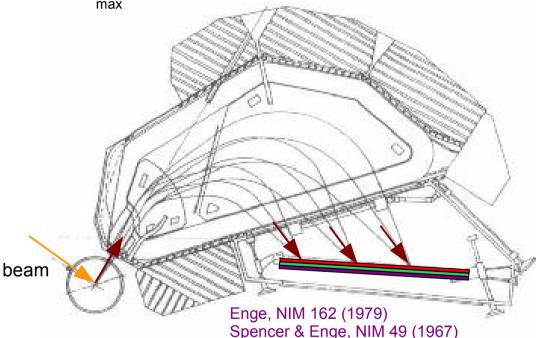
The Enge Split-Pole at ALTO: recent nucleosynthesis studies

Nicolas de Séréville Institut de Physique Nucléaire d'Orsay



1st meeting of LIA – Subatomic Physics: from theory to applications, São José dos Campos, June 12th – 13th, 2018

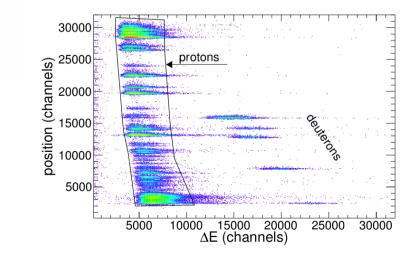
Split-Pole magnetic spectrometer

Enge Split-Pole:

- ΔE/E = 5 x 10⁻⁴
- $\Delta\Omega = 1.7$ msr (or more, but aberrations)
- B_{max} = 1.8 T

Angular distribution measurement

- Orbital angular momentum
- Spectroscopic factors \rightarrow partial widths


Focal-plane detector:

- Position sensitive gas chamber
- ΔE proportional gas counter
- E plastic scintillator

Markham & Robertson, NIM 129 (1975)

Particle identification:

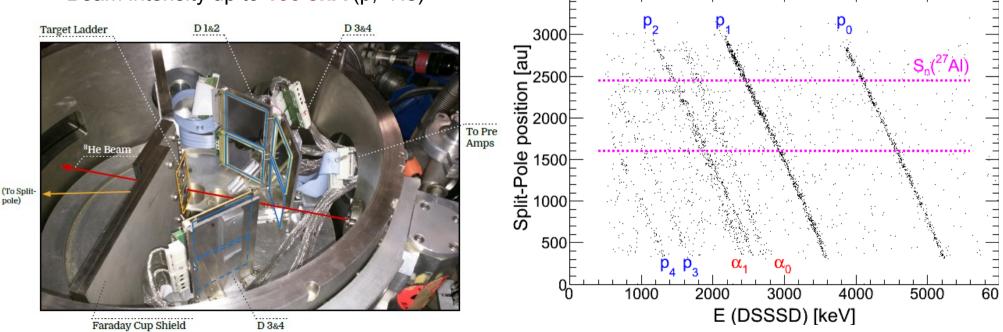
DSSSD array in coincidence mode

(Orsay – Barcelona – York set-up)

Experimental conditions

• 6 W-type DSSSDs

pole)


- \rightarrow 16 + 16 strips ($\Delta E \sim$ 20 keV FWHM)
- close geometry around the target \rightarrow d ~ 11-12 cm, ϵ ~ 14%
- Very low background environment
- Thick shield to reduce induced background from faraday cup @ 0 degree
- Beam intensity up to **100 enA** (p, ³He)

Event selection

- Split-Pole proton selection
- Time of flight between FP plastic and DSSSDs
- Energy front v.s. back in DSSSDs

Typical coincidence spectrum

• ${}^{27}AI(p,p'){}^{27}AI^{*}(p|\alpha)$

3500

Angular correlation measurement: sensitivity to the spin, branching ratios

Experimental studies the last 10 years

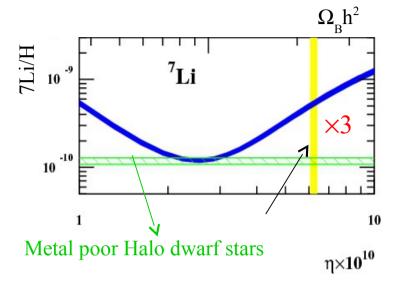
Experimental study of nucleosynthesis

Торіс	Beam	Status
Massive star evolution and fate	⁶ Li	A. Belhout et al. NPA793 (2007)
Neutron source in AGB stars	⁷ Li	M. G. Pellegriti et al. PRC77(R) (2008)
Massive star evolution and fate	⁷ Li	N. Oulebsir et al. PRC85 (2012)
⁷ Li problem & Big-Bang nucleosynthesis	³ Не	F. Hammache et al. PRC88(R) (2013)
²⁶ Al nucleosynthesis in massive stars	р	S. Benamara et al. PRC89 (2014)
²⁶ Al nucleosynthesis in massive stars	р	P. Adsley et al., to be submitted
¹⁵ N nucleosynthesis in massive stars	р	P. Adsley et al., ongoing analysis
Classical novae and ¹⁸ F nucleosynthesis	³ Не	J. Riley et al., to be submitted
Carbon fusion in massive stars	р	I. Stefan, V. Guimarães, ongoing analysis
Classical novae and ²² Na nucleosynthesis	³ He	V. Guimarães et al., ongoing analysis
Classical novae and ³⁰ P nucleosynthesis	³ He	A. Meyer et al., ongoing analysis
Destruction of ⁷ Li	³ He	A. Belhout et al., PRC96 (2017)
¹³ C nucleosynthesis in massive stars	⁷ Li	A. Meyer et al., to be submitted

 \rightarrow light ion beams used all the time

Collaborations:

IPNO – CSNSM + Brazil/USP-UNIFESP, York, Algeria, GANIL, Catania, Barcelona, Huelva


Big-Bang nucleosynthesis & ⁷Li problem

Primordial nucleosynthesis (**BBN**) of light elements is one of the three observational pillars of the Big Bang model with the expansion of the Universe and the Cosmic Microwave Background radiation

When $T \le 10^9 \text{ K} \rightarrow \text{BBN}$ begins :

- D, ⁴He, ³He, ⁷Li synthesized via nuclear reactions
- Abundances depend on $\Omega_{\rm p}h^2$ (now fixed: WMAP, Planck)

(BBN+CMB) predictions agree with D, ³He, ⁴He observations

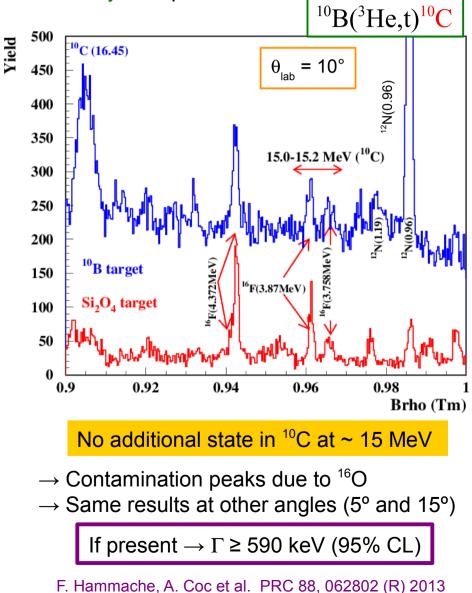
But:
$$(^{7}\text{Li/H})_{BBN} / (^{7}\text{Li/H})_{obs} \approx 3 :!! \rightarrow ^{7}\text{Li problem}$$

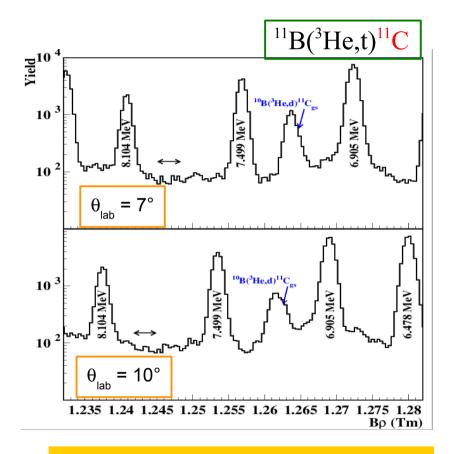
Possible explanations:

- Physics beyond standard model: super-symmetry, constant variation,
- ⁷Li stellar destruction ? \rightarrow need uniform destruction all over the Spite plateau region
- Nuclear physics: ⁷Li produced via ⁷Be EC & ³He(⁴He,g)⁷Be known better than 15%

Missing ⁷Be destruction channels? Chakraborty et al. (2011), Civitarese et al. (2013)

- $^{7}\text{Be} + {}^{3}\text{He} \rightarrow {}^{10}\text{C}^{*}$ hypothetical state at ~ 15 MeV (1-, 2-)
- $^{7}\text{Be} + {}^{4}\text{He} \rightarrow {}^{11}\text{C*}$ hypothetical states at 7.8 MeV
- ${}^{7}\text{Be} + d \rightarrow {}^{9}\text{B}^{*}$ state at 16.71 MeV (5/2+)
- ${}^{7}\text{Be} + t \rightarrow {}^{10}\text{B}^{*}$ state at 18.80 MeV (2+)

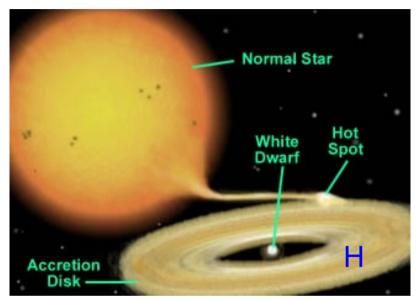

Existence?


Unknown partial & total width

Search for missing ¹⁰C and ¹¹C states

Reactions: ¹⁰B(³He,t)¹⁰C & ¹¹B(³He,t)¹¹C@ 35 MeV (Tandem-Alto) Targets: ¹⁰B/Au, ^{nat}B (80% ¹¹B), ¹²C, Si₂O₄, ¹⁹⁷Au

Intensity: 100 pnA

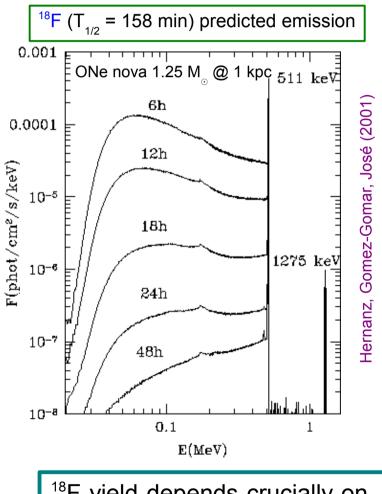

No additional state in ^{11}C at ~ 7.8 MeV

 \rightarrow All known ¹¹B states below E_x = 12 MeV have their counterpart in ¹¹C mirror nucleus

Solution to ⁷Li problem very likely must be found out of nuclear physics

Classical novae and γ -ray emission

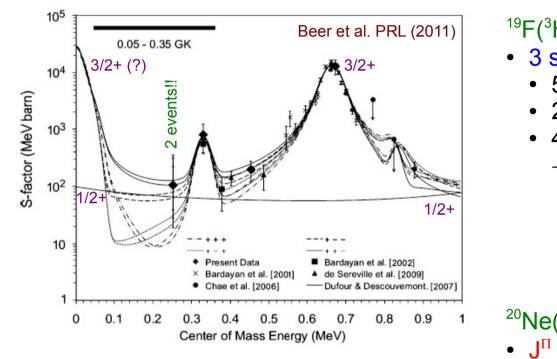
Final evolution of a close binary system


- Accretion of H-rich material on the WD from its companion star
- Thermonuclear runaway in convective envelope
- Expansion and shell ejection

Constraints on models

- Multi wavelengths observations
- γ-ray observations
 - \rightarrow isotopic abundances
 - → explosion mechanism, novae rate ejected shell properties ...

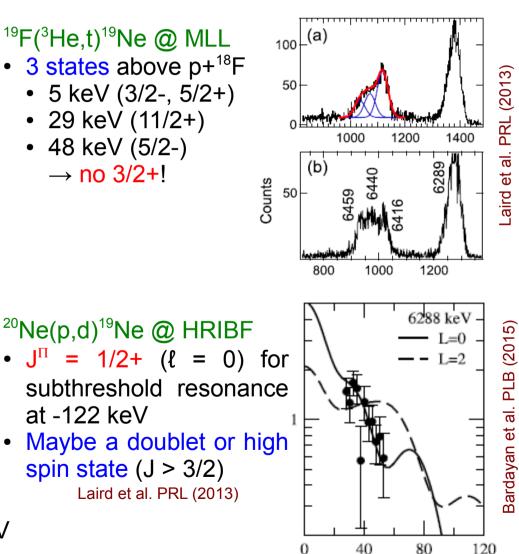
Observations and predictions


- E > 100 MeV (FERMI/LAT) Abdo et al. Science (2010)
- γ-ray lines (⁷Be, ¹⁸F, ²²Na, ²⁶Al)

¹⁸F yield depends crucially on uncertain¹⁸F(p,α)¹⁵O reaction

¹⁸ $F(p,\alpha)^{15}O$ (some) recent studies

 ${}^{18}F(p,\alpha){}^{15}O$ is the focus of intensive investigation since more than two decades

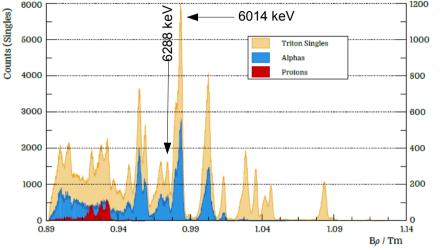


Direct measurement in Gamow peak

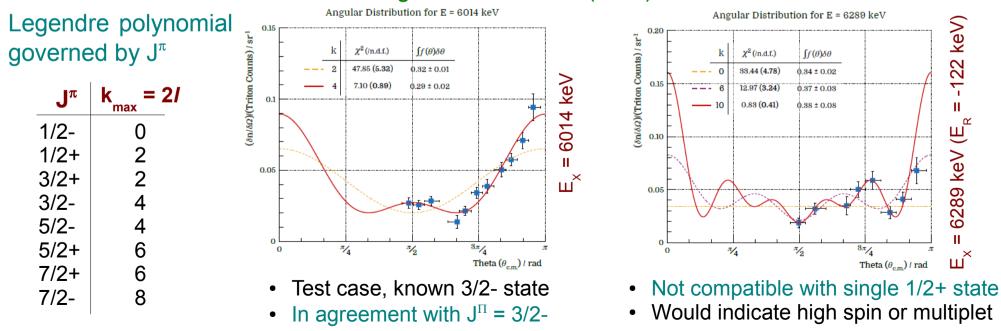
- Large error bar (statistics)
- Need for lower energy data

Interference effects in Gamow peak

- 3/2+ resonances: "8, 38keV" and 665 keV
- 1/2+ resonances: sub-threshold + 1.45 MeV

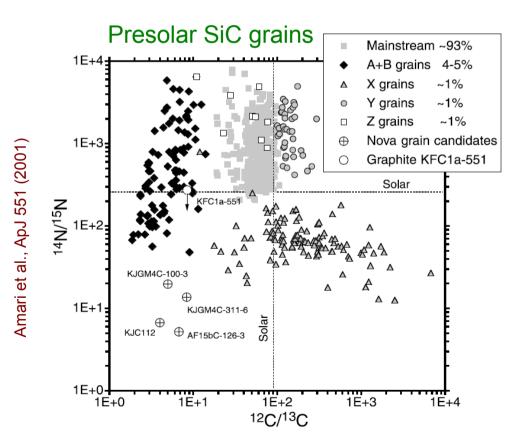

Experiment and results

Experimental set-up:


- The ¹⁹F(³He,t)¹⁹Ne* charge exchange reaction has already shown to be very little selective in populating ¹⁹Ne excited states.
 - \rightarrow Split-Pole spectrometer
- Coincidence measurement, ¹⁹Ne states decay via α /p emission.

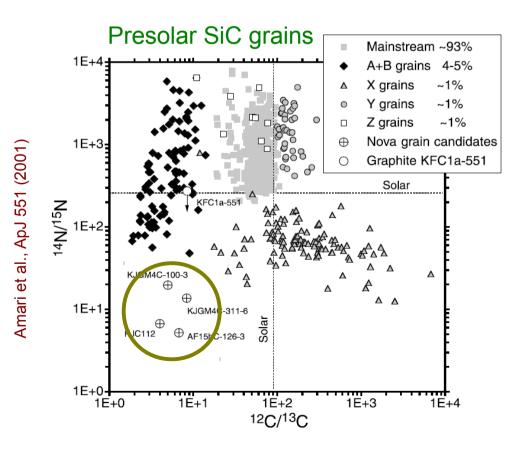
 \rightarrow DSSSD array

Split-Pole focal plane gated on tritons

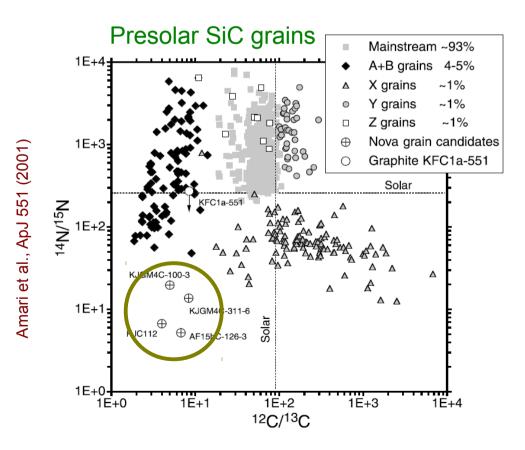

Angular correlations (t + α)

J. Riley, A. M. Laird et al., to be submitted

Presolar grains and classical novae


- Primitive meteorites hold several types of dust grains that condensed in stellar winds or ejecta of stellar explosions
- These grains carry isotopic anomalies which are used as a signature of the stellar environment in which they formed

Presolar grains and classical novae


- Primitive meteorites hold several types of dust grains that condensed in stellar winds or ejecta of stellar explosions
- These grains carry isotopic anomalies which are used as a signature of the stellar environment in which they formed

Presolar grains and classical novae

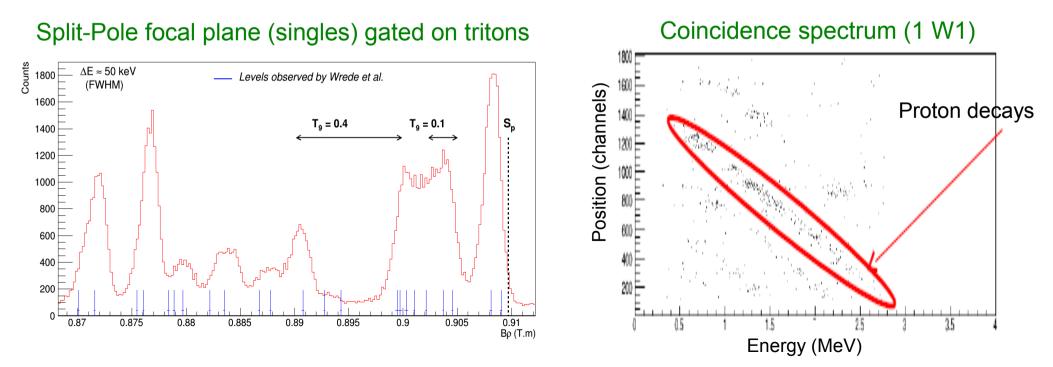
- Primitive meteorites hold several types of dust grains that condensed in stellar winds or ejecta of stellar explosions
- These grains carry isotopic anomalies which are used as a signature of the stellar environment in which they formed

Classical novae José et al., ApJ 612 (2004)

- Extreme excesses of ¹³C and ¹⁵N
 - \rightarrow typical explosive H-burning signature
- High ³⁰Si/²⁸Si and close to (sub)solar ²⁹Si/²⁸Si

³⁰Si yield depends crucially on uncertain ${}^{30}P(p,\gamma){}^{31}S$ reaction

³⁰P(p,γ)³¹S experimental study


- Direct measurement impossible due to low ³⁰P beam intensities
- Reaction rate (narrow, isolated resonance):

$$N_A < \sigma v > \mu \omega \gamma = \Gamma_{\gamma} \Gamma_{p} / \Gamma_{tot}$$

 \rightarrow Branching Ratio needed

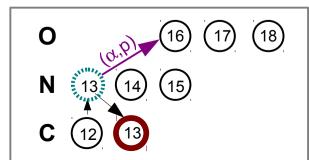
Experimental set-up:

- The ³¹P(³He,t)³¹S* charge exchange reaction has already shown to be very little selective in populating ³¹S excited states.
 → Split-Pole spectrometer
- Coincidence measurement, ³¹S states decay via proton emission.
 - \rightarrow DSSSD array

Ongoing analysis: A. Meyer (PhD)

Massive stars: hydrogen ingestion in He burning shell

Hydrogen ingestion mechanism

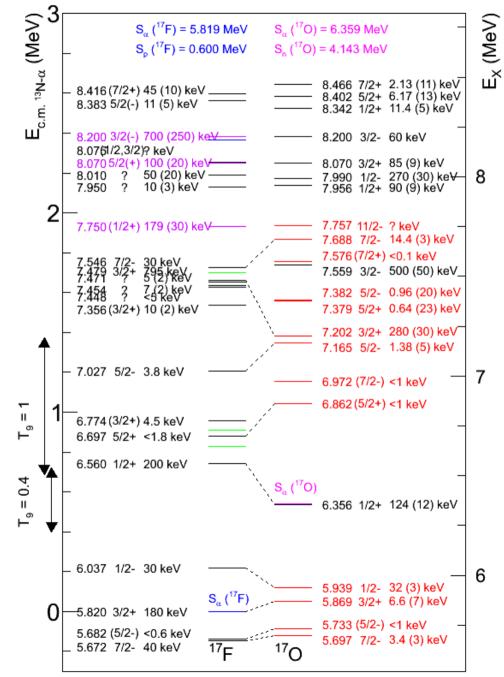

- After end of central C burning, the convective He shell becomes unstable
 - → H from above the He shell is ingested into the He-rich region
- The onset of core O burning completely deactivates the convective He shell until ccSN explosion
 - \rightarrow He-rich layer left with 1.2% H

Explosive nucleosynthesis in the He burning shell carries H burning signature

Comparison of models with grains data depends on ¹³C abundance

- ¹³C has a radiogenic origin from ¹³N
- ¹³N produced by ${}^{12}C(p,\gamma){}^{13}N$ reaction
- ¹³N destroyed by ¹³N(α ,p)¹⁶O reaction

¹³N(α,p)¹⁶O: experimental status

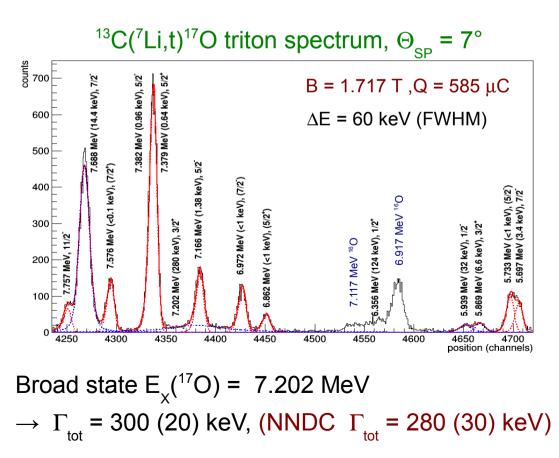

- Still no direct experimental data
- Cross section should be estimated from contribution of individual states in compound nucleus ¹⁷F

¹⁷F spectroscopy in the 60's using the ${}^{16}O(p,p){}^{16}O$, ${}^{16}O(p,p'){}^{16}O$, ${}^{16}O(p,\alpha){}^{13}N$ reactions

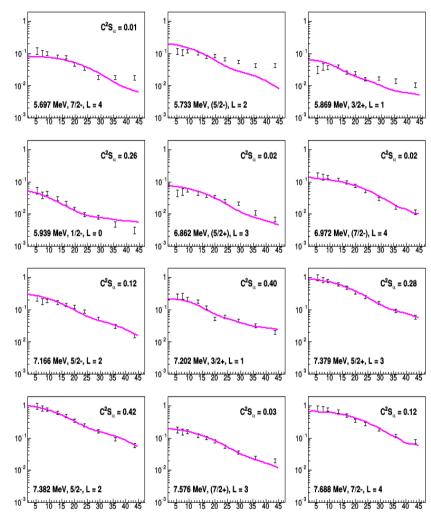
 $\rightarrow \mathsf{E}_{\mathsf{R}}, \, \Gamma_{\mathsf{tot}} \, \mathsf{measured}$

Salisbury et al., PR126 (1962) Dangle et al., PR133 (1964)

- $\rightarrow J^{\Pi}$ mostly known
- $N_A < \sigma v > \mu \ \omega \gamma = \Gamma_{\alpha} \Gamma_{p} / \Gamma_{tot}$ \rightarrow partial width $(\Gamma_{\alpha}, \Gamma_{p})$ missing
- Since $S_{\alpha}({}^{17}F) > S_{p}({}^{17}F)$, for most states of interest $\Gamma_{\alpha} << \Gamma_{p}$
- Use mirror nucleus ¹⁷O to derive α widths \rightarrow study of the ¹³C(⁷Li,t)¹⁷O α -transfer reaction

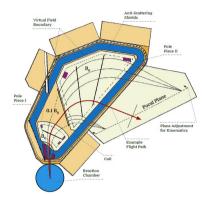


Experiment and results


- Study of the ${}^{13}C({}^{7}Li,t){}^{17}O \alpha$ -transfer reaction (Orsay)
 - Initially to study sub-threshold 6.356 MeV state for ¹³C(α,n)¹⁶O

Pellegriti et al., PRC77 042801 (R) (2008)

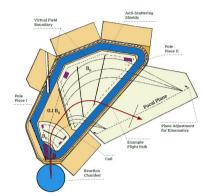
 Extending analysis at higher excitation energies

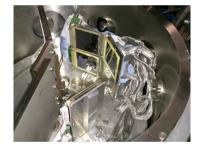


Angular distribution (FR-DWBA analysis)

New reaction rate close (within a factor of 2) to CF88 in temperature range of interest

Summary




- Magnetic spectrometers (SP, ...) at TANDEM facilities well suited for indirect nuclear astrophysics studies
 - high-energy resolution measurements
 - \rightarrow discovery of new levels
 - angular distribution measurements
 - \rightarrow constrain orbital angular momentum
 - \rightarrow determine spectroscopic factors
- Efficient (~15%) silicon array coupled to Split-Pole
 - \rightarrow angular correlation measurements
 - \rightarrow spin and BR determination

- Scientific program
 - Quiescent nucleosynthesis SP single measurement
 → asymptotic giant branch stars, massive stars
 - Explosive nucleosynthesis SP coincident measurement
 - \rightarrow classical novae, core collapse supernovae

Summary

- Magnetic spectrometers (SP, ...) at TANDEM fr suited for indirect nuclear astrophysics studi
 - high-energy resolution measurements
 - \rightarrow discovery of new levels
 - angular distribution measuremer
 - \rightarrow constrain orbital angular m
 - \rightarrow determine spectroscopⁱ
- Efficient (~15%) silicor
 - \rightarrow angular correl
 - \rightarrow spin and B^r

ed to Split-Pole

ements. on،

 Scie
 ucleosynthesis – SP single measurement ptotic giant branch stars, massive stars
 sive nucleosynthesis – SP coincident measurement classical novae, core collapse supernovae

Collaborators

F. Hammache, N. de Séréville, I. Stefan...

P. Adsley, A. M. Laird, S. Fox, J. Riley...

UNIVERSITY of York

A. Parikh

V. Guimarães / M. Assunção

C Nuclear Physics Institute, ASCR Department of Neutron Physics

Universidad de Huelva

