LIA SUBATOMIC PHYSICS - KICKOFF WORKSHOP

Effective models for hadronic systems
Varese S. Timóteo (FT / UNICAMP)

June 12-13, 2018 - São José dos Campos - SP

- Motivation: Bertsch problem and Unitary limit
- EFT: Implicit vs Explicit Renormalization
- Pions vs Contacts

> E. Ruiz Arriola (UGR)
S. Szpigel (UPM)

- Neutron matter
- Final Remarks

Motivation

What is the ground state energy of a many-fermion system with zero range interactions and infinitely large scattering length?

T. Papenbrock, G. F. Bertsch, Phys. Rev. C 59, 2052 (1999).

Figure 1. Pictorical representation of the BCS and BEC limits of a many-fermion system. The blurred red lines indicate the weak pairing. Adapted from Living Rev. Relativity 11, 10 (2008).

$$
\begin{gathered}
\text { singlet state } \\
a_{n p}=-23.7 \mathrm{fm} \\
a_{n n}=-18.7 \mathrm{fm} \\
\text { very large }
\end{gathered}
$$

```
small and negative
scattering length
```


BCS limit
large and negative scattering length

BEC limit

Neutron matter \& Cold Atoms

Monte Carlo simulations

J. Carlson, S. Gandolfi and A. Gezerlis, Prog. Theor. Exp. Phys., 01A209 (2012).
"We report quantum Monte Carlo calculations of superfluid Fermi gases with short-range two-body attractive interactions with infinite scattering length. The energy of such gases is estimated to be (0.44 ± 0.01) times that of the noninteracting gas, and their pairing gap is approximately twice the energy per particle."
J. Carlson, S. Y. Chang, V. R. Pandharipande and K. E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003)

Unitary limit

$$
\mathcal{T}_{2}(k, k) \propto \frac{1}{[k \cot \delta-i k]}
$$

Effective Range Expansion

Unitary limit

$$
k \cot \delta=-\frac{1}{\alpha_{0}}+\frac{1}{2} r_{0} k^{2}-\frac{1}{y} \alpha_{\text {low energies }} k^{4}+\cdots
$$

$$
\alpha_{0} \rightarrow \infty \text { and } r_{0} \rightarrow 0
$$

$$
\delta=\frac{\pi}{2}
$$

Scale invariant T-matrix

$$
\mathcal{T}_{2}(k, k) \propto \frac{i}{k} \quad \sigma=4 \pi / k^{2}
$$

Bertsch Parameter

$$
\varepsilon=\xi \times \varepsilon_{F G} \quad \varepsilon_{F G}=\frac{3}{5} \frac{\hbar^{2} k_{F}^{2}}{2 m} \quad \xi=\frac{\varepsilon}{\varepsilon_{F G}}
$$

IMPLICIT RENORMALIZATION

Contact theory in the continuum, regulated by a sharp cutoff

$$
\begin{aligned}
& \text { LO NLO } \\
& V_{\Lambda}\left(p^{\prime}, p\right)=C_{0}+C_{2}\left(p^{2}+p^{\prime 2}\right) \\
& +C_{4}\left(p^{4}+p^{\prime 4}\right)+C_{4}^{\prime} p^{2} p^{\prime 2}+\ldots . \\
& \text { NNLO } \\
& \text { NLO: } \quad\left(C_{0}, C_{2}\right) \rightarrow\left(\alpha_{0}, r_{0}\right) \\
& -\frac{1}{\alpha_{0} \Lambda}=\frac{4\left(-2 c_{2}^{2}+90 \pi^{4}+15\left(3 c_{0}+2 c_{2}\right) \pi^{2}\right)}{9 \pi\left(c_{2}^{2}-10 c_{0} \pi^{2}\right)} \\
& r_{0} \Lambda=\frac{16\left(c_{2}^{2}+12 \pi^{2} c_{2}+9 \pi^{4}\right)}{\pi\left(c_{2}+6 \pi^{2}\right)^{2}}-\frac{12 c_{2}\left(c_{2}+12 \pi^{2}\right)}{\left(c_{2}+6 \pi^{2}\right)^{2}} \frac{1}{\alpha_{0} \Lambda} \\
& +\frac{3 c_{2} \pi\left(c_{2}+12 \pi^{2}\right)}{\left(c_{2}+6 \pi^{2}\right)^{2}} \frac{1}{\alpha_{0}^{2} \Lambda^{2}} \\
& \mathrm{LO}: \quad C_{0} \rightarrow \alpha_{0} \\
& C_{0}(\Lambda)=\frac{\alpha_{0}}{1-\frac{2 \Lambda \alpha_{0}}{\pi}}
\end{aligned}
$$

EXPLICIT RENORMALIZATION - 150 \& 3S1

see works from Ohio group for a review on the SRG

Szpigel, Ruiz Arriola, VST, Annals of Physics 353 (2015) 129-149

Implicit x Explicit - 1S0 \& 3S1

$$
V_{\lambda, \Lambda}\left(p, p^{\prime}\right)=\tilde{C}_{0}+\tilde{C}_{2}\left(p^{2}+p^{\prime 2}\right)+\cdots
$$

Chiral Forces with pions \& nucleons as fundamental d.o.f.

see works from Machleidt et al. and Epelbaum et al.

Nogga, Timmermans, van Kolck, Phys Rev C 72 (2005) 054006

Szpigel \& VST, J Phys G 39 (2012) 105102

N2LO

N4LO force (1SO channel) configuration space

Neutron matter with only contact interactions

$$
\begin{gathered}
\xi_{\lambda}\left(k_{F}\right)=\frac{T\left(k_{F}\right)+V_{\lambda}\left(k_{F}\right)}{T\left(k_{F}\right)}=1+\frac{V_{\lambda}\left(k_{F}\right)}{T\left(k_{F}\right)} \\
T\left(k_{F}\right)=\frac{3 k_{F}^{2}}{10 m_{n}} \\
V_{\lambda}\left(k_{F}\right)=\frac{4}{m_{n}} \frac{2}{\pi} \int_{0}^{k_{F}} d k k^{2}\left(1-\frac{3 k}{2 k_{F}}+\frac{k^{3}}{2 k_{F}^{3}}\right) V_{\lambda}^{1} S_{0}(k, k)
\end{gathered}
$$

$$
V\left(p, p^{\prime}\right)=C_{0}+C_{2}\left(p^{2}+p^{\prime 2}\right)+C_{4}\left(p^{4}+p^{\prime 4}\right)+C_{4}^{\prime} p^{2} p^{\prime 2}+\cdots
$$

Constraining LECs to unitarity condition

$$
V\left(p, p^{\prime}\right)=C_{0}+C_{2}\left(p^{2}+p^{\prime 2}\right)+C_{4}\left(p^{4}+p^{\prime 4}\right)+C_{4}^{\prime} p^{2} p^{\prime 2}+\ldots
$$

Compute two-body T-matrix with $V\left(p, p^{\prime}\right)$
Match to Effective Range Expansion
Impose unitarity condition $-1 / a=0$ and $r=0$

$$
\xi_{\mathrm{LO}}(x)=\frac{4}{9}=0.444 \ldots
$$

$$
\xi_{\mathrm{NLO}}(x)=\frac{(3 \pi x-6 \sqrt{48-3 \pi x}-64)}{3 \pi x-48}
$$

$$
x=k_{F} r
$$

Neutron Matter: Implicit Renormalization

Exact solution with separable potential

F. Tabakin, Phys. Rev. 177 (1969) 1443.

$$
\begin{gathered}
V_{0}\left(p^{\prime}, p\right)= \pm g\left(p^{\prime}\right) g(p) \\
{[g(k)]^{2}=\frac{\sin \delta(k)}{k} \exp \left[-f_{-\infty}^{\infty} \frac{\delta\left(k^{\prime}\right)}{k-k^{\prime}} d k^{\prime}\right]} \\
g(p)=\frac{\theta(\Lambda-p)}{\sqrt[4]{\Lambda^{2}-p^{2}}} \\
\xi=1+\frac{80}{3 \pi k_{F}^{2}} \int_{0}^{k_{F}} k^{2} d k\left(1-\frac{3 k}{2 k_{F}}+\frac{k^{3}}{2 k_{F}^{3}}\right) V_{k_{F}}(k, k) \\
V_{k_{F}}\left(k^{\prime}, k\right)=-\frac{\theta\left(k_{F}-k^{\prime}\right)}{\sqrt[4]{k_{F}^{2}-k^{\prime}}} \frac{\theta\left(k_{F}-k\right)}{\sqrt[4]{k_{F}^{2}-k^{2}}} \\
\xi=\frac{176}{9 \pi}-\frac{17}{3}=0.558
\end{gathered}
$$

Neutron Matter: Explicit Renormalization

SRG evolution - Chiral N3LO - 1S0

for a review on applications of SRG to nuclear physics see
Furnstahl \& Hebeler, Rept Prog Phys 76 (2013) 126301

Finite Nuclei: Explicit Renormalization

Binding energies

Tjon line

Quantifying offshellness

The Frobenius norm:

$$
\begin{gathered}
\phi=\left\|V_{\lambda}\right\|=\sqrt{\operatorname{Tr} V_{\lambda}^{2}} \\
V_{\lambda}^{2}=\frac{2}{\pi} \int_{0}^{\infty} d q q^{2} V_{\lambda}(p, q) V_{\lambda}\left(q, p^{\prime}\right)
\end{gathered}
$$

Order parameter:

$$
\beta=\frac{d \phi}{d \lambda}
$$

Similarity susceptibility:

$$
\eta=\frac{d \beta}{d \lambda}=\frac{d^{2} \phi}{d \lambda}
$$

The on-shell transition - N3LO

Critical λ

$$
\lambda_{c}=0.9 \mathrm{fm}^{-1}
$$

Final Remarks

- Equivalence between Implicit and Explicit renormalization
- S-wave completely dominated by most "unknown" part of the nuclear force
- Neutron matter in the unitary limit can be reasonably described by contact interactions
- N2LO results are close but indicate that N3LO terms are required
- Unitary transformations provide a range for ξ and matches the universal value at $\lambda_{\xi}=0.9 k_{F}=\lambda_{c}$

