesting to see that the combination ϵm(D∗)ϵk(D̄∗) contains spin S = 2 for the
vector mesons. Indeed, for low momenta of the vectors the spin projectors over spin 0, 1, 2
are given by [42]:

P (0) =
1

3
ϵ⃗ · ϵ⃗ ′δkm,

P (1) =
1

2
(ϵmϵ

′
k − ϵkϵ

′
m) , (4)

P (2) =
1

2
(ϵmϵ

′
k + ϵkϵ

′
m)−

1

3
ϵ⃗ · ϵ⃗ ′δkm,

where ϵ⃗ is the polarization vector of the D∗ and ϵ′ the one of the D̄∗. It is easy to see that,

ϵmϵ
′
k = P (0) + P (1) + P (2) (5)

and, hence, the amplitude of Eq. (3) has components of D-wave and S = 2 for the two
vector mesons.

It remains to see that the D-wave structure and the S = 2 character of the D∗D̄∗ system
are preserved upon interaction of the final D∗D̄∗ states to produce the state predicted in

5

a 1þ resonance with mass ∼4030 MeV, narrow width,
∼30 MeV, and relative S-wave with respect the pion, as
assumed in Ref. [1], is compatible with the data, there are
more options with which the signal can be explained: a
broad 2þ bound D"D̄" state in relative D-wave with the
pion of the reaction considered; a 2þ resonance above the
D"D̄" threshold in D-wave with the pion or simply a
D-wave background. All these options are equally plau-
sible to describe the spectrum and the signal found
in Ref. [1].

B. Energy dependence of the D"D̄" invariant
mass distribution

It would be interesting to know if there could be a way of
finding which option, out of the different ones studied in
Sec. III A and compatible with the data of Ref. [1], is
responsible for the signal observed close to the D"D̄"

threshold. A way to do this consists of investigating the
dependence of the solutions found in Sec. III A with the
center-of-mass energy,

ffiffiffi
s

p
. The experiment considered in

Ref. [1] was studied at a center-of-mass energy offfiffiffi
s

p
¼ 4.26 GeV. In this section we show how the results

of Sec. III A change when the center-of-mass energy is
taken to be

ffiffiffi
s

p
¼ 4.4 GeV and

ffiffiffi
s

p
¼ 4.6 GeV. It should

be added here that we have taken the background of WS
events given in Ref. [1] for all values of

ffiffiffi
s

p
, although it

could also change with the center-of-mass energy.
Case (i): A 1þ D"D̄" resonance in relative S-wave with

the pion.
We show in Fig. 8 the D"D̄" invariant mass distribution

for the case of a 1þ resonance with 4030 MeVof mass and
34 MeVof width in relative S-wave with the pion for three

values of
ffiffiffi
s

p
, 4.26, 4.4 and 4.6 GeV. To compare them, we

have renormalized (here and in the following cases) the
results associated to the energies

ffiffiffi
s

p
¼ 4.4 GeV and

ffiffiffi
s

p
¼

4.6 GeV to the one of
ffiffiffi
s

p
¼ 4.26 GeV. As can be seen, not

much changes in the D"D̄" invariant mass spectrum while
varying

ffiffiffi
s

p
.

Case (ii): A 1þ D"D̄" bound state in relative S-wave with
the pion.
We do not consider this case, since the fit shown in Fig. 4

and the χ2=n:d:o:f obtained already indicate that this option
is the least plausible one to explain the D"D̄" spectrum
found in Ref. [1].
Case (iii): A 2þ D"D̄" bound state in relative D-wave

with the pion.
In case of production of a broad bound state at

3990 MeV in D-wave with the pion, the D"D̄" invariant
mass distribution changes more than in case (i) when

ffiffiffi
s

p
is

increased, especially for
ffiffiffi
s

p
∼ 4.6 GeV (see Fig. 9). The

different energy behavior between the option tried in case (i)
and the one considered here can be useful to determine if
the signal is due to a resonance in relative S-wave or a
bound state in relative D-wave with the pion present in the
reaction studied in Ref. [1].
Case (iv): A 2þ D"D̄" resonance in relativeD-wave with

the pion.
In Fig. 10 we show the results found for the D"D̄"

spectrum while varying
ffiffiffi
s

p
for the case of a 2þ resonance

in the D"D̄" system with mass 4030 MeV and width
80 MeV which is in relative D-wave with respect to the
pion. As can be seen, the energy dependence found is very
weak, and, as in case I, the invariant mass distribution
obtained for the three energies considered is compatible,
within the error bars, with the data points found for

ffiffiffi
s

p
¼

4.26 GeV by the BES collaboration in Ref. [1]. However,

FIG. 8. Invariant mass distribution obtained from a fit to the
data with a 1þ resonance in relative S-wave with the pion, mass
MR ¼ 4030 MeV and width ΓR ¼ 34 MeV for different

ffiffiffi
s

p

values.

FIG. 9. Invariant mass distribution obtained for a 2þ D"D̄"

bound state (MR ¼ 3990 MeV, ΓR ¼ 160 MeV) in relative
D-wave with the pion for different values of

ffiffiffi
s

p
.
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We have computed the isospin and spin averaged cross sections of the processes πK! → ρK and
ρK! → πK, which are crucial in the determination of the abundances of K! and K in heavy ion collisions.
Improving previous calculations, we have considered several mechanisms which were missing, such as the
exchange of axial and vector resonances (K1ð1270Þ, K!

2ð1430Þ, h1ð1170Þ, etc…) and also other processes
such as πK! → ωK;ϕK and ωK!;ϕK! → πK. We find that some of these mechanisms give important
contributions to the cross section.

DOI: 10.1103/PhysRevD.97.056001

I. INTRODUCTION

The study of nucleus-nucleus collisions at high energies
[1–4], such as Au þ Au at center of mass energies of
200 GeV or Pb-Pb at center of mass energies of 2.76 TeV,
hints towards the existence of a phase transition from
nuclear matter to a locally thermalized state of deconfined
quarks and gluons, the quark-gluon plasma (QGP) [5].
After a hot initial stage, the QGP cools and hadronizes
forming a hadron gas, where the produced mesons and
baryons interact inelastically and the relative abundances
are changed. After further cooling, the system reaches
chemical equilibrium, where only elastic collisions take
place. This is also called “chemical freeze-out” and at this
point the abundances are frozen. Finally, at the “kinetic
freeze-out,” the density becomes small, the interactions no
longer occur and the particles stream freely to the detectors

[6,7]. After hadronization and before the kinetic freeze-out,
the hadrons can interact and different production and
absorption reactions (including the formation and decay
of resonances) will change the hadron abundances. These
changes will be different for different hadron species, and
they depend on the details of hadron dynamics, especially
on possible resonance formation.
Particularly interesting is the case of the K!ð892Þmeson.

The lifetime of this meson is around 4 fm/c, which is
smaller than that of the QGP formed in heavy-ion collisions
(∼10 fm/c [7]). This means that, from hadronization up to
the kinetic freeze-out, a K! meson present in the QGP has
enough time to decay into K and π. It can also be absorbed,
as well as produced, by other mesons present in the
medium. All these reactions can change the abundance
of the K! at the kinetic freeze-out.
In Refs. [1–4], K! production was investigated consid-

ering data from Au þ Au at center of mass energies of
200 GeV, from Cu þ Cu at 62.4 and 200 GeV and from
Pb þ Pb collisions at 2.76 GeV. Considering the K! and K
transverse momentum spectra and the measuredK!/K yield
ratios for all centralities in Au þ Au or Cu þ Cu compared
to the same ratio from p þ p collisions, a significant
reduction in the K!/K ratio was found. The measured
values were 0.23 % 0.05 in Au þ Au collisions at 200 GeV
at RHIC [1] and of 0.19 % 0.05 in Pb þ Pb collisions at
2.76 TeV at LHC [4], while the statistical model predicts
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Applications to heavy ion 
collisions

ρK!;ωK!;ϕK! → πK. The cross sections associated with
the corresponding inverse reactions can be obtained using
the principle of detailed balance. Note that in Ref. [9], the
cross sections related to processes involving ω and ϕ in the
initial or final states were not evaluated in spite of their
mass similarity with ρ as well as similar dynamics involved
in the corresponding reactions.
We will calculate the cross section of the process

a þ b → c þ d. For a specific reaction mechanism r, we
can write σr in the center of mass frame as [9,20,22]

σrðsÞ ¼
1

16πλðs;m2
a;r; m2

b;rÞ

Z
tmax;r

tmin;r

dt
X̄

S;I

jMrðs; tÞj2; ð1Þ

where s and t are the Mandelstam variables for the reaction
r, ma;r and mb;r represent the masses of the two particles in
the initial state of the reaction r, λða; b; cÞ is the Källén
function and Mr is the reduced matrix element for the
process r.
The symbol ¯P

S;I in Eq. (1) represents the sum over the
spins (S) and isospins (I) projections of the particles in the
initial and final states, weighted by the isospin and spin
degeneracy factors of the two particles forming the initial
state for the reaction r, i.e.,

X̄

S;I

jMrj2 →
1

ð2Ia;r þ 1Þð2Ib;r þ 1Þ
1

ð2sa;r þ 1Þð2sb;r þ 1Þ

×
X

S;I

jMrj2; ð2Þ

where,

X

S;I

jMrj2 ¼
X

i;j

!X

S

jMijj2
"
: ð3Þ

In Eq. (3), i and j represent the initial (a þ b) and final
(c þ d) channels in the reaction r for a particular
charge Qr ¼ Qa þ Qb ¼ Qc þ Qd ¼ −1; 0; þ 1; þ 2.
In Figs. 1 and 2, we show the different diagrams

contributing to the processes πK! → ρK;ωK;ϕK and
ρK!;ωK!;ϕK! → πK (without specifying the charge of
the reaction).

Each of the amplitudes Mij of Eq. (3) can be written as

Mij ¼ Tij þ Uij þ Sij; ð4Þ

where Tij, Uij and Sij are the contributions related to
the t-, u- and s-channel diagrams shown in Figs. 1 and 2 for
the process i → j for a particular total charge of the
reaction r.
The amplitudes for these t-, u- and s- channel diagrams

are determined by considering Lagrangians for the
Pseudoscalar-Pseudoscalar-Vector (PPV), Vector-Vector-
Pseudoscalar (VVP) and Vector-Vector-Vector (VVV) ver-
tices. These Lagrangians are based on an effective theory in
which the vector mesons are identified as the dynamical
gauge bosons of the hidden Uð3ÞV local symmetry in the
Uð3ÞL × Uð3ÞR/Uð3ÞV nonlinear sigma model [23–26],
obtaining

LPPV ¼ −igPPVhVμ½P; ∂μP'i;

LVVP ¼ gVVPffiffiffi
2

p ϵμναβh∂μVν∂αVβPi

LVVV ¼ igVVVhðVμ∂νVμ − ∂νVμVμÞVνÞi: ð5Þ

The LVVP Lagrangian written above contains the Levi-
Civita pseudotensor since it describes an anomalous vertex,
which involves a violation of the natural parity in the vertex
[17,18]. In Eq. (5), P and Vμ are matrices containing the
octet of pseudoscalars and vectors mesons and the singlet
of SU(3), respectively, which in the physical basis and
considering ideal mixing for η and η0 as well as for ω and ϕ
read as [10,11,27]:

P ¼

0

BBB@

ηffiffi
3

p þ η0ffiffi
6

p þ π0ffiffi
2

p πþ Kþ

π− ηffiffi
3

p þ η0ffiffi
6

p − π0ffiffi
2

p K0

K− K̄0 − ηffiffi
3

p þ
ffiffi
2
3

q
η0

1

CCCA;

ð6ÞFIG. 1. Diagrams contributing to the processes πK! → ρK;
ωK;ϕK in the t channel (a), u channel (b) and s channel (c).

FIG. 2. Diagrams contributing to the processes ρK!;ωK!;
ϕK! → πK in the t channel (a), u channel (b) and s channel
(c). The symbol RA represents the exchange of the axial
resonances h1ð1170Þ, h1ð1380Þ, f1ð1285Þ, a1ð1260Þ and
b1ð1235Þ listed by the PDG and found from the dynamics in
the K̄!K system and coupled channels [10].
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hσab→cdvabi ¼
R
d3pad3pbfaðp⃗aÞfbðp⃗bÞvabσab→cdR

d3pad3pbfaðp⃗aÞfbðp⃗bÞ

¼ 1

4α2aK2ðαaÞα2bK2ðαbÞ

Z
∞

z0
dzK1ðzÞσab→cdðzÞ

× ½z2 − ðαa þ αbÞ2&½z2 − ðαa − αbÞ2&; ð19 Þ

where z ¼
ffiffiffi
s

p
/T, with T being the temperature of the

medium, vab represents the relative velocity between
particles a and b, fiðp⃗iÞ is the Boltzmann momentum

distribution of particle i with momentum p⃗i, αi ¼ mi/T,
with mi being the mass of particle i, z0 ¼ max ðαa þ αb;
αc þ αdÞ, and K1ðzÞ and K2ðzÞ are the modified Bessel
functions of the second kind, of order 1 and 2, respectively.
In Fig. 12, we show the thermal averaged cross sections

for the results shown in Fig. 11. As can be seen, the thermal
averaged cross sections for K' production from collisions
of ρ, ω and ϕ with kaons are larger than the corresponding
K production cross sections from collisions of π with K'

(see the left panel of Fig. 12). On the contrary, the K
production cross sections from the collision of ρ, ω and ϕ

FIG. 11. Cross sections for πK' ↔ ρK;ωK;ϕK (left panel) and ρK';ωK';ϕK' ↔ πK (right panel).

FIG. 12. Thermal averaged cross sections for πK' ↔ ρK;ωK;ϕK (left panel) and ρK';ωK';ϕK' ↔ πK (right panel).
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In this talk I present the results obtained using e�ective field theories in a finite volume
from a reanalysis of lattice data on the KD(ú) systems, where bound states of KD and
KDú are found and associated with the states Dú

s0(2317) and Dú
s1(2460), respectively.

We confirm the presence of such states on the lattice data and determine the weight of
the KD channel in the wave function of Dú

s0(2317) and that of KDú in the wave function
of Dú

s1(2460). Our results indicate a large meson-meson component in both cases.
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An analysis of the Lattice QCD spectra for Dú
s0(2317) and Dú

s1(2460) A. Martínez Torres

3. Results

In Fig. 1 we show the energy levels obtained from the fits to the data of Ref. [4]
when solving Eq. (2.4) considering KD(ú) as the only coupled channel (in such a case,
we just have the transition KD(ú) æ KD(ú) and two parameters, –11 and —11, need to be
determined, where the subscript 1 represents KD(ú)).

Figure 1: Fits to the lattice data of Ref. [4] for the KD system (left panel) and the KDú system
(right panel) which have been obtained when solving Eq. (2.4).

In the infinite volume case, the scattering matrix for the KD æ KD transition reveals
the presence of a pole whose binding energy with respect to the KD threshold is found to
be B(KD) = 46 ± 21 MeV and we can associate the pole with the state Dú

s0(2317). This
result can be compared with the one obtained in Ref. [4] ( B(KD) = 36.6±16.6±0.5 MeV)
by means of the Lüsher method and the e�ective range formula. The probability of finding
the KD component in the wave function of Dú

s0(2317) is found to be

76±12 %, (3.1)

indicating that the state Dú
s0(2317) has a large KD component in its wave function.

Similar is the case of the KDú channel, for which we find a pole with

B(KDú) = 52±22 MeV,

P (KDú) = 53±17 %. (3.2)

This pole can be related to the state Dú
s1(2460).

We can also use the scattering matrix to determine the scattering length a0 and the
e�ective range r0 and compare with the results found in Ref. [4]. We find

a0(KD) = ≠1.2±0.6 fm, r0(KD) = 0.04±0.16 fm,

a0(KDú) = ≠0.9±0.3 fm, r0(KDú) = ≠0.3±0.4 fm, (3.3)
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Theoretical studies within the chiral unitary approach, and recent experiments, have provided evidence of the
existence of two isoscalar states in the region of the !(1405). In this paper we use the same chiral approach to
generate energy levels in a finite box. In a second step, assuming that these energies correspond to lattice QCD
results, we devise the best strategy of analysis to obtain the two states in the infinite-volume case, with sufficient
precision to distinguish them. We find out that by using energy levels obtained with asymmetric boxes and/or
with a moving frame, with reasonable errors in the energies, one has a successful scheme to get the two !(1405)
poles.

DOI: 10.1103/PhysRevC.86.055201 PACS number(s): 12.38.Gc, 14.20.Gk

I. INTRODUCTION

The history of the !(1405) as a composite state of meson
baryon, dynamically generated from the meson-baryon inter-
action, is rather long, starting from the works of Refs. [1,2].
Early works using the cloudy bag model also reached similar
conclusions [3]. The advent of chiral unitary theory, combining
chiral dynamics and unitarity in coupled channels, brought
new light onto this issue and the !(1405) was one of the
cleanest examples of states dynamically generated within this
approach [4– 6]. Hints that there could be two states rather than
one had also been reported using the cloudy bag model [7] and
the chiral unitary approach [8– 10]. A qualitative step forward
was done in Ref. [11], where two different versions of the
approach were used, the two poles remained, and their origin
was investigated. It was found that in an SU(3) symmetric
theory there were two degenerate octets and a singlet of
dynamically generated resonances, but with the breaking of
SU(3) the degeneracy was removed, one octet with isospin
I = 0 moved to become the !(1670) and the other one
moved close to the singlet, producing two poles close by
in the region of the !(1405). One of the poles appears at
energies around 1420 MeV, couples mostly to K̄N , and has
a small width of around 30 MeV. The other pole is around
1395 MeV, couples mostly to π#, and is much wider, around
120 or 250 MeV depending on the model. After the work of
Ref. [11], all further works on the chiral unitary approach have
corroborated the two poles, with remarkable agreement for the
pole at higher energy and larger variations for the pole at lower
energies [12– 19].

Suggestions of experiments to confirm this finding were
made, and it was shown that one should not expect to see
two peaks in the cross sections, but rather different shapes in
different reactions. In this sense, a suggestion was made to
look for the !(1405) peak in the K−p → γπ# reaction [20],
where the γ would be radiated from the initial state, making

the K−p system lose energy and go below threshold and
then excite the high-energy state of the !(1405), to which it
couples most strongly. This reaction was not made, although it
is planned for the Japan Proton Accelerator Research Complex
(J-PARC) [21], but a similar one, where the photon was
substituted by a pion, was implemented in Ref. [22] studying
the K−p → π0π0#0 reaction at pK = 514 to 750 MeV/c.
A neat and narrow peak was seen at

√
s = 1420 MeV, which

was analyzed in Ref. [23] and interpreted in terms of the high-
energy pole of the !(1405). More recently it was noticed that
old data on the K−d → π#n reaction from Ref. [24] produced
a peak in the π# spectrum around

√
s = 1420 MeV, with also

a small width. These data were well reproduced in Ref. [25]
within the chiral unitary approach and multiple scattering, and
once again it was shown that it gave support to the existence
of the second pole of the !(1405). It was shown there that
the reaction proceeded with kaons in flight but not for stopped
kaons, because the background from single scattering was too
large in this latter case, obscuring the signal of the resonance
that stems from double scattering. Even then, it was shown in
Ref. [26] that kaons from the Double Annular Phi Factory for
Nice Experiments (DAFNE) facility, coming from the decay
of the φ, would also be suited to search for this resonance if
neutrons were measured in coincidence in order to reduce the
background. Results on the helicity amplitudes of the !(1405)
are also consistent with the two-pole scenario [27]. The search
for reactions where the !(1405) is produced has continued,
showing that, as predicted, different reactions have different
shapes. In this sense there have been recent photoproduction
experiments [28,29] and proton-induced experiments [30,31]
where the shapes are indeed different and the peaks appear at
lower energies, around 1405 MeV, as the nominal mass. There
are also theoretical studies for these reactions where the peaks
appear around these energies, and the larger contribution of
the lower-energy state that couples mostly to π# is mostly
responsible for it [32– 36].

055201-10556-2813/2012/86(5)/055201(13) ©2012 American Physical Society
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FIG. 1. Energy levels in a symmetric box of side length L.

III. RESULTS

A. Energy levels in box

In this section we show the energy levels obtained from the
solution of Eq. (6) as a function of the side length of the box,
L, and for different physical cases: using periodic boundary
conditions in a (1) symmetric box, (2) asymmetric box, and
(3) symmetric box but in a moving frame; that is, with nonzero
value for the total center-of-mass momentum P⃗ [Eq. (13)].

1. Periodic boundary conditions in symmetric box

In Fig. 1 we show the first six energy levels related to the
system formed by the coupled channels K̄N , π", η$, and
K%, which generate a double-pole structure for the $(1405)
and a pole for the $(1670) [11]. These levels are obtained
by solving Eq. (6) using the chiral model of Ref. [11] and
imposing periodic boundary conditions in a symmetric box of
side length L (measured in units of m− 1

π ).
As can be seen in Fig. 1, the gap between levels 0, 1 and

especially between levels 1 and 2 is considerable, giving rise to
the presence of only two levels in the energy region of interest;
that is, the energy range in which the two poles of the $(1405)
are found (1390–1430 MeV). This fact shows the difficulty
that one can face to extract information about the poles of the
$(1405) in an infinite volume considering these energy levels
as reference.

2. Periodic boundary conditions in asymmetric box

To see if we can obtain more energy levels in the region
of the $(1405), it is also possible to solve Eq. (6) but in
an asymmetric box. To do this we just need to substitute
L3 by LxLyLz and the momentum p⃗ of Eq. (12) by p⃗ =
(2π )(nx/Lx, ny/Ly, nz/Lz). In Fig. 2 we show the first three
energy levels determined in a box of side lengths Lx = Ly = L
and Lz = zL, and we vary z between 0.5L and 2.5L. In this
way, we get more energy levels in the region of interest, which
can provide different information about the system and the
poles of the $(1405).

FIG. 2. Energy levels in an asymmetric box of side length Lx =
Ly = L and Lz = zL, with z = 0.5 to 2.5 in steps of 0.5.

3. Periodic boundary conditions in moving frame

Another method to try to get more energy levels around the
pole positions of the $(1405) and, thus, different information
about the dynamics of the system under consideration, consists
of imposing periodic boundary conditions in a symmetric box
of side length L but considering the system in a moving frame
(i.e., with nonzero center-of-mass momentum P⃗ ). In Fig. 3
we show the results found in this case for the first three levels
obtained and for different values of the vector N⃗ [see Eq. (13)].
As can be seen, the use of different values of P⃗ gives rise to
a splitting of the levels. In particular, the splitting of level 1
is precisely in the energy region of interest, 1390–1450 MeV.
This is different from the case of the asymmetric box, where
level 2 is required in order to have energy levels around 1420–
1450 MeV, as can be seen in Fig. 2.

B. Inverse problem: getting !(1405) poles from
energy levels of box

In the following we refer to the problem of determining the
pole positions of the $(1405) in the infinite volume using the

FIG. 3. Energy levels in a symmetric box of side length L with
the system having a center-of-mass momentum given by Eq. (13).
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