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Introduction

Efimov Physics: Halo Nuclei and Cold Atoms

Universal aspects in low-energy few-body systems

Efimov Physics - Brazilian few-body group contributions
Scaling properties of few-body systems (bound to scattering)
Nuclear Physics: halo-nuclei n − n−core systems
Atomic Physics: Cold-atom studies with two-kind of atoms

Recent studies on halo-nuclei scattering: The neutron−19C
Motivation based on related works in scattering with three-body
systems and the Efimov states
Scattering observables: k cot δ0 and cross-section σ.
Pole-positions of k cot δ0 as a function of the Enc bound-states.
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Universal scaling of scattering observables for
mass-imbalanced three-body systems

Main motivations for such theoretical studies are the present
experimental possibilities
(i) in nuclear physics, by considering halo-nuclei systems; and
(ii) in cold-atom laboratories when considering mixed atomic species.

In both the cases, our interest is to verify universal properties of
scattering observables for three-body systems near the unitary limit.

Examples we are considering:

Halo-nuclei: n→ (n18C)
Ultracold atoms: The α→ (αβ) system, when mα � mβ
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Ultracold atoms: The α− (αβ) system, where mα � mβ

The Efimov scaling factor of three-body system near the unitary
limit, can be well identified in scattering observables of one
atomic species α when colliding with a two-body αβ bound-state
system.
In the unitary limit, two levels are related by an exponential
scaling factor exp (2π/s0), where s0 is a constant that varies
according to the mass-ratio mH/mL. For mH = mL, the
energy-ratio is predicted to be ∼ 515, such that it will be quite
difficult for an experimental verification.
As the scaling behavior is better verified for large
imbalance-mass systems, the results can be relevant for the
going-on experimental observations of Efimov physics in
cold-atom laboratories.
In case of mH = 100mL, the ratio between consecutive levels of
the bound-state energy spectrum is given by exp (2π/s0) ∼ 4.7.
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Motivations from ultracold atom laboratories
Going to scattering region, the discrete Efimov scaling factor can
also be well identified in scattering observables of one atomic
species α when colliding with a two-body αβ bound-state.
Heidelberg group is studying the extreme mass-imbalance
mixtures composed by 133Cs and 6Li atomic species [J. Ulmanis
et al, PRL 117 (2016) 153201].
Ultracold degenerate mixtures of alkali-metal-rare-earth
molecules, 174,173Yb−6Li have also been considered by H. Hara
et al [PRL 106 (2011) 205304] and Hansen et al [PRA 84 (2011)
011606(R)].
Therefore, we understand that more favorable conditions are
accessible to probe the rich Efimov physics in cold-atom
laboratories. with low-energy collision of a heavy atom in a
weakly-bound molecule as LiCs or LiYb.
Note that, for the above mentioned examples, we have
mass-ratios as mL/mH =0.034 for LiYb and 0.045 for LiCs
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Universality in weakly-bound 3-body systems: Efimov physics

Efimov Effect: First predicted in 1970 by Vitaly Efimov (then at the Ioffe
Physico-Technical Institute, St. Petersburg, Russia), when solving the quantum
mechanics three-boson equation, Efimov effect is an apparent counter-intuitive
phenomenon.

If two bosons interact in such a way that a two-body bound state is exactly on the verge
of being formed, then in a three-boson system one should observe an infinite number
of bound states. This phenomenon was shown that does not occur for less than three
dimensions.

If one would be able to change the interaction strength, by making it either weaker or
stronger, the number of three-body bound states would become finite.

The phenomenon is part of some general universal behavior of quantum few-body
systems.

Why the actual interest?
Atomic physicists learned how to manipulate the interaction strength between atoms.
Following that, several experimental groups obtain strong indications of three-body
states as predicted by Efimov.
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25 

core 

n n 

core-neutron-neutron halo nuclei 
 
 
 

11Li   14Be   20C 
 
Binding energy ~ MeV or < MeV 
 
Rnn(Exp) ~ 6 - 8 fm  (11Li)  
 
F. M. Marqués et al. Phys. Rev. C 64, 061301 (2001) 
 
M. Petrascu et al. Nucl. Phys. A 738, 503 (2004)  

Halo Nuclei as a three-Body model 

Properties of halo nuclei
Weak interaction between the core and the halo-nucleons, such that we can consider a halo nuclei as three non-identical particle
(n − n−core) system, and neglect the structure of the core.

This three-body system has large two-body scattering lengths in comparison of the range of the interactions, suggesting the
three-body energies are Efimov states.

The radius of this kind of nuclei is much more than the expected value: R = r0A1/3
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                     Efimov states in Halo Nuclei 
 
 
Fedorov and Jensen, Phys. Rev. Lett. 25 (1993) 4103 
 
Fedorov, Jensen, and Riisager, Phys. Rev. Lett. 73 (1994) 2817 
  
Dasgupta, Mazumdar, and Bhasin, Phys. Rev. C 50 (1994) R550 
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K2 = (E2)1/2  (where 2 refers to n-n or n-c)  
and BNis the N-th 3body bound state.   
Here, it is shown the boundary of the 
region where the binding energy of the (N
+1)th Efimov state is zero for different 
core masses (A).  
Negative values for the two-body 
observables correspond to virtual states. 
It is also shown three experimental data, 
corresponding to the halo nuclei 20C, 18C, 
12Be [Audi and Wapstra, NPA595(1995)409].  
The squares, connected with dashed 
lines, are obtained from Fig. 2 of Fedorov 
et al. PRL73(1994)2817.  

(*) Work done as part of the PhD thesis of Amorim, from 1995 and 1996, submitted for publ. in 1996. 

(*) 

All-bound 

Borromean 

Samba 

Tango 

nn virtual  nn bound See also  Canham & Hammer �Universal properties and 
 structure of halo nuclei�, Eur. Phys. J. A 37, 367 (2008) 

Threshold conditions for an excited N+1 Efimov state 

13/49



Few-Body Theory Universal aspects in low-energy few-body systems

Introduction

 z=sqrt[1/515]=0.044   ! o 

Threshold conditions and Scaling function 
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Exploring the Efimov physics: From bound to scattering

Consider the general case of three-boson system with non-identical
masses such that mα � mβ , when the two-body scattering length is
close to infinite.

Two levels of the 3-body spectrum are related by a scaling factor:
exp (2π/s0), where s0 is a constant that varies according to the
mass-ratio [See Braaten and Hammer, Phys. Rep. 428 (2006) 259].

The maximum energy-ratio occurs for identical masses, predicted to be
∼ 515.

When mα = 100mβ , exp (2π/s0) ∼ 4.7, with particular interest for
experiments with cold atoms.
(We have also defined mH ≡ mα and mL ≡ mβ , for atomic systems.)
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Equal-mass case: Pole in kcotδ for the n − d system

W.T.H. van Oers and J.D. Seagrave, Phys. Lett. B 24 (1967) 562.
By analyzing data for n − d scattering, they pointed out a pole in kcotδ.

A.S. Reiner, Phys. Lett. B 28 (1969) 387.
The anomalous effective range expansion of the doublet n − d elastic scattering is due to a pole just below the threshold.

J.S. Whiting and M.G. Fuda, Phys. Rev. C 14 (1976) 18.
The pole position and residue was obtained from dispersion relation and exact solution of 3B equations.

B.A. Girard and M.G. Fuda, Phys. Rev. C 19 (1979) 579.
The existence of the triton virtual state was found on the basis of the effective range expansion.
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Pole (singularity) in kcot(δ) 

                                                                                    
 
 

For the n-d 2S phase shifts it is found that the effective range expansion has 
a pole at a negative energy (Elab= −0.1 MeV). 
 
In the n-d doublet s-wave elastic scattering, the energy dependence of the 
phase-shift has to be changed from a simple effective range formula to a 
more complex one. 

 
The neutron-deuteron effective range expansion - pole in kcot(δ) 

 
W. T. H. van Oers, J. D. Seagrave, Phys.Lett. 24B(1967)562  
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Unbalanced-mass case: Pole in kcotδ for the halo-nuclei system
M.T. Yamashita, T. Frederico and LT, Phys. Rev. Lett. 99 (2007) 269201; Phys. Lett. B 660
(2008) 339.
Shows the migration of the excited Efimov state of n − n −18 C to the virtual state, as well as performed calculations on the

n −19 C scattering within zero-range interaction.

M.A. Shalchi, M.T. Yamashita, M.R. Hadizadeh, T. Frederico, LT, Phys. Lett. B 764 (2017)
196. Neutron−19C scattering: Emergence of universal properties in a finite-range potential; Phys. Lett. B 771 (2017)
635 (Erratum).

A. Deltuva, Phys. Lett. B 772 (2017) 657 Neutron−19C scattering: Towards including realistic interactions.
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Formalism

Formalism
The amplitude of on–shell scattering of n from nc target;

hn(q,E) = V (q, k ,E) +
2
π

∫
dq′ q′2

V (q,q′,E)hn(q′,E)

q′2 − k2 − iε

q: the momentum of the spectator particle (n) with respect to the
CM of the (n − c) subsystem.
the on-energy-shell:
k ≡ |~ki | = |~kf | =

√
[2(A + 1)m/(A + 2)] (E − Enc)

where

V(q,q′,E) =
π

2
τ̄nc(q)

×
[
K2 (q,q′,E) +

∫
dk k2 K1 (q, k ,E)τnn(k)K1 (q′, k ,E)

]
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Formalism

For both n − n and n − c two-body interactions, we use one–term
separable Yamaguchi-type potentials:

V (p,p′) = λ

(
1

p2 + β2

)(
1

p′2 + β2

)
,

where

λ =
−2πµ
β(β ± κ)

,

and the range of the interaction

r0 =
1
β

+
2β

(β ± κ)2 ,
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τ̄nc and τnn (reflecting 2B t–matrices):

τ̄nc(q) =
−βnc(βnc + κnc)2(βnc + κ3nc)2(κnc + κ3nc)(A + 1)2

µncπ(2βnc + κ3nc + κnc)A(A + 2)

τnn(q) =
2βnn

µnnπ

(βnn + κnn)2(βnn + κ3nn)2

(−2βnn − κ3nn + κnn)(κnn + κ3nn)
,

where:

κnn =
√
−mEnn

κnc =

√
− 2mA

A + 1
Enc

κ3nn =

√
−m(E − (A + 2)q2

4Am
)

κ3nc =

√
− 2mA

A + 1
(E − (A + 2)q2

2(A + 1)m
).
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K1 and K2 functions:

K1(q,q′,E) =

∫
dx

1

E − q2

m + q′2(A+1)
2Am + qq′x

m

×
(

q2 +
q′2

4
+ qq′x + β2

nn

)−1(
q′2 +

q2A2

(A + 1)2 +
2qq′Ax
(A + 1)

+ β2
nc

)−1

K2(q,q′,E) =

∫
dx

1

E − q2(A+1)
2Am − q′2(A+1)

2Am + qq′x
Am

×
(

q′2 +
q2

(A + 1)2 +
2qq′x

(A + 1)
+ β2

nc

)−1(
q2 +

q′2

(A + 1)2 +
2qq′x

(A + 1)
+ β2

nc

)−1
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Handling the singularities (in case of zero-range interactions) by a
subtraction renormalization approach:

Γn(q, k ; E) = V(q, k ; E)

+
2
π

∫ ∞
0

dp
[
p2V(q,p; E)− k2V(q, k ; E)

]
Γn(p, k ; E)

p2 − k2 ,

hn(q; E) =
Γn(q, k ; E)

1− 2
π

k2
∫ ∞

0
dp

Γn(p, k ; E)

p2 − k2 − iε

.
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On–shell scattering amplitude:

hn(k ; E) = [k cot δ0 − ik ]−1,

where

k cot δ0 =
1

Γn(k , k ; E)

[
1− 2

π
k2
∫ ∞

0
dp

Γn(p, k ; E)− Γn(k , k ; E)

p2 − k2

]
.

Scattering differential cross section:

dσ
dΩ

= |hn(k ; E)|2
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Formalism

Calculation of bound and virtual-states:

hnc(q) = (q2 − k2
i )χn(q) , hnn(q) = χc(q)

We have:

hnc(q) = τ̄nc(q)

∫
dq′ q′2

(
k2 (q, q′,E)

hnc(q′)
q′2 − k2

i + iε
+ k1 (q, q′,E)hnn(q′)

)
hnn(q) = τnn(q)

∫
dq′ q′2 k1 (q′, q,E)

hnc(q′)
q′2 − k2

i + iε
,

By going to the second sheet of the complex energy:

hnc(q) = τ̄nc(q)[πkv k2 (q,−ikv ,E)hnc(−ikv )

+

∫
dq′ q′2

(
k2 (q, q′,E)

hnc(q′)
q′2 + k2

v
+ k1 (q, q′,E)hnn(q′)

)
]

hnn(q) = τnn(q)

[
πkv k1 (−ikv , q,E)hnc(−ikv ) +

∫
dq′ q′2 k1 (q′, q,E)

hnc(q′)
q′2 + k2

v

]
,

single equation for both bound and virtual states (I=b, v):

hnc(q) = 2kvV (q,−ikv ,E)hnc(−ikv )δI,v +
2
π

∫
dq′ q′2 V (q, q′,E)

hnc(q′)
q′2 + k2

I
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Typical values of Yamaguchi potential parameters to reproduce

ground state binding energy of 20C with E = −3.5 MeV
nn virtual state energy with Enn = −143 keV

βnn = 1.34 fm−1 βnn = 24.5 fm−1

|E19C|(keV) βnc (fm−1) rnc (fm) βnc (fm−1) rnc (fm)
200 0.971 2.736 18.970 0.157
400 0.754 3.233 17.036 0.174
600 0.598 3.720 15.592 0.190
800 0.477 4.255 14.395 0.205
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Numerical Results

Trajectory of 3B bound and virtual states
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Numerical Results

k cot δR
0 - Renormalized zero-range potential

Results for (1− EK/E0)k cot δR
0 as a function of the colliding neutron

energy EK , obtained with the renormalized zero–range potential. with
corresponding fitting, where E0 is the energy corresponding to the pole
position, and EK ≡ k2/(2µn,nc).
The n − c binding energies (|E19C|), are given inside the panel.
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Numerical Results

k cot δR
0 , with finite low-range interactions (high values of β)

Results for (1− EK/E0)k cot δR
0 as a function of the colliding neutron

energy EK , considering a few values of |E19C|, given inside the panel,
obtained with the finite low-range potential (large βs), with
corresponding fitting. E0 is the energy corresponding to the pole
position, and EK ≡ k2/(2µn,nc).
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Numerical Results

k cot δR
0 , with finite high-range interactions (low values of β

Results for (1− EK/E0)k cot δR
0 as a function of the colliding neutron

energy EK , obtained with the finite high-range potential (low βs), with
corresponding fitting. E0 is the energy corresponding to the pole
position, and EK ≡ k2/(2µn,nc).
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Numerical Results

Pole positions in k cot δ0 as a function of Enc

aAD = (1.46 − 2.15 tan[s0 ln(aΛ∗) + 0.09])a.

a0/aB = exp

(
π/2 − 0.59654

s0

)

aB where one Efimov state is at the threshold,
and a0 where the atom-dimer scattering length
is zero, or the pole in k cot δ0 is at zero scat-
tering energy, can be extended to the case of

the n − n − 18C system, when a−1
nn = 0.

For this mass imbalanced case s0 = 1.12 with
A = 18, and the analogous of the ratio aB/a0 is√

E0
19C

/EB
19C

,

√
EB

19C
/E0

19C
≈ exp

(
−
π/2 − 0.59654

1.12

)
= 0.419 .
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√

EB
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= 0.44 and for high-range potential

E0
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= 190 keV resulting
√

EB
19C

/E0
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= 0.45,
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Effective-range expression

k cot δR
0 =

−a−1 + b EK + c E2
K

1− EK/E0
=

d
1− EK

E0

+ e + f
EK

E0
,

residue: d = − 1
a + bE0 + cE2

0

e = −bE0 − cE2
0

f = −cE2
0
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Numerical Results

Parameters for the effective-range fitting − zero-range results.

Table: Effective-range parameters, obtained by fitting the effective-range
expression to the results shown for the case that we have zero-range
interactons, for a few values of |E19C| (first column).
Adjusting the table given in Yamashita et al. PLB 670, 49 (2008).

|E19C| −1/a b c E0

(keV) (fm−1) (fm.keV)−1 (fm.keV2)−1 (keV)

200 5.155 · 10−3 5.498 · 10−4 5.995 · 10−8 1442.6
400 6.280 · 10−2 6.593 · 10−4 1.004 · 10−7 823.89
600 0.220 9.284 · 10−4 1.508 · 10−7 451.40
800 1.299 3.242 · 10−3 3.447 · 10−7 114.981
850 5.624 1.260 · 10−2 1.1921 · 10−6 28.851
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Numerical Results

Parameters for the effective-range fitting − low-range, rnc .

Table: Effective-range parameters, obtained by fitting Eq. (12) to Fig. 2, when
considering different values of |E19C| (first column) with short-range
Yamaguchi potentials.

|E19C| −1/a b c E0 d rnc

(keV) (fm−1) (fm.keV)−1 (fm.keV2)−1 (keV) (fm−1) (fm)

200 6.028 · 10−3 5.579 · 10−4 5.717 · 10−8 1304 0.831 0.157
400 6.555 · 10−2 6.742 · 10−4 9.144 · 10−8 749.0 0.622 0.174
600 0.234 9.840 · 10−4 1.316 · 10−7 402.9 0.652 0.190
800 1.798 4.467 · 10−3 3.519 · 10−7 78.86 2.153 0.205
830 5.149 1.198 · 10−2 8.578 · 10−7 28.98 5.497 0.208
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Numerical Results

Parameters for the effective-range fitting − high-range, rnc .

Table: Effective-range parameters, obtained by fitting Eq. (12) to Fig. 2, when
considering different values of |E19C| (first column) with high-range Yamaguchi
potentials.

|E19C| −1/a b c E0 d rnc

(keV) (fm−1) (fm.keV)−1 (fm.keV2)−1 (keV) (fm−1) (fm)

200 5.020 · 10−3 5.267 · 10−4 7.580 · 10−8 881.9 0.528 2.736
400 4.216 · 10−2 6.319 · 10−4 2.806 · 10−8 537.7 0.390 3.233
600 0.122 8.395 · 10−4 -2.372 · 10−8 324.8 0.392 3.720
800 0.405 1.746 · 10−3 -2.332 · 10−7 132.9 0.633 4.255
850 0.661 2.603 · 10−3 -4.228 · 10−7 85.60 0.880 4.403
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The s−wave absorption parameter η = |e2iδ0 | as a function of
projectile neutron energy

left frame: zero–range potential
middle frame: low–range Yamaguchi potential (with large β)
right frame: high–range Yamaguchi potential (with small β)
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Numerical Results

The s−wave elastic n − nc cross section as a function of
projectile neutron energy

red solid lines:
Yamaguchi potential
with low β

blue dashed-lines:
Yamaguchi potential
with high β
black dash-dotted
lines: zero-range
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Conclusion

Resume for the case of n−20C scattering
We investigated the low-energy properties of the elastic s−wave
scattering for the neutron−19C near the critical condition for the
occurrence of an excited Efimov state.

Our calculations extends a zero-range approach to finite-range two-body
interactions, where it was shown that the real part of the elastic s−wave
phase shift (δR

0 ) reveals a zero when the n − n − c system is close to an
excited Efimov state (bound or virtual).

We verified that by considering a finite-range potential, the results for the
s−wave scattering amplitude present universal scaling features, with the
variation of the 19C binding energy for fixed 20C and neutron-neutron
singlet virtual state energies.

The scaling of the effective-range parameters and the pole position of
k cot δR

0 , are in general consistent with the scaling of the zero-range
potential, but the variation of this parameters shows less sensitivity to
the variation of n −18 C subsystem energy for higher range values.

The ratio
√

EB
19C/E

0
19C obtained for finite range potentials changing from

0.44 to 0.45 are close to the universal ratio ≈ 0.419.

39/49



Few-Body Theory Universal aspects in low-energy few-body systems

Conclusion

The excited three-body 20C state turns into a virtual state for a large 19C
binding, the threshold moves from 167 keV to 190 keV when the
effective ranges are increased to reasonable physical values.

We have also clarified that the analytical structure of the unitary cut is
not affected by the potential range or mass asymmetry of the three-body
system.

We move to atoms this approach with mass-imbalanced three-particle
systems, in view of the actual interest in verifying Efimov physics with
different mixtures of atomic species.
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Conclusion

Efimov Physics in weakly-bound atomic systems

Investigations of Efimov physics in atomic systems have being
studied by several groups. One of the focus have been the 4He
trimer, which was suggested having an excited Efimov state by
Cornelius and Gloeckle [J. Chem.Phys. 85, 3906 (1986)].
Observation of such Efimov state was recently reported by
Kunitski et al., Science 348, 551 (2015).
The studies of Helium trimer have a long story, with realistic
calculations been performed by Kolganova, Motovilov and
Sofianos [Phys.Rev.A 56, R1686 (1997)]. See also, Kolganova,
Phys. of Part. Nucl., 1108 (2015); and Kolganova, E. A.;
Motovilov, A. K.; Sandhas, Few-Body Syst. 51, 249 (1989).
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Conclusion

26 

Atomic weakly bound three-body systems 

A 

B B                                               A-B-B  weakly bound molecules 
                                     
ultra-low binding ~ mK or < mK 
 
133Cs3  (trapped ultracold gas near a Feshbach resonance)  
 

4He3      
4He2 – 7Li    4He2 – 6Li     4He2 – 23Na     

 dimer R4He-4He~ 50 A 

Delfino, Frederico and L.T., “Prediction of a weakly bound excited state in the  
4He2-7Li Molecule”, J. of Chem. Phys. 113 (2000) 7874. 
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HHL atomic system

Motivations from ultracold atom laboratories
In the unitary limit, two levels are related by an exponential
scaling factor exp (2π/s0), where s0 is a constant that varies
according to the mass-ratio mH/mL. For mH = mL, the
energy-ratio is predicted to be ∼ 515, such that it will be quite
difficult for an experimental verification.
Optimal situations can occur for mH � mL.
In case of mH = 100mL, the ratio between consecutive levels of
the bound-state energy spectrum is given by exp (2π/s0) ∼ 4.7.
We show that the discrete Efimov scaling factor can be well
identified in the corresponding scattering observables of one
atomic species α when colliding with a two-body αβ bound-state.
Our present results can be quite relevant for the going-on
experimental observations of Efimov physics in cold-atom
laboratories.
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HHL atomic system

Motivations from ultracold atom laboratories
Heidelberg group is studying the extreme mass-imbalance
mixtures composed by 133Cs and 6Li atomic species [J. Ulmanis
et al, PRL 117 (2016) 153201].
Ultracold degenerate mixtures of alkali-metal-rare-earth
molecules, 174,173Yb−6Li have also been considered by H. Hara
et al [PRL 106 (2011) 205304] and Hansen et al [PRA 84 (2011)
011606(R)].
Therefore, we understand that more favorable conditions are
accessible to probe the rich Efimov physics in cold-atom
laboratories. with low-energy collision of a heavy atom in a
weakly-bound molecule as LiCs or LiYb.
Note that, for the above mentioned examples, we have
mass-ratios as mL/mH =0.034 for LiYb and 0.045 for LiCs
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Figure: Results obtained for σ (in arbitrary units) as a function of the collision
energy (in units of B3), for three values of the αβ binding energy,
Bαβ/B3 =0.01 (solid-blue lines), 0.03 (dot-dashed-red lines) and 0.05
(dashed-black lines), given in eight panels. Each panel is for a given fixed
value of the mass-ratio A ≡ mβ/mα (indicated inside the panels).
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Figure: The case that mβ/mα = 0.01, with Bαβ/B3 = 0.01.
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Figure: The ratios between the scattering energies corresponding to the
positions of the zeros for the cross-section are shown with blue bullets, in the
same plot already verified for the Efimov spectrum, when varying the mass
ratio.
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