alPN S PARIS
IN 2 P3 INSTITUT DE PHYSIQUE NUCLEAIRE S U:} U n | Ve rs | t e

Les deux infinis ORSAY PARIS-SACLAY

Nuclear astrophysics projects
@ ALTO faclility

Fairouz Hammache
IPN-Orsay

15t meeting of LIA — Subatomic Physics
: from theory to applications
Séo José Dos Campos 12-13 June 2018




NUCLEAR ASTROPHYSICS

» study energy generation processes in stars
» study nucleosynthesis of the elements
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NUCLEAR ASTROPHYSICS

» study energy generation processes in stars
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From nuclear physics to abundances

Improving the knowledge of the nucleosynthesis processes at work in the universe
& the understanding of stellar evolution

Nuclear physics Experiments & theory
Needed inputs: cross-sections, nuclear spectroscopic properties (Ex, J,
partial decay widths) , masses, 3-decays,...)

l Astrophysics
Modelling

Network calculations
mmmm) Abundances

(BBN & stellar evolution

modelling, nucleosynthesis) l I
Observations

(On earth, meteorites, ) A[Hundances

satellites,...)

Reaction rate



The ALTO facility
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The Alto facility: stable beams

SPLIT-POLE Spectrometer

y-spectroscopy
e ." BACCHUS

| LICORNE  spectrometer

LI, Multijurpose
’ AN

Standard Tandem beams

- from H, 3He, *He, ..., **C, ... up to 17|

SALLE DE PHYSIQUE

PUPITRE

- terminal voltage: from <1 MV up to 14.5 MV
- beam pulsing: pulse width 1 — 2 ns; repetition rate — 200 ns or more

- new ions source purchased for higher intensity of difficult beams (Mg, Ca)



The Alto facility: radioactive beams

First photofission 1ISOL facility in the world (~10%! f/s) tIsoL
-50 MeV & 10 pA e beam : pro(c:i;J\;:(:lon :
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Beta decay spectroscopy



Projects with stable beams: y-ray measurements
for hydrogen burning in novae/X-ray bursts r

Hydrogen-burning in novae/

X-ray bursts scenarios - rates dominated
by narrow resonances typically within a
few 100s of keV above the threshold

v widths dominate due to low energy for
Coulomb-barrier penetration

Need information on the energies, spins
& parities of these states to work out
which ones are potentially important

y-ray decay information is one of the best
ways to do this
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Projects with stable beams:y-ray measurements V
for hydrogen burning in novae/X-ray bursts '

Accretion

Hydrogen-burning in novae/ Na<ov>oc o ', /T * exp(-11.605 E, [ Ty)
X-ray bursts scenarios - rates dominated
by narrow resonances typically within a Spin factof =

few 100s of keV above the threshold (23+1)/((2j,+1)(2j,+1))

v widths dominate due to low energy for

Coulomb-barrier penetration I,=272P.(E),

Need information on the energies, spins P, is the penetrability for orbital

& parities of these states to work out angular momentum, L, and

which ones are potentially important varies strongly with the orbital
angular momentum — only low L

y-ray decay information is one of the best are astrophysically important

ways to do this



Physics cases for hydrogen burning

Hydrogen Y . Resonances in 38K, K, 3Ca which contribute to
burning path in < [T18 burning in massive stars/novae (e.g. globular
classical novae ot KR cluster pollution scenarios) - all accessible via

S = L] *K+preactions (e.g. (p,d), (p.p*), (p.pN), (p.0))
P.Adsley et al.

Low-lying/isomeric state to and from which
capture can take place c.f. 3*Cl and 2°All

States relevant for rp-process in X-ray bursts also
accessible for some cases - e.g. *°Cu(p,y)®°Zn by
*5Ni(*He,n) )®0Zn

— y-ray measurements using
v-ball setup-like (34 Ge detectors+ 36 LaBr)
actually available at ALTO




Projects with stable beams:

Split-Pole spectrometer

e AQ~1.7msr
« AE/E~5x10*

Virtual Field
Boundary

Anti-Scattering
Shields

Plane Adjustment
for Kinematics

Example
Flight Path

Reaction
Chamber

Split-Pole measurements

Most of the nuclear astrophysics projects
performed these last 10 years at ALTO used
Split-Pole spectrometer (see N. de Séréville
talk)

Combination of tandem+magnetic
spectrograph = high-energy resolution
measurement of a state

28Si(p,p’)
28i(d,d”)

1 (I el I 1 lUI T
10.7 10.8 10.9

E, (MeV)

OEI_II|II\|II\|II\|III|II

Two main ways - inelastic scattering and charge-exchange to find states and energies, and
transfer reactions for spectroscopic factors (and therefore partial widths)



Transfer reaction measurements projects with Split-Pole

Pellegritiet al. PRC (R) (2008)

1 E, =28 MeV E, =34 MeV ) .
f\\u tamrm v | OF@lpha capture & proton capture reactions:
AP SV I C(LiY )0 (67Li,d/t) & (®*He,d) are the most interesting
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0

0N TR W o e e e
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» Coupling the magnet with gas cell makes reactions involving e.g. oxygen & neon possible.

‘"

Accepted project in Orsay PAC 2018:

t
 Study of ??Ne(a,n) reaction: main neutron source for

the s-process in massive stars (very high priority in
nuclear astrophysics) (spokesperson: F. Hammache et al. ) p N

Split-Pole entrance



Split-Pole-DSSSD coincidence measurements

» Coincidence measurements is a useful method for getting charged-particle branching ratios
for important astrophysical reactions
» Angular distributions of decaying particles for spin-parities

» Recent studies using Split-pole spectrometer coupled with an array of DSSSD in the
reaction chamber include 27Al, 1°F, °Ne, 31S (see N. de Séréville talk)

.0

>

S4000[— o

3 - ﬂ

3500 &3

30002— :Ij

2500:— I

= Q

200-:)3— 3

- 3

1500 — Q

C (@]

= >0

‘1000:— D

- 2

500§— . Q__)

% 1 2 3 S'rl II_: 5I O

Hiconcnergy 8
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Projects with radioactive beams:
Study of the rapid neutron capture process ;

120 o
> Production of the half of the s
abundance of heavy elements 100} S
temperature 1-2x10° K g wof L o
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 Individual measurements will not affect the scenario
=> need significant set of new inputs: masses, [3-dcays, capture cross-sections
— constrain the nuclear theoretical predictions

« Example of projects: Experimental

- Mass-program (Ag) E. Minaya et al. | Measurements using
- Measurements of the decay characteristics of 9°Se MLLtrap,
(T, B-delayed neutron emission...) T. Kurtukian et al. BEDO,TETRA




Conclusions

« ALTO - a small-scale facility for stable and radioactive beams that can

provide physics results with considerable impact on nuclear astrophysics

 Stable beams:
- Various key reactions can be studied via gamma-ray spectroscopy using vy-
array setups such as v-ball
- Coupling a gas cell to the Split-Pole magnetic spectrometer will open
opportunities for measurements of key (o.,y) & (o,n) reactions involving

0Xygen, neon, argon,...

« ISOL- Radioactive beams
- Mass and [3-decay measurements, ... for the r-process studies can be
performed with MLLTRAP, BEDO-TETRA setups
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