

Nuclear astrophysics projects @ ALTO facility

Faïrouz Hammache IPN-Orsay

1st meeting of LIA – Subatomic Physics
: from theory to applications
São José Dos Campos 12-13 June 2018

NUCLEAR ASTROPHYSICS

- \succ study energy generation processes in stars
- study nucleosynthesis of the elements
- How do stars form and evolve?
- What powers the stars?
- What is the origin of the elements?

Which nucleosynthesis processes at work?

Observations (astronomy & geology), Modelling & NUCLEAR PHYSICS

KEY for understanding

NUCLEAR ASTROPHYSICS

- \succ study energy generation processes in stars
- study nucleosynthesis of the elements

- What powers the stars?
- What is the origin of the elements?

Which nucleosynthesis processes at work?

Observations (astronomy & geology), Modelling & NUCLEAR PHYSICS

KEY for understanding

From nuclear physics to abundances

Improving the knowledge of the nucleosynthesis processes at work in the universe & the understanding of stellar evolution

Nuclear physics Experiments & theory Needed inputs: cross-sections, nuclear spectroscopic properties (Ex, J, partial decay widths), masses, β-decays,...)

Astrophysics Modelling

Network calculations (BBN & stellar evolution modelling, nucleosynthesis)

Observations

(On earth, meteorites, satellites,...)

Abundances

The ALTO facility

The Alto facility:

stable beams

SPLIT-POLE Spectrometer

Standard Tandem beams

- from **H**, ³**He**, ⁴**He**, ..., ¹⁴**C**, ... up to ¹²⁷**I**
- terminal voltage: from < 1 MV up to 14.5 MV
- beam pulsing: pulse width 1 2 ns; repetition rate -200 ns or more
- new ions source purchased for higher intensity of difficult beams (Mg, Ca)

The Alto facility:

radioactive beams

Projects with stable beams: γ-ray measurements for hydrogen burning in novae/X-ray bursts

Hydrogen-burning in novae/ X-ray bursts scenarios - rates dominated by narrow resonances typically within a few 100s of keV above the threshold

 γ widths dominate due to low energy for Coulomb-barrier penetration

Need information on the energies, spins & parities of these states to work out which ones are potentially important

 γ -ray decay information is one of the best ways to do this

Projects with stable beams:γ-ray measurements for hydrogen burning in novae/X-ray bursts

Hydrogen-burning in novae/ X-ray bursts scenarios - rates dominated by narrow resonances typically within a few 100s of keV above the threshold

γ widths dominate due to low energy for Coulomb-barrier penetration

Need information on the energies, spins & parities of these states to work out which ones are potentially important

 γ -ray decay information is one of the best ways to do this

 $N_{A} < \sigma v > \propto \omega \Gamma_{p} \Gamma_{\gamma} / \Gamma * \exp(-11.605 E_{r} / T_{9})$ Spin factor = $(2J+1)/((2j_{1}+1)(2j_{2}+1))$ $\Gamma_{p} = 2 \gamma^{2} P_{L}(E),$

> P_L is the penetrability for orbital angular momentum, L, and varies strongly with the orbital angular momentum – only low L are astrophysically important

Physics cases for hydrogen burning

Resonances in ³⁸K, ³⁹K, ³⁹Ca which contribute to burning in massive stars/novae (e.g. globular cluster pollution scenarios) - all accessible via ³⁹K+p reactions (e.g. (p,d), (p,p'), (p,pn), (p,n)) **P.Adsley et al.**

Low-lying/isomeric state to and from which capture can take place c.f. ³⁴Cl and ²⁶Al

States relevant for rp-process in X-ray bursts also accessible for some cases - e.g. ${}^{59}Cu(p,\gamma){}^{60}Zn$ by ${}^{58}Ni({}^{3}He,n)){}^{60}Zn$

 \rightarrow γ -ray measurements using **v-ball** setup-like (34 Ge detectors+ 36 LaBr₃) actually available at ALTO

Projects with stable beams:

Split-Pole measurements

Split-Pole spectrometer

• $\Delta \Omega \sim 1.7 \text{ msr}$

Most of the nuclear astrophysics projects performed these last 10 years at ALTO used Split-Pole spectrometer (see N. de Séréville talk)

Combination of tandem+magnetic spectrograph \Rightarrow high-energy resolution measurement of a state

Two main ways - inelastic scattering and charge-exchange to find states and energies, and transfer reactions for spectroscopic factors (and therefore partial widths)

Transfer reaction measurements projects with Split-Pole

Pellegriti et al. PRC (R) (2008)

For alpha capture & proton capture reactions: (^{6/7}Li,d/t) & (³He,d) are the most interesting options

>(³He,d) gives access to proton widths

>(^{6/7}Li,d/t) gives access to α-particle widths

Projects: Study of ¹⁸O(α ,n) in CCSNe relevant to ¹⁵N production & neon-burning reaction like ²⁰Ne(α , γ)²⁴Mg

Coupling the magnet with **gas cell** makes reactions involving e.g. oxygen & neon possible.

Accepted project in Orsay PAC 2018:

• Study of ${}^{22}Ne(\alpha,n)$ reaction: main neutron source for the s-process in massive stars (very high priority in nuclear astrophysics) (spokesperson: F. Hammache et al.)

Split-Pole-DSSSD coincidence measurements

- Coincidence measurements is a useful method for getting charged-particle branching ratios for important astrophysical reactions
- > Angular distributions of decaying particles for spin-parities
- Recent studies using Split-pole spectrometer coupled with an array of DSSSD in the reaction chamber include ²⁷Al, ¹⁹F, ¹⁹Ne, ³¹S (see N. de Séréville talk)

Important cases :

-Hydrogen burning → proton decay branching ratio of ^{38,39}K, ³⁹Ca - ¹²C+¹²C fusion in massive stars→²⁴Mg state decay channels

Coincidence plot from the experiment:

Projects with radioactive beams: Study of the rapid neutron capture process

• Individual measurements will not affect the scenario

=> need significant set of new inputs: masses, β -dcays, capture cross-sections \rightarrow constrain the nuclear theoretical predictions

- Example of projects:
- Mass-program (Ag) E. Minaya et al.
- Measurements of the decay characteristics of $\ ^{90}\mathrm{Se}$
- $(T_{1/2}, \beta$ -delayed neutron emission...) T. Kurtukian et al.

Experimental measurements using MLLtrap, BEDO,TETRA

Conclusions

- ALTO a small-scale facility for stable and radioactive beams that can provide physics results with considerable impact on nuclear astrophysics
- Stable beams:
 - Various key reactions can be studied via gamma-ray spectroscopy using γ -array setups such as v-ball
 - Coupling a gas cell to the Split-Pole magnetic spectrometer will open opportunities for measurements of key (α, γ) & (α, n) reactions involving oxygen, neon, argon,...
- ISOL- Radioactive beams
 - Mass and β -decay measurements,... for the r-process studies can be performed with MLLTRAP, BEDO-TETRA setups

Conclusions

- ALTO a small-scale facility for stable and radioactive beams that can provide physics results with considerable impact on p
- Stable beams:
 - Various key reactions can be st J Jpy using γ array setups such as y
- Jeams th. Lease to join the projects strophysics ung a game welcome to join the project of the welcome & spectrometer will open ideas are (α, γ) & (α, n) reactions involving new ideas (α, γ) - Coupling a g opport oxygen
- **ISOL-** Radioactive beams
 - Mass and β -decay measurements,... for the r-process studies can be performed with MLLTRAP, BEDO-TETRA setups