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Motivation
where
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3
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2m

(5)

is the energy per particle of the free (non-interacting) Fermi Gas and ⇠ has been called Bertsch
parameter. In fact, Bertsch wanted to know the sign of ⇠. If ⇠ > 0, the system is a gas with
positive pressure, and if ⇠ < 0 the system collapses since the pressure is negative.

Interesting many-body physics emerges when the interaction is close to the unitarity limit.
In particular, many-body fermionic systems behave almost like a perfect fluid and may exhibit
both BCS crossover and Bose-Einstein condensation which are, in fact, distinct limits of a
common phenomenon. If the scattering length is small and negative, the interaction is weakly
attractive and the system is in the BCS limit and there are overlapping loosely bound pairs. If
the scattering length is large and negative, the interaction is strongly attractive and the system
is in the BEC limit where the fermions form deeply bound pairs [2] (see Fig. 1).

Both neutron matter at low densities and ultra-cold atoms close to a Feshbach resonance are
strongly interacting fermionic systems and present large pairing gaps when measured in units
of the Fermi energy [3]. Monte Carlo simulations of a superfluid Fermi gas with an attractive
short-range two-body interaction in the unitary limit (infinite scattering length and zero e↵ective
range) estimate the energy per particle of neutron matter in 44% of the energy of the free Fermi
gas and the pairing gap to be about twice the energy per particle [4].

The S-wave interaction between two neutrons is very attractive (almost enough to produce a
nn bound state) and has a significantly large (and negative) scattering length, �↵nn

0 = 18.5fm �
rnn0 = 2.7fm. Hence, neutron matter at low densities is a system with features close to the unitary
limit. Another reason to study neutron matter at low densities is that both superconductivity
and superfluidity in fermonic systems are manifestations of quantum coherence at a macroscopic
level. An ab initio calculation of a Fermi gas in the unitary limit shows that, at T = 0.2 EF ,
the viscosity is close to the lower limit for a perfect fluid [5].

BCS limit BEC limit

Figure 1. Pictorical representation of the BCS and BEC limits of a many-fermion system. The
blurred red lines indicate the weak pairing. Adapted from Living Rev. Relativity 11, 10 (2008).
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What is the ground state energy of a many-fermion system with 
zero range interactions and infinitely large scattering length ?
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FIG. 3: (Color online) Ratio of the shear viscosity to en-
tropy density η/s as a function of T/εF for an 83 lattice (red)
squares and 103 lattice (blue) circles. The error bars only
represent the stability of the combined (SVD and MEM) in-
version procedure with respect to the change of algorithm pa-
rameters and do not include systematic errors of the entropy
determination. Results of the T -matrix theory are plotted by
open (purple) circles [15]. In the high- and low-temperature
regimes, known asymptotics are depicted: for T > 0.3εF
the prediction of kinetic theory [12] as a green line, and for
T < 0.2εF the contribution from phonon excitations [13] as a
brown line. The KSS bound appears as a dashed black line.

didate for the perfect fluid. As our results can be signif-
icantly affected by systematic errors, further and more
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[7] T. Schäfer and D. Teaney, Rep. Prog. Phys. 72, 126001

(2009).
[8] M. Müller, J. Schmalian, and L. Fritz, Phys. Rev. Lett.

103, 025301 (2009).
[9] D.T. Son, Phys. Rev. Lett. 98, 020604 (2007).
[10] Y. Nishida and D.T. Son, Phys. Rev. D 76, 086004

(2007).
[11] E. Taylor and M. Randeria, Phys. Rev. A 81, 053610

(2010).
[12] G.M. Bruun and H. Smith, Phys. Rev. A 72, 043605

(2005); Phys. Rev. A 75, 043612 (2007).
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[36] T. Schäfer and C. Chafin, Scaling Flows and Dissipation

in the Dilute Fermi Gas at Unitarity Chap. 10 in BCS-
BEC Crossover and the Unitary Fermi Gas, edited by W.
Zwerger (Springer, Berlin, 2012).

G. Wlazlowski, P. Magierski and J. E. Drut, Phys. Rev. Lett. 109, 020406 (2012)



Neutron matter & Cold Atoms

PTEP 2012, 01A209 J. Carlson et al.
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Fig. 1. AFMC lattice calculations of the unitary Fermi gas ξ parameter, updated from Ref. [23]. Symbols are
for different kinetic terms as a function of particle number and lattice size. The lattice spacing is denoted as
α. Simulations have been performed with L3 lattices, for different values of lattice length L in each direction;
open symbols are for even L = 16, 20, 24; closed are for odd L (see text). All extrapolations are consistent
with ξ = 0.372(5).

dispersion relation, which has a negative effective range of −0.306 α. The k2 + k4 results show a set
of simulations with even L as open symbols, while simulations at odd L are shown as filled symbols.
The two sets of results are slightly displaced; similar displacements have been found with limited
statistics for the other dispersions. All extrapolate to the same value of ξ within statistical errors; we
return to the dependence on effective range below. A new lattice calculation in Ref. [28] reports a
higher value of ξ , above the upper bound found in DMC calculations.

There have also been a large number of experimental determinations of ξ : the original measure-
ments [40–42] have found qualitative agreement with the DMC calculations listed above. More
precise recent experiments have found ξ = 0.39(2) [43] and ξ = 0.41(1) [44] with a smaller value
of ξ = 0.375(5) found most recently [45]. This experimental value is quite precise and overlaps our
lattice results.

3.2. Equation of state: Cold atoms and neutron matter
Of course the full equation of state (E/EFG) as a function of kF a is required to compare with neutron
matter, which has a fixed, large effective range and must be studied by varying the density. The most
recent DMC results for the full equation of state are presented in Fig. 2, and compared to the lattice
results and the most recent experimental result. These results are quite smooth as a function of kF a
and extrapolate correctly in both the BCS and BEC regimes.

Because the cold-atom interaction is short-ranged, the derivative of the energy with respect to
kF a is given completely by short-range physics, as originally written down by Tan in a series of
papers [46–48]. The derivative of the energy per particle with respect to kF a is given, using the
Hellman–Feynman theorem, by:

d E
da−1 = N

2

∫
d3rg↑↓(r)

dV (r)

da−1 (8)
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Fig. 2. Equation of state of cold atoms versus 1/(kF a). Blue circles are DMC calculations, the red square and
green diamond are lattice and experimental values at unitarity 1/(kF a) = 0. The inset shows the corrections
from the finite effective range near unitarity (see text).
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Fig. 3. Comparison of the equation of state of cold atoms and neutron matter at low density. Neutron matter
calculations are from Ref. [14]. Differences at low density are primarily due to the effective range of the
neutron–neutron interaction. The solid line is a fit to the cold atom results, the dashed line includes an estimate
of effective range effects (see text).

The pair distribution g↑↓(r) → 0 goes like A2/r2 at unitarity for small r , with g↑↓(r) → 1/2 at
large r. The change in energy with respect to a−1 is

d E
da−1 = −!22πρ A2

m
→ C = 8π2ρ2 A2, (9)

where C is Tan’s contact parameter. Near unitarity the EOS is conventionally parametrized as

E
EFG

= ξ − ζ

kF a
+ · · · , (10)

with ζ = (5π/2)C/k4
F . We return to the contact parameter in the discussion of short-range

physics below.
In Fig. 3 these cold atom results are compared to the QMC for neutron matter [14], and to the

analytic expression available at small kF a. At low densities, the neutron matter and cold atom results
agree; they also agree with a simple extrapolation of the analytic results near kF a = 0. At higher
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lattice and continuum results are both in agreement with Eq. 13.
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Fig. 5. Dependence of the unitary Fermi Gas equation of state on Fermi momentum vs. e↵ective
range (kF re). Shaded bands are fits to the lattice results, and dashed lines give DMC results.

In DMC calculations the slope parameter S is not too sensitive to k
F

a near
unitarity. Fig. 2 shows, in the inset, the slope parameter S evaluated from DMC
calculations near unitarity. It is positive and approximately 0.1 near unitarity, but
changes significantly in the BCS and BEC regimes. The di↵erence between the cold
atom EOS and neutron matter at su�ciently small densities should be approximately
⇠
neutrons

� ⇠
atoms

⇡ Sk
F

r
e

, or approximately 0.05 at �k
F

a = 5 since the neutron-
neutron e↵ective range is expected to be approximately 2.7 fm. Fig. 3 shows a fit
to the cold atom results at zero e↵ective range as a solid line. The dashed line adds
an e↵ective range correction with S = 0.1. This should be the dominant correction
at k

F

 0.25 fm�1 , near k
F

⇡ 0.5 fm�1 one would have k
F

r
e

⇡ 1 and higher order
corrections in s� and p�wave interactions could be important.

§4. Pairing Gap

Both low-density neutron matter and cold atoms are strongly paired Fermi sys-
tems, they exhibit some of the largest pairing gaps of any systems known when
measured in terms of the Fermi energy. We define the pairing gap at T=0 as the
di↵erence between the energy of an odd particle system and the average of the two
nearby even particle systems in periodic boundary conditions:

� = E(N + 1)� (E(N) + E(N + 2))/2, (14)

with the universal parameter � defined as the pairing gap divided by the Fermi energy
E

F

= ~2k2
F

/2m. For simulations of a large enough number of particles this should
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Abstract. We compute the Bertsch parameter for neutron matter by using nucleon-nucleon
interactions that are fully diagonal in momentum space. We analyze the on-shell limit with the
similarity renormalization group and compare the results for a simple separable toy model to
realistic calculations with high precision NN potentials.

1. Introduction
About fifteen years ago George Bertsch proposed the following problem [1]: what would be the
ground state properties of a many-body system composed of spin-12 fermions interacting via a
short-range contact interaction with an infinitely large scattering length?

The two-body scattering amplitude can be written as

T2(k, k) /
1

[k cot � � ik]
, (1)

and at low energies, k cot � can be described by the e↵ective range expansion

k cot � = � 1

↵0
+

1

2
r0k

2 + · · · , (2)

where ↵0 is the scattering length and r0 is the e↵ective range. The unitary limit corresponds to
↵0 ! 1 and r0 ! 0. In this limit, k cot � ! 0 and the scattering amplitude is then reduced to

T2(k, k) /
i

k
. (3)

and thus the cross section in the S-wave saturates the unitarity bound � = 4⇡/k2. Therefore
the two-body scattering amplitude becomes completely scale invariant and as a consequence the
energy per particle for the ground state of such a system would be given by

" = ⇠ ⇥ "FG , (4)
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Abstract. We compute the Bertsch parameter for neutron matter by using nucleon-nucleon
interactions that are fully diagonal in momentum space. We analyze the on-shell limit with the
similarity renormalization group and compare the results for a simple separable toy model to
realistic calculations with high precision NN potentials.

1. Introduction
About fifteen years ago George Bertsch proposed the following problem [1]: what would be the
ground state properties of a many-body system composed of spin-12 fermions interacting via a
short-range contact interaction with an infinitely large scattering length?

The two-body scattering amplitude can be written as

T2(k, k) /
1

[k cot � � ik]
, (1)

and at low energies, k cot � can be described by the e↵ective range expansion

k cot � = � 1

↵0
+

1

2
r0k

2 + · · · , (2)

where ↵0 is the scattering length and r0 is the e↵ective range. The unitary limit corresponds to
↵0 ! 1 and r0 ! 0. In this limit, k cot � ! 0 and the scattering amplitude is then reduced to

T2(k, k) /
i

k
. (3)

and thus the cross section in the S-wave saturates the unitarity bound � = 4⇡/k2. Therefore
the two-body scattering amplitude becomes completely scale invariant and as a consequence the
energy per particle for the ground state of such a system would be given by

" = ⇠ ⇥ "FG , (4)
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where

"FG =
3

5

h̄2k2F
2m

(5)

is the energy per particle of the free (non-interacting) Fermi Gas and ⇠ has been called Bertsch
parameter. In fact, Bertsch wanted to know the sign of ⇠. If ⇠ > 0, the system is a gas with
positive pressure, and if ⇠ < 0 the system collapses since the pressure is negative.

Interesting many-body physics emerges when the interaction is close to the unitarity limit.
In particular, many-body fermionic systems behave almost like a perfect fluid and may exhibit
both BCS crossover and Bose-Einstein condensation which are, in fact, distinct limits of a
common phenomenon. If the scattering length is small and negative, the interaction is weakly
attractive and the system is in the BCS limit and there are overlapping loosely bound pairs. If
the scattering length is large and negative, the interaction is strongly attractive and the system
is in the BEC limit where the fermions form deeply bound pairs [2] (see Fig. 1).

Both neutron matter at low densities and ultra-cold atoms close to a Feshbach resonance are
strongly interacting fermionic systems and present large pairing gaps when measured in units
of the Fermi energy [3]. Monte Carlo simulations of a superfluid Fermi gas with an attractive
short-range two-body interaction in the unitary limit (infinite scattering length and zero e↵ective
range) estimate the energy per particle of neutron matter in 44% of the energy of the free Fermi
gas and the pairing gap to be about twice the energy per particle [4].

The S-wave interaction between two neutrons is very attractive (almost enough to produce a
nn bound state) and has a significantly large (and negative) scattering length, �↵nn

0 = 18.5fm �
rnn0 = 2.7fm. Hence, neutron matter at low densities is a system with features close to the unitary
limit. Another reason to study neutron matter at low densities is that both superconductivity
and superfluidity in fermonic systems are manifestations of quantum coherence at a macroscopic
level. An ab initio calculation of a Fermi gas in the unitary limit shows that, at T = 0.2 EF ,
the viscosity is close to the lower limit for a perfect fluid [5].

BCS limit BEC limit

Figure 1. Pictorical representation of the BCS and BEC limits of a many-fermion system. The
blurred red lines indicate the weak pairing. Adapted from Living Rev. Relativity 11, 10 (2008).
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IMPLICIT RENORMALIZATION

unitary evolution of a hamiltonian H = Trel + V with a flow
parameter s that ranges from 0 to1,

dHs

ds
= [⌘s,Hs] , (7)

where ⌘s = [Gs,Hs] is an anti-hermitian operator that generates
the unitary transformations. We take the Block-diagonal SRG
generator [17] given by

Gs = HBD
s ⌘

0
BBBBBBBB@

PHsP 0

0 QHsQ

1
CCCCCCCCA . (8)

where P and Q = 1 � P are projection operators. The flow pa-
rameter s has dimensions of [energy]�2 and in terms of a sim-
ilarity cuto↵ � with dimension of momentum is given by the
relation s = ��4. The flow equation is to be solved with the
boundary condition Hs|s!s0

⌘ Hs0 . Using that Trel is indepen-
dent of s, we obtain

dVs

ds
= [⌘s,Hs] . (9)

In a partial-wave relative momentum space basis, the projection
operators are determined in terms of a momentum cuto↵ scale
⇤ that divides the momentum space into a low-momentum P-
space (p < ⇤) and a high-momentum Q-space (p > ⇤),

P ⌘ ✓(⇤ � p); Q ⌘ ✓(p � ⇤) . (10)

The potential Vs can be written as,

Vs ⌘
0
BBBBBBBB@

PVsP PVsQ

QVsP QVsQ

1
CCCCCCCCA . (11)

By choosing the block-diagonal generator, the matrix-elements
inside the o↵-diagonal blocks PVsQ and QVsP are suppressed
as the flow parameter s increases (or as the similarity cuto↵
� decreases), such that the hamiltonian is driven to a block-
diagonal form,

lim
�!0

V� = PVlowkP + QVhighkQ =

0
BBBBBBBB@

Vlow k 0

0 Vhigh k

1
CCCCCCCCA (12)

Thus, in the limit � ! 0 the P-space and the Q-space become
completely decoupled. Thus, while unitarity implies ��(p) =
�(p) for any � one has

lim
�!0
��(p) = �lowk(p) + �highk(p) (13)

where �lowk(p) = �(p)✓(⇤� p) and �highk(p) = �(p)✓(p�⇤) are
the phase shifts of the Vlow k and Vhigh k potentials respectively
(see Eq. (4)).

4. Implicit Renormalization: Low cut-o↵ evolution

At low cut-o↵s ⇤ we may approximate the hermitian e↵ec-
tive interaction by a polymomial,

V⇤(p0, p) = C0 +C2(p2 + p02)
+ C4(p4 + p04) +C04 p2 p02 + . . . . (14)

where C0,C2,C4,C04, . . . are real coe�cients depending on ⇤
to be determined. This corresponds to a theory with contact
interactions only. Using the potential of Eq. (14) the LS Eq. (3)
reduces to a system of algebraic equations which solution is
well known (see e.g. Ref. [20]). At lowest leading order (LO)
we just keep the leading term C0 and get

C0(⇤) =
↵0

1 � 2⇤↵0
⇡

, (15)

showing that lim⇤!0 V⇤(0, 0) = ↵0. Going to Next-to-leafing
order (NLO) we obtain

� 1
↵0⇤

=
4
⇣
�2c2

2 + 90⇡4 + 15(3c0 + 2c2)⇡2
⌘

9⇡
⇣
c2

2 � 10c0⇡2
⌘ , (16)

r0⇤ =
16
⇣
c2

2 + 12⇡2c2 + 9⇡4
⌘

⇡
�
c2 + 6⇡2�2 �

12c2
⇣
c2 + 12⇡2

⌘

�
c2 + 6⇡2�2

1
↵0⇤

+
3c2⇡

⇣
c2 + 12⇡2

⌘

�
c2 + 6⇡2�2

1
↵2

0⇤
2
,

where c0 = 4⇡⇤C0, c2 = 4⇡⇤3C2. In the second equation we
have eliminated C0 in terms of ↵0. This leads for any cut-o↵
⇤ to the mapping (↵0, r0) ! (C0,C2). At this level of approxi-
mation there are two branches and we choose the one consistent
with the LO one for⇤! 0, see Eq. (15) and Fig. 2. We will de-
note LO by C(0)

0 and NLO by C(2)
0 and C(2)

0 . One should note that
in the case of the 3S 1 channel C(0)

0 is singular and the derivatives
of C(0)

2 and C(2)
2 are discontinuous at ⇤ = ⇡/2↵0 ⇠ 0.3 fm�1,

which is the momentum scale where the deuteron bound-state
appears. The strong resemblance of both 1S 0 and 3S 1 at the
scales around ⇤ ⇠ 1fm�1 is just a reminiscent of the SU(4)
Wigner symmetry for the two-nucleon system [26, 7, 27, 28].

One can in principle improve by including more terms be-
yond second order in Eq. (14). The problem is that there are
two such terms C4 and C04 [20] but there is only one low en-
ergy parameter in the ERE, v2 in Eq. (6). This is so because
scattering does not depend just on the on-shell potential. Thus,
the implicit renormalization is not unique beyond NLO. This
is just a manifestation of the ambiguities of the inverse scatter-
ing problem which can only be fixed after three or higher body
properties are taken into account 1. Clearly, and even for the C0
and C2 coe�cients, increasing ⇤ values one starts seeing more
high energy details of the theory.

Even at NLO the question is how small must be the cut-o↵
scale so that Eq. (14) works. There is a maximum value ⇤WB
for the cuto↵ scale ⇤ above which one cannot fix the strengths
of the contact interactions C(0)

2 and C(2)
2 by fitting the experi-

mental values of both the scattering length ↵0 and the e↵ec-
tive range r0 while keeping the renormalized potential hermi-
tian. This limit corresponds to the Wigner causality bound re-
alized as an o↵-shell unitarity condition [20, 30]. Indeed, for

1Actually from a dimensional point of view the two-body operators with
four derivatives are suppressed as compared to contact three body operators.
The o↵-shellness of the two body problem can be equivalently be translated
into some three-body properties [29].
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generator [17] given by

Gs = HBD
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BBBBBBBB@
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0 QHsQ
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CCCCCCCCA . (8)

where P and Q = 1 � P are projection operators. The flow pa-
rameter s has dimensions of [energy]�2 and in terms of a sim-
ilarity cuto↵ � with dimension of momentum is given by the
relation s = ��4. The flow equation is to be solved with the
boundary condition Hs|s!s0

⌘ Hs0 . Using that Trel is indepen-
dent of s, we obtain

dVs

ds
= [⌘s,Hs] . (9)

In a partial-wave relative momentum space basis, the projection
operators are determined in terms of a momentum cuto↵ scale
⇤ that divides the momentum space into a low-momentum P-
space (p < ⇤) and a high-momentum Q-space (p > ⇤),

P ⌘ ✓(⇤ � p); Q ⌘ ✓(p � ⇤) . (10)

The potential Vs can be written as,
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By choosing the block-diagonal generator, the matrix-elements
inside the o↵-diagonal blocks PVsQ and QVsP are suppressed
as the flow parameter s increases (or as the similarity cuto↵
� decreases), such that the hamiltonian is driven to a block-
diagonal form,

lim
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V� = PVlowkP + QVhighkQ =
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1
CCCCCCCCA (12)

Thus, in the limit � ! 0 the P-space and the Q-space become
completely decoupled. Thus, while unitarity implies ��(p) =
�(p) for any � one has

lim
�!0
��(p) = �lowk(p) + �highk(p) (13)

where �lowk(p) = �(p)✓(⇤� p) and �highk(p) = �(p)✓(p�⇤) are
the phase shifts of the Vlow k and Vhigh k potentials respectively
(see Eq. (4)).

4. Implicit Renormalization: Low cut-o↵ evolution

At low cut-o↵s ⇤ we may approximate the hermitian e↵ec-
tive interaction by a polymomial,

V⇤(p0, p) = C0 +C2(p2 + p02)
+ C4(p4 + p04) +C04 p2 p02 + . . . . (14)

where C0,C2,C4,C04, . . . are real coe�cients depending on ⇤
to be determined. This corresponds to a theory with contact
interactions only. Using the potential of Eq. (14) the LS Eq. (3)
reduces to a system of algebraic equations which solution is
well known (see e.g. Ref. [20]). At lowest leading order (LO)
we just keep the leading term C0 and get

C0(⇤) =
↵0

1 � 2⇤↵0
⇡

, (15)

showing that lim⇤!0 V⇤(0, 0) = ↵0. Going to Next-to-leafing
order (NLO) we obtain
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2
,

where c0 = 4⇡⇤C0, c2 = 4⇡⇤3C2. In the second equation we
have eliminated C0 in terms of ↵0. This leads for any cut-o↵
⇤ to the mapping (↵0, r0) ! (C0,C2). At this level of approxi-
mation there are two branches and we choose the one consistent
with the LO one for⇤! 0, see Eq. (15) and Fig. 2. We will de-
note LO by C(0)

0 and NLO by C(2)
0 and C(2)

0 . One should note that
in the case of the 3S 1 channel C(0)

0 is singular and the derivatives
of C(0)

2 and C(2)
2 are discontinuous at ⇤ = ⇡/2↵0 ⇠ 0.3 fm�1,

which is the momentum scale where the deuteron bound-state
appears. The strong resemblance of both 1S 0 and 3S 1 at the
scales around ⇤ ⇠ 1fm�1 is just a reminiscent of the SU(4)
Wigner symmetry for the two-nucleon system [26, 7, 27, 28].

One can in principle improve by including more terms be-
yond second order in Eq. (14). The problem is that there are
two such terms C4 and C04 [20] but there is only one low en-
ergy parameter in the ERE, v2 in Eq. (6). This is so because
scattering does not depend just on the on-shell potential. Thus,
the implicit renormalization is not unique beyond NLO. This
is just a manifestation of the ambiguities of the inverse scatter-
ing problem which can only be fixed after three or higher body
properties are taken into account 1. Clearly, and even for the C0
and C2 coe�cients, increasing ⇤ values one starts seeing more
high energy details of the theory.

Even at NLO the question is how small must be the cut-o↵
scale so that Eq. (14) works. There is a maximum value ⇤WB
for the cuto↵ scale ⇤ above which one cannot fix the strengths
of the contact interactions C(0)

2 and C(2)
2 by fitting the experi-

mental values of both the scattering length ↵0 and the e↵ec-
tive range r0 while keeping the renormalized potential hermi-
tian. This limit corresponds to the Wigner causality bound re-
alized as an o↵-shell unitarity condition [20, 30]. Indeed, for

1Actually from a dimensional point of view the two-body operators with
four derivatives are suppressed as compared to contact three body operators.
The o↵-shellness of the two body problem can be equivalently be translated
into some three-body properties [29].
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Figure 2: C(0)
0 , C(0)

2 and C(2)
2 for the contact theory in the continuum regulated by a sharp momentum cuto↵ for the 1S 0 channel and the 3S 1 channel. The parameters

are determined from the solution of the LS equation for the on-shell K-matrix by fitting the ERE parameters

⇤ > ⇤WB ⇠ 1.9 fm�1 in the case of the 1S 0 channel and
⇤ > ⇤WB ⇠ 2.4 fm�1 in the case of the 3S 1 channel, the pa-
rameters C(0)

2 and C(2)
2 diverge before taking complex values

and hence violating the hermiticity of the e↵ective potential in
Eq. (14).

5. Numerical results

The Block-Diagonal-SRG equations, Eq.(9), have to be
solved numerically on a momentum grid with N-points yield-
ing 4 ⇥ N2 non-linear first order coupled di↵erential equations.
Furthermore, an auxiliary numerical cut-o↵ Pmax = N�p must
also be introduced. It is interesting to test the space dimen-
sions needed to solve the contact theory close to the contin-
uum. This is shown in Fig. 3 where one sees that large N is
needed to reproduce the continuum limit. We will set N = 50
and Pmax = 5fm�1 to our SRG calculations, solve the system
of 4 ⇥ N2 non-linear first-order coupled di↵erential equations
by using an adaptative fifth-order Runge-Kutta algorithm as in
Ref. [30] and compare the results to the contact interaction with
the same N and Pmax. We check unitarity by comparing phase-
shifts along the � evolution, ��(p) = �(p). The sharp momen-
tum projectors in Eq. (10) may be regularized as smooth pro-
jectors [31] (Q ⌘ 1 � P)

P = ⇥(⇤ � p) = lim
n!1 e�(p/⇤)n

, (17)

and we will take the values n = 2, 4, 8, 16 to check convergence.
We want to compare the running of the coe�cients C0 and C2
with the cut-o↵ ⇤ in the contact theory potential at NLO to the
running of the corresponding coe�cients C̃0 and C̃2 with the
Vlowk cuto↵ (⌘ ⇤) extracted from a polynomial fit of the BD-
SRG-evolved gaussian potential,

V�,⇤(p, p0) = C̃0 + C̃2 (p2 + p02) + · · · . (18)

The parameters C and L in the initial gaussian potential (�,⇤!
1), defined by Eq. (5), and the coe�cients C0 and C2 in the
contact theory potential at NLO are determined from the so-
lution of the LS equation for the K-matrix on the finite mo-
mentum grid by fitting the experimental values of the scatter-
ing length ↵0 and the e↵ective range r0. The coe�cients C̃0

and C̃2 are determined by fitting the diagonal matrix-elements
of the BD-SRG-evolved potential for the lowest momenta with
the polynomial form and the finite momentum grid.

In Fig. 4 we show the results for C̃0 and ⇤2C̃2 extracted from
the 1S 0 channel and the 3S 1 channel BD-SRG-evolved gaus-
sian potentials on a grid (with N = 50 gauss points and Pmax =
5 fm�1) and down to the lowest SRG cuto↵ � = 0.1fm�1, com-
pared to C0 and ⇤2C2 obtained for the contact theory potential
at NLO (on the same grid) regulated by a smooth exponential
momentum cuto↵ with sharpness parameter n = 16. As we
see, there is a remarkably good agreement between the coe�-
cients extracted from the BD-SRG-evolved potential and those
obtained for the contact theory in the limit �! 0.

It is important to point out that the agreement between the
running of the coe�cients C0 and C2 in the contact theory po-
tential and the running of the coe�cients C̃0 and C̃2 extracted
from the BD-SRG-evolved gaussian potential as the similarity
cuto↵ � decreases below ⇤ can be traced to the decoupling be-
tween the P-space and the Q-space, which follows a similar
pattern. Thus, in the limit � ! 0 we expect to achieve a high
degree of agreement for cuto↵s ⇤ up to ⇤WB determined by the
Wigner bound for the contact theory.

The overlapp between the discretized explicit and implicit
numerical solutions is verified in a wide range of cut-o↵s ⇤.
If continuum accuracy was to be judged from the slow conver-
gence pattern of Fig. 3, the equivalent BD-SRG calculations
would be out of question. Thus, the continuum limit �p! 0 is
better and more simply represented by the implicit approach.

For the 1S 0 and 3S 1 neutron-proton scattering states this
range is within 0.5fm�1  ⇤  1.5fm�1. This is a welcome
feature, since it suggests that the bulk of the e↵ective interac-
tion and its scale dependence can directly be extracted from low
energy NN data. This was the purpose of a previous analysis [7]
where the Skyrme force parameters just deducible from the NN
interaction in S- and P-waves were determined. Of course, the
presumably small corrections due to long distance e↵ects like
One-Pion-Exchange (OPE) in the determination of the e↵ec-
tive interaction at these low cut-o↵s remains to be seen (see e.g.
Ref. [32]).
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Chiral Forces with pions & nucleons as fundamental d.o.f. 
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FIG. 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid
dots, solid squares, triangles, diamonds, and stars denote vertexes of index �i = 0, 1, 2, 3, 4, and 6, respectively. Further
explanations are given in the text.

where the superscript denotes the order ⌫ of the expansion.
Order by order, the long-range NN potential builds up as follows:

VLO ⌘ V (0) = V (0)
1⇡ (2.12)

VNLO ⌘ V (2) = VLO + V (2)
1⇡ + V (2)

2⇡ (2.13)

VNNLO ⌘ V (3) = VNLO + V (3)
1⇡ + V (3)

2⇡ (2.14)

VN3LO ⌘ V (4) = VNNLO + V (4)
1⇡ + V (4)

2⇡ + V (4)
3⇡ (2.15)

VN4LO ⌘ V (5) = VN3LO + V (5)
1⇡ + V (5)

2⇡ + V (5)
3⇡ (2.16)

where LO stands for leading order, NLO for next-to-leading order, etc..
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situation in ordinary ChPT. We can describe this in the
same language used to discuss power counting in ChPT
[5, 7, 8]: we represent typical nucleon momenta by Q and
the characteristic scale of QCD in the hadronic phase by
MQCD. The effect of iterating an interaction in the ker-
nel of the T matrix is twofold. First, one has an extra
three-dimensional momentum integral and an extra NN

Schrödinger propagator. Second, one has an extra factor
of the potential. After the cutoff dependence is removed
by renormalization, the contribution to the NN T ma-
trix from an NN intermediate state is expected to be
O(mNQ/4π). This is a factor mN/Q ≫ 1 larger than
in analogous states in ordinary ChPT, and it is due to
the small energy of intermediate states containing nucle-
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2. On-shell interactions from the SRG and the Bertsch parameter
In this work we want to study neutron matter at the unitary limit with on-shell interactions
obtained by evolving the nuclear force with the similarity renormalization group (SRG) towards
the infrared region of the similarity cuto↵ �. The SRG has been widely applied to nuclear
structure calculations and the nuclear many-body problem [10, 11]. The technique is based on
a flow equation which for the nucleon-nucleon interaction and the Wilson generator reads

dVs(p, p0)

ds
= �(p2 � p02)2 Vs(p, p

0) +
Z 1

0
dq q2(p2 + p02 � 2q2)Vs(p, q) Vs(q, p

0) , (6)

where the flow parameter s is usually written in terms of the so-called similarity cuto↵ � (which
has dimension of momentum) as s = ��4. The potential before evolution (initial) corresponds
to s = 0 or � = 1 and the matrix elements of the evolved potential are denoted as V�(p, p0).
The unitarity of the transformation ensures that all observables computed with V�(p, p0) are
exactly the same as the observables computed with the non-evolved initial potential V1(p, p0).
This applies in particular to phase-shifts, which do not depend on �.

Recently, we have developed techniques in nuclear physics in order to study the infrared
fixed-point of the SRG by pushing the evolution towards the on-shell limit � ! 0 [6, 7, 8] and
have found an elegant an simple way to determine phase shifts from fully diagonal interactions
in momentum space complying with isospectrality and Levinson’s theorem [9].

A simple S-wave gaussian separable potential toy model allows to carry studies with a
moderate numerical e↵ort

V (p, p0) = C exp

� 1

L2

⇣
p2 + p02

⌘�
, (7)

where the parameters C and L are obtained by fitting the scattering length and the e↵ective
range. The nn interaction cannot be measured directly, but since the nn and np interaction in
the 1S0 channel have similar (and large) scattering lengths, ↵nn

0 = �18.5 fm and ↵np
0 = �23.7 fm,

we use the np phase-shifts to access how well the toy model describes the nuclear force in the
S-waves. This gives C = �1.916 fm and L = 1.2 fm�1.

At similarity cuto↵s close to � ⇠ 1 fm�1 the flow equation becomes extremely sti↵ so that it
is nearly impossible to study the infrared limit of the similarity cuto↵, � ! 0, if the potential has
a long tail in momentum space, which is the case for high precision nucleon-nucleon potentials.
This is the reason why we have constructed the toy model since it gives good qualitative results
for the nucleon-nucleon S-waves but has a short tail in momentum space, allowing the SRG
evolution towards the infrared region of the similarity cuto↵ with a moderate numerical e↵ort.
The fully diagonal on-shell interaction at � = 0 is obtained by using the energy shift prescription
of Ref. [9].

3. Bertsch parameter
Here we apply the toy model to compute the Bertsch parameter in the infrared region of the
similarity cuto↵ with di↵erent grid sizes. We also compute the Bertsch parameter with high
precision nucleon-nucleon potentials to compare them to the results from the toy potential.

The Bertsch parameter is the ratio between the total energy of a system of interacting fermions
in the unitary limit and the energy of a free Fermi gas:

⇠�(kF ) =
T (kF ) + V�(kF )

T (kF )
= 1 +

V�(kF )

T (kF )
. (8)

The kinetic energy in neutron matter is given by

T (kF ) =
3k2F
10mn

, (9)
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where mn is the neutron mass and kF is the Fermi momentum. The potential energy can be
obtained in the Hartree-Fock approximation and is due to the toy interaction in the 1S0 channel:

V�(kF ) =
4

mn

2

⇡

Z kF

0
dk k2

 

1� 3k

2kF
+

k3

2k3F

!

V
1S0
� (k, k) . (10)

For realistic high precision interactions, there are also contributions from higher partial waves
and the energy per particle can be written as

"(kF ) =
3k2F
10mn

+
4

mn

2

⇡

Z kF

0
dk k2

 

1� 3k

2kF
+

k3

2k3F

!

⇥
h
V

1S0
� (k, k) + 9V

3Pc
� (k, k) + 5V

1D2
� (k, k) + 21V

3Fc
� (k, k) + 9V

1G4
� (k, k)

i
,

(11)

where 3Pc and 3Fc are linear combinations of the P and F waves, which are given explicitly in
Ref. [12].

4. Numerical results
In Fig. 2 we show the Bertsch parameter as a function of the Fermi momentum computed
with the toy model for several values of the similarity cuto↵, mostly in the infrared region, for
di↵erent number of grid points. For similarity cuto↵s from infinity down to 0.5 fm�1 the number
of grid points almost do not a↵ect the results. However, for smaller values of � the number of
grid points start to change the results and in the limit � = 0 the di↵erence is huge as can be
seen in the last panel of Fig. 2.

At � = 1 fm�1 the results obtained with the toy model are very close to the results that
come out if we consider only S-waves from high precision nucleon-nucleon potentials. This can
be observed in Fig. 3 where we display the Bertsch parameter computed with Argonne v18 [13],
Nijmegen II [14], N3LO (2003) [15] and N3LO (2005) [16] nucleon-nucleon interactions. The
minimum value of the Bertsch parameter lies in between ⇠ = 0.42 and ⇠ = 0.45 for both the
toy model and high precision potentials at kF between 1.1 fm�1 and 1.3 fm�1. Sophisticated
quantum Monte Carlo calculations give ⇠ = 0.44 [4], so it is quite impressive that a simple
separable potential can provide results that are so close to more accurate approaches.

While the contribution from the S-waves is rather independent of the nucleon-nucleon
potential, when higher partial waves are included the results depend on whether one uses
phenomenological potentials (Av18 or NijII) or chiral potentials (2003 N3LO or 2005 N3LO).
This can be seen in Fig. 4 where the Bertsch parameter is computed summing up to G-waves.
Also, the minimum of ⇠ gets much smaller and is displaced towards larger kF .

When the similarity cuto↵ reaches the limit � = 0 the interaction becomes fully diagonal and
all o↵-shell ambiguities are then eliminated. In Fig. 5 we show a comparison of the Bertsch
parameter at � = 0 for the toy model and the high precision potentials with only S-waves (left
panel) and summing up to G-waves (right panel). In the region 0 < kF < 0.5 fm�1, the toy
model matches the calculation with high precision potentials with only S-waves. For larger
kF the result is also very reasonable if one considers the extreme simplicity of the separable
potential.

The �-dependence of the Bertsch parameter is rather strong and shows that it is not
determined just by two-body scattering information unless the extreme on-shell limit � ! 0
is taken. Of course, the real limit ↵0 ! �1 and � ! 0 remains an interesting challenge.
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Neutron matter with only contact interactions
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Match to Effective Range Expansion
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The low energy contants are given by moments of the pseu-
dopotential VL(r)

C0(L) =
Z •

0
dr r2VL(r) , (13)

C2(L) =�1
6

Z •

0
dr r4VL(r) , (14)

C4(L) =
3
10

C0
4(L) =

1
120

Z •

0
dr r6VL(r) . (15)

Note that we are not concerned with the shape of VL(r) as
long as we can carry out the calculaiton with the LEC. This
corresponds to an Effective Field Theory (EFT) with contact
interactions only. We expect Eq. (11) to hold up to p, p0 
LERE. Using the potential of Eq. (11) the LS Eq. (7) reduces
to a system of algebraic equations which can be readily solved
at leading order (LO) and next-to-leading order (NLO) which
solution is well known (see e.g. Ref. [16, 17]). Then to any
order we match the resulting expressions to the effective range
expansion, Eq. (10).

At leading order (LO) we just keep the leading term C0 and
get

C0(L) =
a0

1� 2La0
p

, (16)

showing that limL!0 VL(0,0) = a0. Going to next-to-leading
order (NLO) we obtain

� 1
a0L

=
4
�
�2c2

2 +90p

4 +15(3c0 +2c2)p2�

9p

�
c2

2 �10c0p

2
� , (17)

r0L =
16

�
c2

2 +12p

2c2 +9p

4�

p (c2 +6p

2)2 �
12c2

�
c2 +12p

2�

(c2 +6p

2)2
1

a0L

+
3c2p

�
c2 +12p

2�

(c2 +6p

2)2
1

a

2
0 L2 ,

where c0 = 4pLC0, c2 = 4pL3C2. In the second equation we
have eliminated C0 in terms of a0. This leads for any cut-off
L to the mapping (a0,r0)! (C0,C2). At this level of approx-
imation there are two branches and we choose the one consis-
tent with the LO one for L ! 0, see Eq. (16).1 For the NNLO
cases the expressions are rather large and are not quoted here.

Following the conventional strategy once our effective in-
teraction has been tuned to the Bertsch renormalization con-
dition, we turn now to the many body problem. We will work
at the mean field level, since this already provides an upper
variational estimate for any L. The energy is given by

E = Â
~k,s

nk
k2

2M
+

1
V Â

~k

nk,N

h
h~k|v|~ki�h~�k|v|~ki

i
, (18)

1 The Next-to-next-to-leading order (NNLO) has a peculiar feature, since
once has two constants C4 and C0

4 and just one renormalization condition
at this order. Quite generally, this property can be solved if we assume
that our effective dynamics is governed by a local potential. This locality
condition has its counterpart at all orders.

where N = 2Â~k 1. For a two-fermion species we have the
Hartree-Fock result for just S-wave interactions,

B
A
=

3k2
F

10M
+

2
p

2
M

Z kF

0
k2dk

✓
1� 3k

2kF
+

k3

2k3
F

◆
VL(k,k)

+ O(V 2) . (19)

According to the standard perturbative argument, first order
perturbation theory provides an an upper bound for the true
ground state. If we have H = H0 +V and H0y

(0)
n = E(0)

n y

(0)
n ,

then for any normalized state j we have E0  hj|H0+V |ji=
E(0)

n + hy(0)
n |V |y(0)

n i. However, if we take L = kF the mean
field result accounts for the full contribution since we cannot
have transitions above the Fermi level. Quite generally we
may then write

x = 1+
10kFC0(L)

9p

+
2k3

FC2(L)
3p

+
k5

F(C
0
4(L)+2C4(L))

7p

+O(k7
F ,V

2) . (20)

Of course, this is an approximation for any finite L which
becomes increasingly accurate for L ! 0. On the other hand
we do not expect L > kF to provide relevant contributions to
the many body problem. Thus, in the limit of small densities
we have

x = 1+
10kFC0(kF)

9p

+
2k3

FC2(kF)

3p

+
k5

F(C
0
4(kF)+2C4(kF))

7p

+O(k7
F) (21)

This discussion holds for finite values of a0 where the LEC
can be re-expanded in kF . When the limit a0 !�• is taken
one gets C0(kF) ! �p/(2kF), etc. Analytical results can be
obtained for LO and NLO, namely

xLO(x) =
4
9
= 0.444 . . . , (22)

xNLO(x) =
�
3p x�6

p
48�3p x�64

�

3p x�48
, (23)

where x = kF r. The LO result coincides with [18, 19]. The
NLO result is to our knowledge new.

For kF r0 ⌧ 1 we have

xNLO =
1
6

⇣
8�3

p
3
⌘
+

1
192

⇣
4�3

p
3
⌘

p x (24)

+

�
16�9

p
3
�

p

2 x2

12288
+

�
32�15

p
3
�

p

3 x3

393216
+ O

�
x4� , (25)

which numerically yields

xNLO = 0.467308�0.019572 x+0.0003 x2 + · · · . (26)

Our numerical results for LO, NLO, and NNLO are pre-
sented in Fig. 1 where we consider the local conditions
Eq. (15) leading to xNNLO = 0.42 and compare it with tak-
ing e.g. C4 = 0 while maintaining the same renormalization
conditions, Eq. (12), showing the result depends on the way
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Exact solution with separable potential

2

unitary transformation of the potential [9] (see e.g. [10] for a
review). Here we propose to take advantage of this arbitrari-
ness by building an interaction in block-diagonal form where
the separation scale in the momentum, L, is actually chosen to
coincide with the Fermi momentum, L = kF . This has the im-
portant consequence that the mean field result already yields
the exact many-body solution and a suitable choice permits
to construct an analytic solution without violating any of the
conditions originally spelled out by Bertsch.

For our purposes it is convenient to formulate the two-body
scattering problem for two identical particles of mass M in
momentum space for the kinematics

(~P+~p/2,~P�~p/2)! (~P+~p0/2,~P�~p0/2)

where ~P is the (conserved) CM momentum and ~p and ~p0 the
relative momenta before and after the collision respectively.
The Lippmann-Schwinger equation, which in operator form
reads T (E) = V +V G0(E)T (E) with G0(E) = (E �H0)�1,
becomes [11],

h~p0|T (E)|~pi= h~p0|V |~pi+
Z d3q

(2p)3
h~p0|V |~qih~q|T (E)|~pi

E �q2/2µ + ie
,(4)

where µ = M/2 is the reduced mass. In the partial wave basis,

h~p0|T (E)|~pi= 8p

2

µ

Â
lml

Ylml (p̂)Ylml (p̂0)⇤Tl(p0, p,E) , (5)

with Ylml ( p̂) spherical harmonics and similarly for the po-
tential Vl . In terms of the means of the K�matrix fulfilling,
Tl = Kl/(1+ i

p
2µEKl) which half-off-shell fulfills

Kl(p0, p) =Vl(p0, p)+
2
p

�
Z •

0
dq

q2Vl(p0,q)
p2 �q2 Kl(q, p) . (6)

where �
R

stands for the principal value integral and Kl(p0, p)⌘
Kl(p0, p,E = p2/2µ). The relation with the phase-shifts in
Eq. (1) follows from �4p f = h~p0|T (E)|~pi and is given by

tandl(p)
p

=�Kl(p, p) . (7)

Clearly, the conditions in Eq. (2), are fulfilled by taking

Vl(p, p0) = 0 , for l � 1 . (8)

The problem is then to find the s-wave interaction V0(p0p)
from Eq. (2), as we will discuss shortly, after reviewing our
many-body setup.

Following the conventional strategy, once our effective in-
teraction V0(p0, p) has been tuned to the Bertsch renormaliza-
tion condition, Eq. (2), we turn now to the many body prob-
lem. We will work first at lowest order in perturbation the-
ory which corresponds to the mean field (Hartree-Fock) level,
since this already provides an upper variational estimate for
any V0(p0, p). For a two-fermion species the energy per parti-
cle at the Hartree-Fock level, is given by [12]

E
N

=
3k2

F
10M

+
2
p

4
M

Z kF

0
k2dk

✓
1� 3k

2kF
+

k3

2k3
F

◆
V0(k,k)

+ O(V 2) . (9)

According to the standard variational argument, first order
perturbation theory provides an upper bound for the true
ground state. If we have H = H0 +V and H0y

(0)
n = E(0)

n y

(0)
n ,

then for any normalized state j we have E0  hj|H0 +V |ji
so that taking j =y

(0)
n a Slater determinant leading to Eq. (9).

E0 E(0)
n +hy(0)

n |V |y(0)
n i. The neglected higher order correc-

tions correspond to transitions ~p ! ~p0 above the Fermi-level,
|~P±~p/2| kF  |~P±~p0/2| which requires p0 > kF > p. Note,
however, that if we have V0(p0, p) = 0 for p0 > kF > p higher
order corrections vanish identically.

The main ingredient in our construction is thus to separate
the two-body (relative) Hilbert space into two orthogonal (and
decoupled) subspaces H = HP �HQ which are below or
above some given L respectively. This can be denoted by pro-
jection operators P and Q, fulfilling P2 = P and Q2 = Q and
PQ = QP = 0 and P+Q = 1. This separation endows the
Hamiltonian H with a block structure, which can equivalently
be transformed by a unitary transformation U into a block-
diagonal form

H =

0

@
PHP PHQ

QHP QHQ

1

A=U

0

@
PHLP 0

0 QH̄LQ

1

AU† (10)

where HL and H̄L describe the low energy and high energy
dynamics respectively. Of course, we can split the Hamilto-
nian as H = T +V , with T and V kinetic and potential en-
ergies respectively. For the case when U commutes with the
kinetic energy, [U,T ] = 0, an equivalent decomposition holds
for the potential V in terms of VL in the P-space and V̄L in the
Q-space. 1 Our idea is to assume already the former decompo-
sition to the two-boby problem from the start and to consider
the following potential in the momentum P-space

VL(p0, p) = q(L� p0)q(L� p)v(p0, p) . (11)

The effective interation VL(p0, p) depends explicily on the
separation scale or cut-off L. It corresponds to a self-adjoint
operator, VL(p0, p) = VL(p, p0)⇤, acting in a reduced model
Hilbert space with p, p0  L. Due to the fact that the transfor-
mation is unitary we get that the phase-shift associated with
VL(p0, p) is just

d0,L(p) = d0(p)Q(L� p) , (12)

in the P-model space. Note that for L = kF , the Q-space be-
comes irrelevant in the many body problem, so that

x = 1+
80

3pk2
F

Z kF

0
k2dk

✓
1� 3k

2kF
+

k3

2k3
F

◆
VkF (k,k) .(13)

We stress that for this choice of two body potential with only
the s-wave contribution this equation is exact. We are only left
with the determination of a suitable function v(p0, p).

1 There are many inequivalent ways how this procedure can be carried out
as a result of a finite number of steps. A particular implementation is to
achieve Block-Diagonalization in a continuous way in terms of flow equa-
tions [13]. We will exploit this freedom below.
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FIG. 1. Exact Bertsch parameter x as a function of the effective
range r0 in units of the Fermi momentum kF for a0 ! �• for a
separable potential from the Tabakin’s solution ( l/kF = •) and its
SRG evolution to l/kF = 0.9 (see main text). We also compare to
the Monte Carlo simulation of Ref. [8] using UTP and Poeshl-Teller
interaction, and the experimental measurements on atomic gases for
r = 0 [4] (x = 0.41(1)), [5] (x = 0.39(2)), [6] (x = 0.376(5)) and
[7] (x = 0.37(1)).

Within the class of solutions given by Eq. (11) we can still
exploit the arbitrariness to choose an interaction which will
provide an analytical solution to the Bertsch’s problem. Here,
we will search for a separable interaction solution of the form

V0(p0, p) =±g(p0)g(p) . (14)

The ± sign specifies a repulsive and an attractive interaction
respectively. This approach will work up to a value of p < L
where the phase shift dL(p) does reproduce Eq. (2). For a
separable potential of the form of Eq. (14) the solution of the
Lippmann-Schwinger equation reads reads [14, 15]

pcotd0(p) =� 1
V0(p, p)


1� 2

p

�
Z •

0
dq

q2

p2 �q2 V0(q,q)
�

=� 1
a0

+
1
2

r0 p2 (15)

For separable potentials the inverse scattering problem may
be solved in quadrature by the Tabakin’s formula devised in
1969 [16] (for a review see e.g. [17]). In our case the attractive
solution without bound state will be the pertinent one, reading

[g(k)]2 =
sind (k)

k
exp


��
Z •

�•

d (k0)
k� k0

dk0
�
, (16)

where d (�k) =�d (k) and the real and positive g(k) is taken
provided sind (k) > 0 or 0  d (k)  p , a condition fulfilled

by Eq. (2) for any value of a0 and r0. In our case. according
to Eq. (12) we have a limited integration interval �L  k 
L. The case with a0 ! �• and r0 = 0 can be worked out
explicitly, yielding for p > 0

g(p) =
q(L� p)
4
p

L2 � p2
. (17)

For L = kF , the potential satisfying exactly the conditions is

VkF (k
0,k) =�q(kF � k0)

4
q

k2
F � k02

q(kF � k)
4
q

k2
F � k2

, (18)

which as expected depends on kF . It can be readily checked
that for k > 0 one has

d0(k) =
p

2
q(kF � k) . (19)

A direct evaluation of the integral in Eq. (9) yields

x =
176
9p

� 17
3

= 0.558 , (20)

contrary to the “universal” value x = 0.37�0.40 [2]. The case
a0 !�• and r0 6= 0 can also be computed analytically from
Tabakin’s formula, Eq. (16), in terms of dilogarithmic func-
tions. The result is depicted in Fig. 1, contradicting Conduit
and Schonberg [8].

We note, however, that the previous result, while exact is
not unique. As already mentioned, one can still undertake
a further phase-equivalent unitary transformation within the
P�space of the potential V !U†VU which preserves the es-
sential feature that the interaction does not allow transitions
above the Fermi surface, but reshuffles the v(p0, p) function.

A simple way to generate a continuous one-parameter uni-
tary transformation according to the previous requirements
is by means of the Similarity Renormalization Group (SRG)
method introduced by Wilson and Glazek [18] (for a review
see e.g. [19]). Defining the Hamiltonian Hs = T +Vs at the
operator level the SRG equation with the Wilson, Gs = T , gen-
erator reads

dVs

ds
= [[T,Vs],T +Vs] . (21)

This evolution equation monotonously minimizes the Frobe-
nius norm of the potential ||Vs||2 = tr(V 2

s ), since dtr(V 2
s )/ds<

0 and for s ! • provides lims!•[T,Vs] = 0, i.e. the potential
energy operator becomes diagonal in momentum space and
hence on-shell [20, 21] . Here, one has for v(p, p0) in Eq. (11)
and in our case (L = kF ) the following equation,

d vs(p, p0)
ds

=�(p2 � p02)2 vs(p, p0)+
2
p

Z kF

0
dq q2

⇥ (p2 + p02 �2q2) vs(p,q) vs(q, p0) , (22)

where s = 1/l

4 and l is the similarity cutoff. The flow
equation generates a set of isospectral interactions that ap-
proaches a diagonal form as s ! • (or l ! 0). Only in few
cases have the SRG integro-diferential equations been solved
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FIG. 1. Exact Bertsch parameter x as a function of the effective
range r0 in units of the Fermi momentum kF for a0 ! �• for a
separable potential from the Tabakin’s solution ( l/kF = •) and its
SRG evolution to l/kF = 0.9 (see main text). We also compare to
the Monte Carlo simulation of Ref. [8] using UTP and Poeshl-Teller
interaction, and the experimental measurements on atomic gases for
r = 0 [4] (x = 0.41(1)), [5] (x = 0.39(2)), [6] (x = 0.376(5)) and
[7] (x = 0.37(1)).

Within the class of solutions given by Eq. (11) we can still
exploit the arbitrariness to choose an interaction which will
provide an analytical solution to the Bertsch’s problem. Here,
we will search for a separable interaction solution of the form

V0(p0, p) =±g(p0)g(p) . (14)

The ± sign specifies a repulsive and an attractive interaction
respectively. This approach will work up to a value of p < L
where the phase shift dL(p) does reproduce Eq. (2). For a
separable potential of the form of Eq. (14) the solution of the
Lippmann-Schwinger equation reads reads [14, 15]

pcotd0(p) =� 1
V0(p, p)


1� 2

p

�
Z •

0
dq

q2

p2 �q2 V0(q,q)
�

=� 1
a0

+
1
2

r0 p2 (15)

For separable potentials the inverse scattering problem may
be solved in quadrature by the Tabakin’s formula devised in
1969 [16] (for a review see e.g. [17]). In our case the attractive
solution without bound state will be the pertinent one, reading

[g(k)]2 =
sind (k)

k
exp


��
Z •

�•

d (k0)
k� k0

dk0
�
, (16)

where d (�k) =�d (k) and the real and positive g(k) is taken
provided sind (k) > 0 or 0  d (k)  p , a condition fulfilled

by Eq. (2) for any value of a0 and r0. In our case. according
to Eq. (12) we have a limited integration interval �L  k 
L. The case with a0 ! �• and r0 = 0 can be worked out
explicitly, yielding for p > 0

g(p) =
q(L� p)
4
p

L2 � p2
. (17)

For L = kF , the potential satisfying exactly the conditions is

VkF (k
0,k) =�q(kF � k0)

4
q

k2
F � k02

q(kF � k)
4
q

k2
F � k2

, (18)

which as expected depends on kF . It can be readily checked
that for k > 0 one has

d0(k) =
p

2
q(kF � k) . (19)

A direct evaluation of the integral in Eq. (9) yields

x =
176
9p

� 17
3

= 0.558 , (20)

contrary to the “universal” value x = 0.37�0.40 [2]. The case
a0 !�• and r0 6= 0 can also be computed analytically from
Tabakin’s formula, Eq. (16), in terms of dilogarithmic func-
tions. The result is depicted in Fig. 1, contradicting Conduit
and Schonberg [8].

We note, however, that the previous result, while exact is
not unique. As already mentioned, one can still undertake
a further phase-equivalent unitary transformation within the
P�space of the potential V !U†VU which preserves the es-
sential feature that the interaction does not allow transitions
above the Fermi surface, but reshuffles the v(p0, p) function.

A simple way to generate a continuous one-parameter uni-
tary transformation according to the previous requirements
is by means of the Similarity Renormalization Group (SRG)
method introduced by Wilson and Glazek [18] (for a review
see e.g. [19]). Defining the Hamiltonian Hs = T +Vs at the
operator level the SRG equation with the Wilson, Gs = T , gen-
erator reads

dVs

ds
= [[T,Vs],T +Vs] . (21)

This evolution equation monotonously minimizes the Frobe-
nius norm of the potential ||Vs||2 = tr(V 2

s ), since dtr(V 2
s )/ds<

0 and for s ! • provides lims!•[T,Vs] = 0, i.e. the potential
energy operator becomes diagonal in momentum space and
hence on-shell [20, 21] . Here, one has for v(p, p0) in Eq. (11)
and in our case (L = kF ) the following equation,

d vs(p, p0)
ds

=�(p2 � p02)2 vs(p, p0)+
2
p

Z kF

0
dq q2

⇥ (p2 + p02 �2q2) vs(p,q) vs(q, p0) , (22)

where s = 1/l

4 and l is the similarity cutoff. The flow
equation generates a set of isospectral interactions that ap-
proaches a diagonal form as s ! • (or l ! 0). Only in few
cases have the SRG integro-diferential equations been solved
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FIG. 1. Exact Bertsch parameter x as a function of the effective
range r0 in units of the Fermi momentum kF for a0 ! �• for a
separable potential from the Tabakin’s solution ( l/kF = •) and its
SRG evolution to l/kF = 0.9 (see main text). We also compare to
the Monte Carlo simulation of Ref. [8] using UTP and Poeshl-Teller
interaction, and the experimental measurements on atomic gases for
r = 0 [4] (x = 0.41(1)), [5] (x = 0.39(2)), [6] (x = 0.376(5)) and
[7] (x = 0.37(1)).

Within the class of solutions given by Eq. (11) we can still
exploit the arbitrariness to choose an interaction which will
provide an analytical solution to the Bertsch’s problem. Here,
we will search for a separable interaction solution of the form

V0(p0, p) =±g(p0)g(p) . (14)

The ± sign specifies a repulsive and an attractive interaction
respectively. This approach will work up to a value of p < L
where the phase shift dL(p) does reproduce Eq. (2). For a
separable potential of the form of Eq. (14) the solution of the
Lippmann-Schwinger equation reads reads [14, 15]

pcotd0(p) =� 1
V0(p, p)


1� 2

p

�
Z •

0
dq

q2

p2 �q2 V0(q,q)
�

=� 1
a0

+
1
2

r0 p2 (15)

For separable potentials the inverse scattering problem may
be solved in quadrature by the Tabakin’s formula devised in
1969 [16] (for a review see e.g. [17]). In our case the attractive
solution without bound state will be the pertinent one, reading

[g(k)]2 =
sind (k)

k
exp


��
Z •

�•

d (k0)
k� k0

dk0
�
, (16)

where d (�k) =�d (k) and the real and positive g(k) is taken
provided sind (k) > 0 or 0  d (k)  p , a condition fulfilled

by Eq. (2) for any value of a0 and r0. In our case. according
to Eq. (12) we have a limited integration interval �L  k 
L. The case with a0 ! �• and r0 = 0 can be worked out
explicitly, yielding for p > 0

g(p) =
q(L� p)
4
p

L2 � p2
. (17)

For L = kF , the potential satisfying exactly the conditions is

VkF (k
0,k) =�q(kF � k0)

4
q

k2
F � k02

q(kF � k)
4
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k2
F � k2

, (18)

which as expected depends on kF . It can be readily checked
that for k > 0 one has

d0(k) =
p

2
q(kF � k) . (19)

A direct evaluation of the integral in Eq. (9) yields

x =
176
9p

� 17
3

= 0.558 , (20)

contrary to the “universal” value x = 0.37�0.40 [2]. The case
a0 !�• and r0 6= 0 can also be computed analytically from
Tabakin’s formula, Eq. (16), in terms of dilogarithmic func-
tions. The result is depicted in Fig. 1, contradicting Conduit
and Schonberg [8].

We note, however, that the previous result, while exact is
not unique. As already mentioned, one can still undertake
a further phase-equivalent unitary transformation within the
P�space of the potential V !U†VU which preserves the es-
sential feature that the interaction does not allow transitions
above the Fermi surface, but reshuffles the v(p0, p) function.

A simple way to generate a continuous one-parameter uni-
tary transformation according to the previous requirements
is by means of the Similarity Renormalization Group (SRG)
method introduced by Wilson and Glazek [18] (for a review
see e.g. [19]). Defining the Hamiltonian Hs = T +Vs at the
operator level the SRG equation with the Wilson, Gs = T , gen-
erator reads

dVs

ds
= [[T,Vs],T +Vs] . (21)

This evolution equation monotonously minimizes the Frobe-
nius norm of the potential ||Vs||2 = tr(V 2

s ), since dtr(V 2
s )/ds<

0 and for s ! • provides lims!•[T,Vs] = 0, i.e. the potential
energy operator becomes diagonal in momentum space and
hence on-shell [20, 21] . Here, one has for v(p, p0) in Eq. (11)
and in our case (L = kF ) the following equation,

d vs(p, p0)
ds

=�(p2 � p02)2 vs(p, p0)+
2
p

Z kF

0
dq q2

⇥ (p2 + p02 �2q2) vs(p,q) vs(q, p0) , (22)

where s = 1/l

4 and l is the similarity cutoff. The flow
equation generates a set of isospectral interactions that ap-
proaches a diagonal form as s ! • (or l ! 0). Only in few
cases have the SRG integro-diferential equations been solved
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separable potential from the Tabakin’s solution ( l/kF = •) and its
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interaction, and the experimental measurements on atomic gases for
r = 0 [4] (x = 0.41(1)), [5] (x = 0.39(2)), [6] (x = 0.376(5)) and
[7] (x = 0.37(1)).

Within the class of solutions given by Eq. (11) we can still
exploit the arbitrariness to choose an interaction which will
provide an analytical solution to the Bertsch’s problem. Here,
we will search for a separable interaction solution of the form

V0(p0, p) =±g(p0)g(p) . (14)

The ± sign specifies a repulsive and an attractive interaction
respectively. This approach will work up to a value of p < L
where the phase shift dL(p) does reproduce Eq. (2). For a
separable potential of the form of Eq. (14) the solution of the
Lippmann-Schwinger equation reads reads [14, 15]

pcotd0(p) =� 1
V0(p, p)


1� 2

p

�
Z •

0
dq

q2

p2 �q2 V0(q,q)
�

=� 1
a0

+
1
2

r0 p2 (15)

For separable potentials the inverse scattering problem may
be solved in quadrature by the Tabakin’s formula devised in
1969 [16] (for a review see e.g. [17]). In our case the attractive
solution without bound state will be the pertinent one, reading

[g(k)]2 =
sind (k)

k
exp


��
Z •

�•

d (k0)
k� k0

dk0
�
, (16)

where d (�k) =�d (k) and the real and positive g(k) is taken
provided sind (k) > 0 or 0  d (k)  p , a condition fulfilled

by Eq. (2) for any value of a0 and r0. In our case. according
to Eq. (12) we have a limited integration interval �L  k 
L. The case with a0 ! �• and r0 = 0 can be worked out
explicitly, yielding for p > 0

g(p) =
q(L� p)
4
p

L2 � p2
. (17)

For L = kF , the potential satisfying exactly the conditions is

VkF (k
0,k) =�q(kF � k0)

4
q

k2
F � k02

q(kF � k)
4
q

k2
F � k2

, (18)

which as expected depends on kF . It can be readily checked
that for k > 0 one has

d0(k) =
p

2
q(kF � k) . (19)

A direct evaluation of the integral in Eq. (9) yields

x =
176
9p

� 17
3

= 0.558 , (20)

contrary to the “universal” value x = 0.37�0.40 [2]. The case
a0 !�• and r0 6= 0 can also be computed analytically from
Tabakin’s formula, Eq. (16), in terms of dilogarithmic func-
tions. The result is depicted in Fig. 1, contradicting Conduit
and Schonberg [8].

We note, however, that the previous result, while exact is
not unique. As already mentioned, one can still undertake
a further phase-equivalent unitary transformation within the
P�space of the potential V !U†VU which preserves the es-
sential feature that the interaction does not allow transitions
above the Fermi surface, but reshuffles the v(p0, p) function.

A simple way to generate a continuous one-parameter uni-
tary transformation according to the previous requirements
is by means of the Similarity Renormalization Group (SRG)
method introduced by Wilson and Glazek [18] (for a review
see e.g. [19]). Defining the Hamiltonian Hs = T +Vs at the
operator level the SRG equation with the Wilson, Gs = T , gen-
erator reads

dVs

ds
= [[T,Vs],T +Vs] . (21)

This evolution equation monotonously minimizes the Frobe-
nius norm of the potential ||Vs||2 = tr(V 2

s ), since dtr(V 2
s )/ds<

0 and for s ! • provides lims!•[T,Vs] = 0, i.e. the potential
energy operator becomes diagonal in momentum space and
hence on-shell [20, 21] . Here, one has for v(p, p0) in Eq. (11)
and in our case (L = kF ) the following equation,

d vs(p, p0)
ds

=�(p2 � p02)2 vs(p, p0)+
2
p

Z kF

0
dq q2

⇥ (p2 + p02 �2q2) vs(p,q) vs(q, p0) , (22)

where s = 1/l

4 and l is the similarity cutoff. The flow
equation generates a set of isospectral interactions that ap-
proaches a diagonal form as s ! • (or l ! 0). Only in few
cases have the SRG integro-diferential equations been solved
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FIG. 1. Exact Bertsch parameter x as a function of the effective
range r0 in units of the Fermi momentum kF for a0 ! �• for a
separable potential from the Tabakin’s solution ( l/kF = •) and its
SRG evolution to l/kF = 0.9 (see main text). We also compare to
the Monte Carlo simulation of Ref. [8] using UTP and Poeshl-Teller
interaction, and the experimental measurements on atomic gases for
r = 0 [4] (x = 0.41(1)), [5] (x = 0.39(2)), [6] (x = 0.376(5)) and
[7] (x = 0.37(1)).

Within the class of solutions given by Eq. (11) we can still
exploit the arbitrariness to choose an interaction which will
provide an analytical solution to the Bertsch’s problem. Here,
we will search for a separable interaction solution of the form

V0(p0, p) =±g(p0)g(p) . (14)

The ± sign specifies a repulsive and an attractive interaction
respectively. This approach will work up to a value of p < L
where the phase shift dL(p) does reproduce Eq. (2). For a
separable potential of the form of Eq. (14) the solution of the
Lippmann-Schwinger equation reads reads [14, 15]

pcotd0(p) =� 1
V0(p, p)


1� 2

p

�
Z •

0
dq

q2

p2 �q2 V0(q,q)
�

=� 1
a0

+
1
2

r0 p2 (15)

For separable potentials the inverse scattering problem may
be solved in quadrature by the Tabakin’s formula devised in
1969 [16] (for a review see e.g. [17]). In our case the attractive
solution without bound state will be the pertinent one, reading

[g(k)]2 =
sind (k)

k
exp


��
Z •

�•

d (k0)
k� k0

dk0
�
, (16)

where d (�k) =�d (k) and the real and positive g(k) is taken
provided sind (k) > 0 or 0  d (k)  p , a condition fulfilled

by Eq. (2) for any value of a0 and r0. In our case. according
to Eq. (12) we have a limited integration interval �L  k 
L. The case with a0 ! �• and r0 = 0 can be worked out
explicitly, yielding for p > 0

g(p) =
q(L� p)
4
p

L2 � p2
. (17)

For L = kF , the potential satisfying exactly the conditions is

VkF (k
0,k) =�q(kF � k0)

4
q

k2
F � k02

q(kF � k)
4
q

k2
F � k2

, (18)

which as expected depends on kF . It can be readily checked
that for k > 0 one has

d0(k) =
p

2
q(kF � k) . (19)

A direct evaluation of the integral in Eq. (9) yields

x =
176
9p

� 17
3

= 0.558 , (20)

contrary to the “universal” value x = 0.37�0.40 [2]. The case
a0 !�• and r0 6= 0 can also be computed analytically from
Tabakin’s formula, Eq. (16), in terms of dilogarithmic func-
tions. The result is depicted in Fig. 1, contradicting Conduit
and Schonberg [8].

We note, however, that the previous result, while exact is
not unique. As already mentioned, one can still undertake
a further phase-equivalent unitary transformation within the
P�space of the potential V !U†VU which preserves the es-
sential feature that the interaction does not allow transitions
above the Fermi surface, but reshuffles the v(p0, p) function.

A simple way to generate a continuous one-parameter uni-
tary transformation according to the previous requirements
is by means of the Similarity Renormalization Group (SRG)
method introduced by Wilson and Glazek [18] (for a review
see e.g. [19]). Defining the Hamiltonian Hs = T +Vs at the
operator level the SRG equation with the Wilson, Gs = T , gen-
erator reads

dVs

ds
= [[T,Vs],T +Vs] . (21)

This evolution equation monotonously minimizes the Frobe-
nius norm of the potential ||Vs||2 = tr(V 2

s ), since dtr(V 2
s )/ds<

0 and for s ! • provides lims!•[T,Vs] = 0, i.e. the potential
energy operator becomes diagonal in momentum space and
hence on-shell [20, 21] . Here, one has for v(p, p0) in Eq. (11)
and in our case (L = kF ) the following equation,

d vs(p, p0)
ds

=�(p2 � p02)2 vs(p, p0)+
2
p

Z kF

0
dq q2

⇥ (p2 + p02 �2q2) vs(p,q) vs(q, p0) , (22)

where s = 1/l

4 and l is the similarity cutoff. The flow
equation generates a set of isospectral interactions that ap-
proaches a diagonal form as s ! • (or l ! 0). Only in few
cases have the SRG integro-diferential equations been solved
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[7] (x = 0.37(1)).

Within the class of solutions given by Eq. (11) we can still
exploit the arbitrariness to choose an interaction which will
provide an analytical solution to the Bertsch’s problem. Here,
we will search for a separable interaction solution of the form

V0(p0, p) =±g(p0)g(p) . (14)

The ± sign specifies a repulsive and an attractive interaction
respectively. This approach will work up to a value of p < L
where the phase shift dL(p) does reproduce Eq. (2). For a
separable potential of the form of Eq. (14) the solution of the
Lippmann-Schwinger equation reads reads [14, 15]
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dq
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p2 �q2 V0(q,q)
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=� 1
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+
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For separable potentials the inverse scattering problem may
be solved in quadrature by the Tabakin’s formula devised in
1969 [16] (for a review see e.g. [17]). In our case the attractive
solution without bound state will be the pertinent one, reading

[g(k)]2 =
sind (k)

k
exp
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Z •
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d (k0)
k� k0

dk0
�
, (16)

where d (�k) =�d (k) and the real and positive g(k) is taken
provided sind (k) > 0 or 0  d (k)  p , a condition fulfilled

by Eq. (2) for any value of a0 and r0. In our case. according
to Eq. (12) we have a limited integration interval �L  k 
L. The case with a0 ! �• and r0 = 0 can be worked out
explicitly, yielding for p > 0

g(p) =
q(L� p)
4
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L2 � p2
. (17)

For L = kF , the potential satisfying exactly the conditions is

VkF (k
0,k) =�q(kF � k0)

4
q

k2
F � k02

q(kF � k)
4
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, (18)

which as expected depends on kF . It can be readily checked
that for k > 0 one has

d0(k) =
p

2
q(kF � k) . (19)

A direct evaluation of the integral in Eq. (9) yields

x =
176
9p

� 17
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= 0.558 , (20)

contrary to the “universal” value x = 0.37�0.40 [2]. The case
a0 !�• and r0 6= 0 can also be computed analytically from
Tabakin’s formula, Eq. (16), in terms of dilogarithmic func-
tions. The result is depicted in Fig. 1, contradicting Conduit
and Schonberg [8].

We note, however, that the previous result, while exact is
not unique. As already mentioned, one can still undertake
a further phase-equivalent unitary transformation within the
P�space of the potential V !U†VU which preserves the es-
sential feature that the interaction does not allow transitions
above the Fermi surface, but reshuffles the v(p0, p) function.

A simple way to generate a continuous one-parameter uni-
tary transformation according to the previous requirements
is by means of the Similarity Renormalization Group (SRG)
method introduced by Wilson and Glazek [18] (for a review
see e.g. [19]). Defining the Hamiltonian Hs = T +Vs at the
operator level the SRG equation with the Wilson, Gs = T , gen-
erator reads

dVs

ds
= [[T,Vs],T +Vs] . (21)

This evolution equation monotonously minimizes the Frobe-
nius norm of the potential ||Vs||2 = tr(V 2

s ), since dtr(V 2
s )/ds<

0 and for s ! • provides lims!•[T,Vs] = 0, i.e. the potential
energy operator becomes diagonal in momentum space and
hence on-shell [20, 21] . Here, one has for v(p, p0) in Eq. (11)
and in our case (L = kF ) the following equation,

d vs(p, p0)
ds

=�(p2 � p02)2 vs(p, p0)+
2
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Z kF

0
dq q2

⇥ (p2 + p02 �2q2) vs(p,q) vs(q, p0) , (22)

where s = 1/l

4 and l is the similarity cutoff. The flow
equation generates a set of isospectral interactions that ap-
proaches a diagonal form as s ! • (or l ! 0). Only in few
cases have the SRG integro-diferential equations been solved
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FIG. 2. Unitary Phase-equivalent evolution of the Bertsch parame-
ter x as a function of the similarity cut-off l ⌘ 1/s1/4 (squares) for a
discrete momentum grid with N = 50 points. For N = • we mark the
initial separable potential corresponding to x = 0.56 and the l ! 0
final potential corresponding to the x = �1/3 = �0.33. The hori-
zontal line corresponds to the “universal” value x = 0.37 obtained
by many calculations and experiments [2].

analytically [22]. Their numerical treatment requires intro-
ducing a finite momentum grid, so that results in the con-
tinuum are taken as a limiting procedure [14, 15]. Taking
the vs(k,k) into the mean field energy one obtains a phase-
equivalent flow equation for the Bertsch parameter, xs. Defin-
ing j(x) = 1�3x/2+ x3/2, Eq. (22) yields the inequality

dxs

ds
=

80
3p

✓
2
p

◆2 Z kF

0
dq q2

Z kF

0
dk k2

"✓
k

kF

◆2
�
✓

q
kF

◆2
#

⇥


j

✓
k

kF

◆
�j

✓
q

kF

◆�
|vs(k,q)|2  0 , (23)

since j(x) is a decreasing function, j

0(x)=�3(1�x2)/2< 0,
and thus (x2 � y2)[j(x)�j(y)] < 0 in 0 < x,y < 1. This in-
equality actually shows that the Bertsch parameter is not de-
termined uniquely from the s-wave phase-shift and hence x is
not universal.

In the on-shell limit, s ! • (l ! 0), vs(p0, p) becomes
diagonal, and one has thus dxs/ds ! 0. The limiting value
of Eq. (21) was determined in terms of the scattering phase-
shifts [14, 15]. Adapted to our Eq. (22) and in the absence of
bound states, the limit becomes a fixed point. If k0 6= k then

lim
s!•

vs(k,k) =�d0(k)
k

, lim
s!•

vs(k0,k) = 0 , (24)

which is asymptotically stable [14, 15] and the solutions are
attracted to this one. Hence, for d0(k) = p/2 and computing

a trivial integral we finally get a fixed point solution

lim
s!•

xs = 1� 4
3
=�1

3
. (25)

This corresponds to a unstable system. Thus, the previous
argument shows that regardless of the initial function v(p0, p)
at s = 0 with a given value of x , there is a phase-equivalent
potential where x < 0.

The fixed point solution only depends on the choice L= kF .
In the case, kF < L, the mean field result is only an upper
bound, x  xMF. The flow equations for vs(p0, p) and xMF read
as Eq. (22) and Eq. (23) respectively with the replacementR kF

0 dq !
R L

0 dq, so that the same inequality holds. Thus, one
has xs  xMF ! �1/3. In the general case, with finite a0 6=
0 and r0 6= 0, see Eq. (2), the sign of lims!• xs depends on
their particular values. For instance for r0 = 0, the intercept
x• = 0 happens for a0kF = �7.5378 and for a0 ! �• one
has r0kF = 2.038.

As we have mentioned above, these solutions, while ex-
act, are not unique; we can still carry out a phase-equivalent
transformation and change the value of x . In particular, from
the SRG equations on a momentum grid [14, 15] we can cover
continuously all values from the starting one to the final one 2.
This is shown in Fig. 2 as a function of l/kF .

In particular, we could tune the SRG-scale l to obtain from
the potential VkF (k

0,k) given by Eq. (18) with x = 0.558 the
“universal” value x = 0.37 � 40 obtained in many calcula-
tions and experiments [2]. We find that x = 0.37 happens
for l/kF = 0.9, see Fig. 2. It is of course tempting to analyze
the effective range behaviour at the scale l/kF = 0.9. This
is done in Fig. 1 and compared again with the recent Monte
Carlo calculation of Conduit and Schonberg [8]. As we see
the lack of universality of x is reinforced for finite r0 even
after tuning the r0 = 0 value.

Besides illustrating the lack of universality our findings pro-
vide quite different values showing that the numerical resem-
blance among the many calculations and experiments is due
to a common, yet unknown, feature among them which was
not spelled out in the famous Bertsch’s problem and deserves
an explanation. We can think of several reasons for not repro-
ducing neither the Monte Carlo calculation nor the experimen-
tal data on ultracold atoms which agree among themselves.
Firstly, Monte Carlo calculations have only been carried out
for local potentials. The solution of the inverse scattering
problem exists [17] and will be discussed elsewhere. Sec-
ondly, the potentials experienced between neutral atoms are
van der Waals-like and hence local. Thus, we conjecture that
locality is the additional condition underlying the observed
universality. Work along these lines is in progress.

2 We take N = 50 points and Gauss-Legendre points. From the discretized
form of Eq. (13) we get x = 0.55806 using Eq. (18) and x = �0.298993
for Eq. (24). The SRG equations become increasingly stiff for large N’s
and small l ’s [14, 15, 21]. We estimate an error in x about 0.03, which is
compatible with the expected flat behaviour at the fixed point.



SRG evolution - Chiral N3LO - 1S0
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for a review on applications of SRG to nuclear physics see 

Furnstahl & Hebeler, Rept Prog Phys 76 (2013) 126301
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Quantifying offshellness

� = ||V�|| =
q

Tr V 2
�

The Frobenius norm:

V 2
� =

2

⇡

Z 1

0
dq q2 V�(p, q) V�(q, p

0)

� =
d�

d�

Order parameter:

Similarity susceptibility:

⌘ =
d�

d�
=

d2�

d�



The on-shell transition - N3LO
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Final Remarks
• Equivalence between Implicit and Explicit renormalization


• S-wave completely dominated by most “unknown" part of the 
nuclear force


• Neutron matter in the unitary limit can be reasonably 
described by contact interactions


• N2LO results are close but indicate that N3LO terms are 
required


• Unitary transformations provide a range for ξ and matches 
the universal value at  �⇠ = 0.9 kF = �c


