Improving the BAO peak measurement by reconstruction: the Fast Action Minimization Method

Elena Sarpa

june, 4 2018

In collaboration with: Carlo Schimd (LAM), Sabino Matarrese (Univ. of Padova), Enzo Branchini (Univ. of Roma3)

BAO as a standar ruler

Sound Horizon, r_s == radius of perturbation shell

eFAM* Results (Preliminary)

Simulation: DEUS

z = 0	$M_{halo} > 10^{12} M_{sun}$	$L_{box} = 21 \text{ Gpc } h^{-1}$	Cosmology: LCDM, WMAP7
Mocks: sub-cubes Cutting the Parent simulation into 512 Sub-cubes of Lsub = 2 Gpc h ⁻¹ (N _{halos} ~ 23k)			
Separated by a 0.5 Gpc h ⁻¹			
		- 67	~
* Non-lin	ear numerical	91 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
action r	nethod	Mr. M. M. Maple	
instead	of Lagrangian	L (11) 112 11/ 11/	
perturb	ative à la	1 VIII VIIII VIIII	
Padma	nabhan	1 4 2 4 21 1 21 2 2 X 1 -	

CPU time eFAM < 3h

2pt correlation function

- Routine: CosmoBolognaLib (F. Marulli)
- Estimator: Landy and Szalay $\xi(r) = \frac{DD(r) + RR(r) 2DR(r)}{RR(r)}$
- Power Spectrum calculator: CAMB
- Minimization method: MCMC

eFAM Results: fitting the averaged 2p-cf

eFAM Results: fitting mocks 2p-cf

N. of mocks w/ $\sigma_{\alpha} > 7\%$: 69 \longrightarrow 14

eFAM Results: fitting mocks 2pcf

Analysis of "bad-constrained" mocks

eFAM Results: coming soon ...

Covariance matrix regularisation: tapering

(Paz & Sánchez 2015)

Summary

- ✤ 10⁵ particles, CPU time = 8h
- Polynomial expansion at 10th order (ZA: 1st order)
- LCDM DEUS halos simulation instead of 2-LPT mocks (!!!)
- Work in progress: redshift space computations, fit with tapered Con matrix, modelling od RSD

Thank you for the attention

eFAM Results: fitting mocks 2pcf

9

EUCLID FRANCE GC-SWG, 4-6-'18