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Figure 1. A pictorial explanation of how density field reconstruction can improve the acoustic scale measurement. In each panel, we show a thin slice of a
simulated cosmological density field. Top-left panel: in the early Universe, the initial densities are very smooth. We mark the acoustic feature with a ring of
150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution of the black points from the centroid of the blue points is
shown in the inset. Top-right panel: we evolve the particles to the present day, here by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows
the initial radius of the ring, centred on the current centroid of the blue points. The large-scale velocity field has caused the black points to spread out; this
causes the acoustic feature to be broader. The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line)
compared to the initial rms (dashed line). Bottom-left panel: as before, but overplotted with the Lagrangian displacement field, smoothed by a 10 h−1 Mpc
Gaussian filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back to their initial
positions. Bottom-right panel: we displace the present-day position of the particles by the opposite of the displacement field in the previous panel. Because of
the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has been moved substantially closer to the red circle. The inset
shows the new rms radius of the black points (solid), compared to the initial width (long-dashed) and the uncorrected present-day width (short-dashed). The
narrower peak will make it easier to measure the acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this
figure illustrates the basic opportunity of reconstruction.

(ii) Estimate the galaxy bias b and the linear growth rate f ≡
d ln D/d ln a ∼ !0.55

m (Carroll, Press & Turner 1992; Linder 2005),
where D(a) is the linear growth function as a function of scale factor
a and !m is the matter density relative to the critical density. We
hold the values of b and f fixed in our analyses to fiducial values
(described below) and demonstrate that our results are robust to
changes in these adopted values.

(iii) Embed the survey into a larger volume, chosen such that the
boundaries of this larger volume are sufficiently separated from the
survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that matches

the observed density and interpolates over masked and unobserved
regions (Section 2.3).

(vi) Estimate the displacement field Ψ within the Zel’dovich
approximation (Section 2.4).

(vii) Shift the galaxies by −Ψ. Since linear redshift-space distor-
tions arise from the same velocity field, we shift the galaxies by an
additional −f (Ψ · ŝ)ŝ (where ŝ is the radial direction). In the limit of
linear theory (i.e. large scales), this term exactly removes redshift-

space distortions (Kaiser 1987; Hamilton 1998; Scoccimarro 2004).
We denote these points by D.

(viii) Construct a sample of points randomly distributed accord-
ing to the angular and radial selection function and shift them by
−". Since these points have not been observed, they are not af-
fected by redshift-space distortions. We do not therefore apply the
additional redshift-space distortion correction as with the galaxies.
We denote these points by S.

(ix) The reconstructed correlation function ξ is then given by the
Landy–Szalay estimator (Landy & Szalay 1993):

ξ = DD − 2DS + SS

RR
, (1)

where DD, etc. are the number of pairs at a given separation between
various sets of points. The random points R are distributed randomly
according to the angular and radial selection functions; these are as-
sumed to be different from those to generate S. We weight the points
by an approximate minimum variance weight (Feldman, Kaiser &
Peacock 1994),

wi = 1
1 + n̄(zi)P (k0)

, (2)

C⃝ 2012 The Authors, MNRAS 427, 2132–2145
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS

2134 N. Padmanabhan et al.

Figure 1. A pictorial explanation of how density field reconstruction can improve the acoustic scale measurement. In each panel, we show a thin slice of a
simulated cosmological density field. Top-left panel: in the early Universe, the initial densities are very smooth. We mark the acoustic feature with a ring of
150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution of the black points from the centroid of the blue points is
shown in the inset. Top-right panel: we evolve the particles to the present day, here by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows
the initial radius of the ring, centred on the current centroid of the blue points. The large-scale velocity field has caused the black points to spread out; this
causes the acoustic feature to be broader. The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line)
compared to the initial rms (dashed line). Bottom-left panel: as before, but overplotted with the Lagrangian displacement field, smoothed by a 10 h−1 Mpc
Gaussian filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back to their initial
positions. Bottom-right panel: we displace the present-day position of the particles by the opposite of the displacement field in the previous panel. Because of
the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has been moved substantially closer to the red circle. The inset
shows the new rms radius of the black points (solid), compared to the initial width (long-dashed) and the uncorrected present-day width (short-dashed). The
narrower peak will make it easier to measure the acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this
figure illustrates the basic opportunity of reconstruction.

(ii) Estimate the galaxy bias b and the linear growth rate f ≡
d ln D/d ln a ∼ !0.55

m (Carroll, Press & Turner 1992; Linder 2005),
where D(a) is the linear growth function as a function of scale factor
a and !m is the matter density relative to the critical density. We
hold the values of b and f fixed in our analyses to fiducial values
(described below) and demonstrate that our results are robust to
changes in these adopted values.

(iii) Embed the survey into a larger volume, chosen such that the
boundaries of this larger volume are sufficiently separated from the
survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that matches

the observed density and interpolates over masked and unobserved
regions (Section 2.3).

(vi) Estimate the displacement field Ψ within the Zel’dovich
approximation (Section 2.4).

(vii) Shift the galaxies by −Ψ. Since linear redshift-space distor-
tions arise from the same velocity field, we shift the galaxies by an
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BAO as a standar ruler
Sound Horizon, rs == radius of perturbation shell 

Elena Sarpa   EUCLID FRANCE GC-SWG,  4-6-‘18

Solution:

Key idea:
Cosmological model        prediction for rs

Measure rs to constrain the Cosm. Model

How to do it:
The BAO signature is imprinted in the density field

Looking at the density field to “detect the shell”.  
Ex: 2pt-correlation function, BAO == peak

Problem:
Non linear clustering       broadening of the peak

RECONSTRUCTION !
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eFAM* Results (Preliminary)

z = 0 Mhalo > 1012 Msun Lbox = 21 Gpc h-1 Cosmology: LCDM, WMAP7

LCDM, WMAP5

Simulation: DEUS

Mocks: sub-cubes
Cutting the Parent simulation into 512 Sub-cubes of Lsub = 2 Gpc h-1 (Nhalos ~ 23k)


Separated by a 0.5 Gpc h-1 

2pt correlation function
• Routine: CosmoBolognaLib (F. Marulli)


• Estimator: Landy and Szalay


• Power Spectrum calculator: CAMB


• Minimization method: MCMC

eFAM run

• Radius of sampled sphere: r
ext

= 990 Mpc h �1

• Number of halos per mock: N
halos

⇠ 56000

• Computing time per mock: cputime =  3h

2pt correlation function

• Code: Cosmo Bologna Lib by Federico Marulli

1

• Estimator: Landy and Szalay, i.e. ⇠(r) = DD(r)+RR(r)�2DR(r)
RR(r)

• Sample: Sphere of r
Sph

= 700 Mpc h�1

• Number of halos: N
halos

⇠ 23 000

• Number of random particles: N
random

= 50 x N
halos

• Sampled range: 30 Mpc h�1 < r < 200 Mpc h�1

• Number of bins: 17

Modelling of the 2pt correlation function

• Code: Cosmo Bologna Lib by Federico Marulli

• Power spectrum calculator: CAMB

• Minimization method: MCMC

• Model: P (k) = [P
lin

(k) � P
smooth

(k)]e�k

2⌃2
nl/2 + P

smooth

(k)

• Fitting Formula: ⇠(r) = b2⇠model(↵r) + A0 + A1
r

+ A2
r

2

• Fitting Parameters: ⌃
nl

, ↵, b�8, A0, A1, A2

• Priors: uniform

1
http://apps.difa.unibo.it/files/people/federico.marulli3/CosmoBolognaLib/Doc/html/index.html

2

CPU time eFAM < 3h

Elena Sarpa   EUCLID FRANCE GC-SWG,  4-6-‘18

* Non-linear numerical 
action method 
instead of Lagrangian 
perturbative à la 
Padmanabhan
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eFAM Results: fitting the averaged 2p-cf

Correlation Matrix

Pre Rec Post Rec

1.125 1.121

0.00250413 0.00205138

(10.4 + 0.9) Mpch-1 (3.28 + 1.4) Mpch-1
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Low-z BAO from the Reconstructed 6dFGS 7

Figure 6. The distribution of all 600 mock correlation functions,
both pre- (blue) and post-reconstruction (red). The data points
show the 6dFGS correlation function with errors from the diago-
nal of the constructed COLA mock covariance matrix. The post-
reconstruction data points have been displaced by +1h�1

Mpc for
clarity.

5.3 Post-Reconstruction

We apply density field reconstruction to both the data and
COLA mock catalogues. In doing so a galaxy bias of b = 1.82

(Beutler et al. 2011) and a growth rate of f (z
e�

= 0.097) =
0.579 were assumed. Our results are independent of this
choice as shown later in Section 6.3. When calculating the
displacement field, the overdensity field was smoothed us-

ing a Gaussian smoothing kernel, S(k) = e�(kR)
2/2, with the

smoothing scale of R = 15 h�1

Mpc. Using the calculated
displacement field as a proxy for the non-linear evolution,
the catalogues were shifted to move the field back into the
psuedo-linear regime. The reconstruction algorithm gave a
mean galaxy shift of s̄ = 5.87 h�1

Mpc.
The correlation function post-reconstruction has an es-

timator that includes both a shifted random S and indepen-
dent unshifted random catalogues R (Padmanabhan et al.
2012),

⇠(s) = SS(s)
RR(s)
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As in the pre-reconstruction case, we use the smoothing
parameter fit from the mean of the mocks with a prior ⌃nl =
4.8 ± 2.0h�1

Mpc. The marginalised constraint on the shift
parameter ↵ post-reconstruction is ↵ = 0.895 ± 0.042(±0.235

0.079

)
with �2/⌫ = 9.49/11 = 0.86 (the error in the bracket show-
ing the non-Gaussianity at the 98% confidence level). The
model, data and �2 distribution are displayed in Figure 7.
The ↵ post-reconstruction found has a non-Gaussian likeli-
hood beyond the 1� region which means that although the
value is displaced from the average, it is still consistent with
the mock catalogues (discussed further in Section 6).

6 TESTS ON THE MOCK CATALOGUES

6.1 Fitting the mean of the mocks

We fit both the pre/post reconstruction average correla-
tion functions from the mock population. This fit makes
use of the covariance matrices, which have been rescaled
by the number of realisations N, C

mean

= C
one

/N. The best
fit model is shown in Figure 8 with ↵

pre

= 0.999 ± 0.0065

and ↵
post

= 0.997 ± 0.0035 giving an improvement factor of
I = �↵,pre

/�↵,post

⇠ 1.86.

6.2 Comparison between data and fits to
individual mocks

To make comparisons between the mock population and the
data, each of the 600 realisations used to produce the co-
variance matrices were individually fit. ⇠ 30% of the mock
catalogues in the population did not have a well constrained
measurement of ↵, a similar fraction to that found for the
SDSS MGS analysis (Ross et al. 2015). To ensure that this
comparison was performed only on the mocks that have a
relevant detection of the BAO feature, we select a subsam-
ple having 1� contours (��2 = 1) within the prior region
0.7 < ↵ < 1.3 (both pre- and post-reconstruction). This cut
reduces the population to 70% of its original number. Com-
parisons of the distributions of best-fitting �2, the value of ↵
pre/post-reconstruction and �↵ the 1� error bound (Fig. 9)
show that the data realisation is within the locus of mea-
surements from this subsample of the mocks.

The distribution of errors on ↵, shows that for our
mocks we see 80% of these mocks have �↵,pre

/�↵,post

> 1,
as would be expected after applying density field recon-
struction. Our detection in the data of the BAO peak us-
ing our model, which marginalises over broadband shape,
is at the ⇠ 1.9� level pre-reconstruction and ⇠ 1.75�
post-reconstruction. In the subsample of the mocks pre-
reconstruction 18% have a detection higher than this and
post-reconstruction this increases to 52%. The mean detec-
tion level pre/post-reconstruction for the mocks is 1.5� and
1.8� respectively. This increase in the number of high signifi-
cance detections in the mocks shows the expected trend from
density field reconstruction to, on average, enhance the sig-
nificance of detection. The lower left plot in Figure 9 shows
however that in 28% of cases, in the mock sample, recon-
struction lowers the significance of detection. The reduction
of significance seen in the data realisation is therefore likely
a case of the data being one of these “unlucky” samples.
When comparing the pre-reconstruction significance detec-
tion to Beutler et al. (2011) we find a lower value, this is due
to a number of conservative alterations. These include (1)
a change in the fitting model to include polynomial terms
that marginalise over the shape giving more freedom, (2) a
change of fitting range from 10 h�1

Mpc < s < 200 h�1

Mpc

to 30 h�1

Mpc < s < 200 h�1

Mpc and (3) the new robust co-
variance matrix made from the COLA-based mocks rather
than log-normal realisations (but which has slightly larger
covariance amplitude).

MNRAS 000, 1–13 (2018)
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As in the pre-reconstruction case, we use the smoothing
parameter fit from the mean of the mocks with a prior ⌃nl =
4.8 ± 2.0h�1

Mpc. The marginalised constraint on the shift
parameter ↵ post-reconstruction is ↵ = 0.895 ± 0.042(±0.235

0.079

)
with �2/⌫ = 9.49/11 = 0.86 (the error in the bracket show-
ing the non-Gaussianity at the 98% confidence level). The
model, data and �2 distribution are displayed in Figure 7.
The ↵ post-reconstruction found has a non-Gaussian likeli-
hood beyond the 1� region which means that although the
value is displaced from the average, it is still consistent with
the mock catalogues (discussed further in Section 6).

6 TESTS ON THE MOCK CATALOGUES

6.1 Fitting the mean of the mocks

We fit both the pre/post reconstruction average correla-
tion functions from the mock population. This fit makes
use of the covariance matrices, which have been rescaled
by the number of realisations N, C

mean

= C
one

/N. The best
fit model is shown in Figure 8 with ↵

pre

= 0.999 ± 0.0065

and ↵
post

= 0.997 ± 0.0035 giving an improvement factor of
I = �↵,pre

/�↵,post

⇠ 1.86.

6.2 Comparison between data and fits to
individual mocks

To make comparisons between the mock population and the
data, each of the 600 realisations used to produce the co-
variance matrices were individually fit. ⇠ 30% of the mock
catalogues in the population did not have a well constrained
measurement of ↵, a similar fraction to that found for the
SDSS MGS analysis (Ross et al. 2015). To ensure that this
comparison was performed only on the mocks that have a
relevant detection of the BAO feature, we select a subsam-
ple having 1� contours (��2 = 1) within the prior region
0.7 < ↵ < 1.3 (both pre- and post-reconstruction). This cut
reduces the population to 70% of its original number. Com-
parisons of the distributions of best-fitting �2, the value of ↵
pre/post-reconstruction and �↵ the 1� error bound (Fig. 9)
show that the data realisation is within the locus of mea-
surements from this subsample of the mocks.

The distribution of errors on ↵, shows that for our
mocks we see 80% of these mocks have �↵,pre

/�↵,post

> 1,
as would be expected after applying density field recon-
struction. Our detection in the data of the BAO peak us-
ing our model, which marginalises over broadband shape,
is at the ⇠ 1.9� level pre-reconstruction and ⇠ 1.75�
post-reconstruction. In the subsample of the mocks pre-
reconstruction 18% have a detection higher than this and
post-reconstruction this increases to 52%. The mean detec-
tion level pre/post-reconstruction for the mocks is 1.5� and
1.8� respectively. This increase in the number of high signifi-
cance detections in the mocks shows the expected trend from
density field reconstruction to, on average, enhance the sig-
nificance of detection. The lower left plot in Figure 9 shows
however that in 28% of cases, in the mock sample, recon-
struction lowers the significance of detection. The reduction
of significance seen in the data realisation is therefore likely
a case of the data being one of these “unlucky” samples.
When comparing the pre-reconstruction significance detec-
tion to Beutler et al. (2011) we find a lower value, this is due
to a number of conservative alterations. These include (1)
a change in the fitting model to include polynomial terms
that marginalise over the shape giving more freedom, (2) a
change of fitting range from 10 h�1

Mpc < s < 200 h�1

Mpc

to 30 h�1

Mpc < s < 200 h�1

Mpc and (3) the new robust co-
variance matrix made from the COLA-based mocks rather
than log-normal realisations (but which has slightly larger
covariance amplitude).

MNRAS 000, 1–13 (2018)

Low-z BAO from the Reconstructed 6dFGS 7

Figure 6. The distribution of all 600 mock correlation functions,
both pre- (blue) and post-reconstruction (red). The data points
show the 6dFGS correlation function with errors from the diago-
nal of the constructed COLA mock covariance matrix. The post-
reconstruction data points have been displaced by +1h�1

Mpc for
clarity.

5.3 Post-Reconstruction

We apply density field reconstruction to both the data and
COLA mock catalogues. In doing so a galaxy bias of b = 1.82

(Beutler et al. 2011) and a growth rate of f (z
e�

= 0.097) =
0.579 were assumed. Our results are independent of this
choice as shown later in Section 6.3. When calculating the
displacement field, the overdensity field was smoothed us-

ing a Gaussian smoothing kernel, S(k) = e�(kR)
2/2, with the

smoothing scale of R = 15 h�1

Mpc. Using the calculated
displacement field as a proxy for the non-linear evolution,
the catalogues were shifted to move the field back into the
psuedo-linear regime. The reconstruction algorithm gave a
mean galaxy shift of s̄ = 5.87 h�1

Mpc.
The correlation function post-reconstruction has an es-

timator that includes both a shifted random S and indepen-
dent unshifted random catalogues R (Padmanabhan et al.
2012),

⇠(s) = SS(s)
RR(s)

✓
nr
ns

◆
2

+
DD(s)
RR(s)

✓
nr
nd

◆
2

� 2

DS(s)
RR(s)

 
n2

r

ndns

!
. (18)

As in the pre-reconstruction case, we use the smoothing
parameter fit from the mean of the mocks with a prior ⌃nl =
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parisons of the distributions of best-fitting �2, the value of ↵
pre/post-reconstruction and �↵ the 1� error bound (Fig. 9)
show that the data realisation is within the locus of mea-
surements from this subsample of the mocks.

The distribution of errors on ↵, shows that for our
mocks we see 80% of these mocks have �↵,pre

/�↵,post

> 1,
as would be expected after applying density field recon-
struction. Our detection in the data of the BAO peak us-
ing our model, which marginalises over broadband shape,
is at the ⇠ 1.9� level pre-reconstruction and ⇠ 1.75�
post-reconstruction. In the subsample of the mocks pre-
reconstruction 18% have a detection higher than this and
post-reconstruction this increases to 52%. The mean detec-
tion level pre/post-reconstruction for the mocks is 1.5� and
1.8� respectively. This increase in the number of high signifi-
cance detections in the mocks shows the expected trend from
density field reconstruction to, on average, enhance the sig-
nificance of detection. The lower left plot in Figure 9 shows
however that in 28% of cases, in the mock sample, recon-
struction lowers the significance of detection. The reduction
of significance seen in the data realisation is therefore likely
a case of the data being one of these “unlucky” samples.
When comparing the pre-reconstruction significance detec-
tion to Beutler et al. (2011) we find a lower value, this is due
to a number of conservative alterations. These include (1)
a change in the fitting model to include polynomial terms
that marginalise over the shape giving more freedom, (2) a
change of fitting range from 10 h�1

Mpc < s < 200 h�1

Mpc

to 30 h�1

Mpc < s < 200 h�1

Mpc and (3) the new robust co-
variance matrix made from the COLA-based mocks rather
than log-normal realisations (but which has slightly larger
covariance amplitude).
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eFAM Results: fitting mocks 2p-cf
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eFAM run

• Radius of sampled sphere: r
ext

= 990 Mpc h �1

• Number of halos per mock: N
halos

⇠ 56000

• Computing time per mock: cputime =  3h

2pt correlation function

• Code: Cosmo Bologna Lib by Federico Marulli

1

• Estimator: Landy and Szalay, i.e. ⇠(r) = DD(r)+RR(r)�2DR(r)
RR(r)

• Sample: Sphere of r
Sph

= 700 Mpc h�1

• Number of halos: N
halos

⇠ 23 000

• Number of random particles: N
random

= 50 x N
halos

• Sampled range: 30 Mpc h�1 < r < 200 Mpc h�1

• Number of bins: 17

Modelling of the 2pt correlation function

• Code: Cosmo Bologna Lib by Federico Marulli

• Power spectrum calculator: CAMB

• Minimization method: MCMC

• Model: P (k) = [P
lin

(k) � P
smooth

(k)]e�k

2⌃2
nl/2 + P

smooth

(k)

• Fitting Formula: ⇠(r) = b2⇠model(↵r) + A0 + A1
r

+ A2
r

2

• Fitting Parameters: ⌃
nl

, ↵, b�8, A0, A1, A2

• Priors: uniform

1
http://apps.difa.unibo.it/files/people/federico.marulli3/CosmoBolognaLib/Doc/html/index.html

2
<    > = 1.12 + 0.03
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Figure 6. The distribution of all 600 mock correlation functions,
both pre- (blue) and post-reconstruction (red). The data points
show the 6dFGS correlation function with errors from the diago-
nal of the constructed COLA mock covariance matrix. The post-
reconstruction data points have been displaced by +1h�1

Mpc for
clarity.

5.3 Post-Reconstruction

We apply density field reconstruction to both the data and
COLA mock catalogues. In doing so a galaxy bias of b = 1.82

(Beutler et al. 2011) and a growth rate of f (z
e�

= 0.097) =
0.579 were assumed. Our results are independent of this
choice as shown later in Section 6.3. When calculating the
displacement field, the overdensity field was smoothed us-

ing a Gaussian smoothing kernel, S(k) = e�(kR)
2/2, with the

smoothing scale of R = 15 h�1

Mpc. Using the calculated
displacement field as a proxy for the non-linear evolution,
the catalogues were shifted to move the field back into the
psuedo-linear regime. The reconstruction algorithm gave a
mean galaxy shift of s̄ = 5.87 h�1

Mpc.
The correlation function post-reconstruction has an es-

timator that includes both a shifted random S and indepen-
dent unshifted random catalogues R (Padmanabhan et al.
2012),

⇠(s) = SS(s)
RR(s)

✓
nr
ns

◆
2

+
DD(s)
RR(s)

✓
nr
nd

◆
2

� 2

DS(s)
RR(s)

 
n2

r

ndns

!
. (18)

As in the pre-reconstruction case, we use the smoothing
parameter fit from the mean of the mocks with a prior ⌃nl =
4.8 ± 2.0h�1

Mpc. The marginalised constraint on the shift
parameter ↵ post-reconstruction is ↵ = 0.895 ± 0.042(±0.235

0.079

)
with �2/⌫ = 9.49/11 = 0.86 (the error in the bracket show-
ing the non-Gaussianity at the 98% confidence level). The
model, data and �2 distribution are displayed in Figure 7.
The ↵ post-reconstruction found has a non-Gaussian likeli-
hood beyond the 1� region which means that although the
value is displaced from the average, it is still consistent with
the mock catalogues (discussed further in Section 6).

6 TESTS ON THE MOCK CATALOGUES

6.1 Fitting the mean of the mocks

We fit both the pre/post reconstruction average correla-
tion functions from the mock population. This fit makes
use of the covariance matrices, which have been rescaled
by the number of realisations N, C

mean

= C
one

/N. The best
fit model is shown in Figure 8 with ↵

pre

= 0.999 ± 0.0065

and ↵
post

= 0.997 ± 0.0035 giving an improvement factor of
I = �↵,pre

/�↵,post

⇠ 1.86.

6.2 Comparison between data and fits to
individual mocks

To make comparisons between the mock population and the
data, each of the 600 realisations used to produce the co-
variance matrices were individually fit. ⇠ 30% of the mock
catalogues in the population did not have a well constrained
measurement of ↵, a similar fraction to that found for the
SDSS MGS analysis (Ross et al. 2015). To ensure that this
comparison was performed only on the mocks that have a
relevant detection of the BAO feature, we select a subsam-
ple having 1� contours (��2 = 1) within the prior region
0.7 < ↵ < 1.3 (both pre- and post-reconstruction). This cut
reduces the population to 70% of its original number. Com-
parisons of the distributions of best-fitting �2, the value of ↵
pre/post-reconstruction and �↵ the 1� error bound (Fig. 9)
show that the data realisation is within the locus of mea-
surements from this subsample of the mocks.

The distribution of errors on ↵, shows that for our
mocks we see 80% of these mocks have �↵,pre

/�↵,post

> 1,
as would be expected after applying density field recon-
struction. Our detection in the data of the BAO peak us-
ing our model, which marginalises over broadband shape,
is at the ⇠ 1.9� level pre-reconstruction and ⇠ 1.75�
post-reconstruction. In the subsample of the mocks pre-
reconstruction 18% have a detection higher than this and
post-reconstruction this increases to 52%. The mean detec-
tion level pre/post-reconstruction for the mocks is 1.5� and
1.8� respectively. This increase in the number of high signifi-
cance detections in the mocks shows the expected trend from
density field reconstruction to, on average, enhance the sig-
nificance of detection. The lower left plot in Figure 9 shows
however that in 28% of cases, in the mock sample, recon-
struction lowers the significance of detection. The reduction
of significance seen in the data realisation is therefore likely
a case of the data being one of these “unlucky” samples.
When comparing the pre-reconstruction significance detec-
tion to Beutler et al. (2011) we find a lower value, this is due
to a number of conservative alterations. These include (1)
a change in the fitting model to include polynomial terms
that marginalise over the shape giving more freedom, (2) a
change of fitting range from 10 h�1

Mpc < s < 200 h�1

Mpc

to 30 h�1

Mpc < s < 200 h�1

Mpc and (3) the new robust co-
variance matrix made from the COLA-based mocks rather
than log-normal realisations (but which has slightly larger
covariance amplitude).
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Figure 6. The distribution of all 600 mock correlation functions,
both pre- (blue) and post-reconstruction (red). The data points
show the 6dFGS correlation function with errors from the diago-
nal of the constructed COLA mock covariance matrix. The post-
reconstruction data points have been displaced by +1h�1

Mpc for
clarity.

5.3 Post-Reconstruction

We apply density field reconstruction to both the data and
COLA mock catalogues. In doing so a galaxy bias of b = 1.82

(Beutler et al. 2011) and a growth rate of f (z
e�

= 0.097) =
0.579 were assumed. Our results are independent of this
choice as shown later in Section 6.3. When calculating the
displacement field, the overdensity field was smoothed us-

ing a Gaussian smoothing kernel, S(k) = e�(kR)
2/2, with the

smoothing scale of R = 15 h�1

Mpc. Using the calculated
displacement field as a proxy for the non-linear evolution,
the catalogues were shifted to move the field back into the
psuedo-linear regime. The reconstruction algorithm gave a
mean galaxy shift of s̄ = 5.87 h�1

Mpc.
The correlation function post-reconstruction has an es-

timator that includes both a shifted random S and indepen-
dent unshifted random catalogues R (Padmanabhan et al.
2012),

⇠(s) = SS(s)
RR(s)
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As in the pre-reconstruction case, we use the smoothing
parameter fit from the mean of the mocks with a prior ⌃nl =
4.8 ± 2.0h�1

Mpc. The marginalised constraint on the shift
parameter ↵ post-reconstruction is ↵ = 0.895 ± 0.042(±0.235

0.079

)
with �2/⌫ = 9.49/11 = 0.86 (the error in the bracket show-
ing the non-Gaussianity at the 98% confidence level). The
model, data and �2 distribution are displayed in Figure 7.
The ↵ post-reconstruction found has a non-Gaussian likeli-
hood beyond the 1� region which means that although the
value is displaced from the average, it is still consistent with
the mock catalogues (discussed further in Section 6).

6 TESTS ON THE MOCK CATALOGUES

6.1 Fitting the mean of the mocks

We fit both the pre/post reconstruction average correla-
tion functions from the mock population. This fit makes
use of the covariance matrices, which have been rescaled
by the number of realisations N, C

mean

= C
one

/N. The best
fit model is shown in Figure 8 with ↵

pre

= 0.999 ± 0.0065

and ↵
post

= 0.997 ± 0.0035 giving an improvement factor of
I = �↵,pre

/�↵,post

⇠ 1.86.

6.2 Comparison between data and fits to
individual mocks

To make comparisons between the mock population and the
data, each of the 600 realisations used to produce the co-
variance matrices were individually fit. ⇠ 30% of the mock
catalogues in the population did not have a well constrained
measurement of ↵, a similar fraction to that found for the
SDSS MGS analysis (Ross et al. 2015). To ensure that this
comparison was performed only on the mocks that have a
relevant detection of the BAO feature, we select a subsam-
ple having 1� contours (��2 = 1) within the prior region
0.7 < ↵ < 1.3 (both pre- and post-reconstruction). This cut
reduces the population to 70% of its original number. Com-
parisons of the distributions of best-fitting �2, the value of ↵
pre/post-reconstruction and �↵ the 1� error bound (Fig. 9)
show that the data realisation is within the locus of mea-
surements from this subsample of the mocks.

The distribution of errors on ↵, shows that for our
mocks we see 80% of these mocks have �↵,pre

/�↵,post

> 1,
as would be expected after applying density field recon-
struction. Our detection in the data of the BAO peak us-
ing our model, which marginalises over broadband shape,
is at the ⇠ 1.9� level pre-reconstruction and ⇠ 1.75�
post-reconstruction. In the subsample of the mocks pre-
reconstruction 18% have a detection higher than this and
post-reconstruction this increases to 52%. The mean detec-
tion level pre/post-reconstruction for the mocks is 1.5� and
1.8� respectively. This increase in the number of high signifi-
cance detections in the mocks shows the expected trend from
density field reconstruction to, on average, enhance the sig-
nificance of detection. The lower left plot in Figure 9 shows
however that in 28% of cases, in the mock sample, recon-
struction lowers the significance of detection. The reduction
of significance seen in the data realisation is therefore likely
a case of the data being one of these “unlucky” samples.
When comparing the pre-reconstruction significance detec-
tion to Beutler et al. (2011) we find a lower value, this is due
to a number of conservative alterations. These include (1)
a change in the fitting model to include polynomial terms
that marginalise over the shape giving more freedom, (2) a
change of fitting range from 10 h�1

Mpc < s < 200 h�1

Mpc

to 30 h�1

Mpc < s < 200 h�1

Mpc and (3) the new robust co-
variance matrix made from the COLA-based mocks rather
than log-normal realisations (but which has slightly larger
covariance amplitude).

MNRAS 000, 1–13 (2018)
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Analysis of “bad-constrained” mocks
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eFAM Results: fitting mocks 2pcf
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eFAM run

• Radius of sampled sphere: r
ext

= 990 Mpc h �1

• Number of halos per mock: N
halos

⇠ 56000

• Computing time per mock: cputime =  3h

2pt correlation function

• Code: Cosmo Bologna Lib by Federico Marulli

1

• Estimator: Landy and Szalay, i.e. ⇠(r) = DD(r)+RR(r)�2DR(r)
RR(r)

• Sample: Sphere of r
Sph

= 700 Mpc h�1

• Number of halos: N
halos

⇠ 23 000

• Number of random particles: N
random

= 50 x N
halos

• Sampled range: 30 Mpc h�1 < r < 200 Mpc h�1

• Number of bins: 17

Modelling of the 2pt correlation function

• Code: Cosmo Bologna Lib by Federico Marulli

• Power spectrum calculator: CAMB

• Minimization method: MCMC

• Model: P (k) = [P
lin

(k) � P
smooth

(k)]e�k

2⌃2
nl/2 + P

smooth

(k)

• Fitting Formula: ⇠(r) = b2⇠model(↵r) + A0 + A1
r

+ A2
r

2

• Fitting Parameters: ⌃
nl

, ↵, b�8, A0, A1, A2

• Priors: uniform

1
http://apps.difa.unibo.it/files/people/federico.marulli3/CosmoBolognaLib/Doc/html/index.html

2
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Figure 6. The distribution of all 600 mock correlation functions,
both pre- (blue) and post-reconstruction (red). The data points
show the 6dFGS correlation function with errors from the diago-
nal of the constructed COLA mock covariance matrix. The post-
reconstruction data points have been displaced by +1h�1

Mpc for
clarity.

5.3 Post-Reconstruction

We apply density field reconstruction to both the data and
COLA mock catalogues. In doing so a galaxy bias of b = 1.82

(Beutler et al. 2011) and a growth rate of f (z
e�

= 0.097) =
0.579 were assumed. Our results are independent of this
choice as shown later in Section 6.3. When calculating the
displacement field, the overdensity field was smoothed us-

ing a Gaussian smoothing kernel, S(k) = e�(kR)
2/2, with the

smoothing scale of R = 15 h�1

Mpc. Using the calculated
displacement field as a proxy for the non-linear evolution,
the catalogues were shifted to move the field back into the
psuedo-linear regime. The reconstruction algorithm gave a
mean galaxy shift of s̄ = 5.87 h�1

Mpc.
The correlation function post-reconstruction has an es-

timator that includes both a shifted random S and indepen-
dent unshifted random catalogues R (Padmanabhan et al.
2012),

⇠(s) = SS(s)
RR(s)
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As in the pre-reconstruction case, we use the smoothing
parameter fit from the mean of the mocks with a prior ⌃nl =
4.8 ± 2.0h�1

Mpc. The marginalised constraint on the shift
parameter ↵ post-reconstruction is ↵ = 0.895 ± 0.042(±0.235

0.079

)
with �2/⌫ = 9.49/11 = 0.86 (the error in the bracket show-
ing the non-Gaussianity at the 98% confidence level). The
model, data and �2 distribution are displayed in Figure 7.
The ↵ post-reconstruction found has a non-Gaussian likeli-
hood beyond the 1� region which means that although the
value is displaced from the average, it is still consistent with
the mock catalogues (discussed further in Section 6).

6 TESTS ON THE MOCK CATALOGUES

6.1 Fitting the mean of the mocks

We fit both the pre/post reconstruction average correla-
tion functions from the mock population. This fit makes
use of the covariance matrices, which have been rescaled
by the number of realisations N, C

mean

= C
one

/N. The best
fit model is shown in Figure 8 with ↵

pre

= 0.999 ± 0.0065

and ↵
post

= 0.997 ± 0.0035 giving an improvement factor of
I = �↵,pre

/�↵,post

⇠ 1.86.

6.2 Comparison between data and fits to
individual mocks

To make comparisons between the mock population and the
data, each of the 600 realisations used to produce the co-
variance matrices were individually fit. ⇠ 30% of the mock
catalogues in the population did not have a well constrained
measurement of ↵, a similar fraction to that found for the
SDSS MGS analysis (Ross et al. 2015). To ensure that this
comparison was performed only on the mocks that have a
relevant detection of the BAO feature, we select a subsam-
ple having 1� contours (��2 = 1) within the prior region
0.7 < ↵ < 1.3 (both pre- and post-reconstruction). This cut
reduces the population to 70% of its original number. Com-
parisons of the distributions of best-fitting �2, the value of ↵
pre/post-reconstruction and �↵ the 1� error bound (Fig. 9)
show that the data realisation is within the locus of mea-
surements from this subsample of the mocks.

The distribution of errors on ↵, shows that for our
mocks we see 80% of these mocks have �↵,pre

/�↵,post

> 1,
as would be expected after applying density field recon-
struction. Our detection in the data of the BAO peak us-
ing our model, which marginalises over broadband shape,
is at the ⇠ 1.9� level pre-reconstruction and ⇠ 1.75�
post-reconstruction. In the subsample of the mocks pre-
reconstruction 18% have a detection higher than this and
post-reconstruction this increases to 52%. The mean detec-
tion level pre/post-reconstruction for the mocks is 1.5� and
1.8� respectively. This increase in the number of high signifi-
cance detections in the mocks shows the expected trend from
density field reconstruction to, on average, enhance the sig-
nificance of detection. The lower left plot in Figure 9 shows
however that in 28% of cases, in the mock sample, recon-
struction lowers the significance of detection. The reduction
of significance seen in the data realisation is therefore likely
a case of the data being one of these “unlucky” samples.
When comparing the pre-reconstruction significance detec-
tion to Beutler et al. (2011) we find a lower value, this is due
to a number of conservative alterations. These include (1)
a change in the fitting model to include polynomial terms
that marginalise over the shape giving more freedom, (2) a
change of fitting range from 10 h�1

Mpc < s < 200 h�1

Mpc

to 30 h�1

Mpc < s < 200 h�1

Mpc and (3) the new robust co-
variance matrix made from the COLA-based mocks rather
than log-normal realisations (but which has slightly larger
covariance amplitude).
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eFAM Results: coming soon …

Elena Sarpa   EUCLID FRANCE GC-SWG,  4-6-‘18

Covariance matrix regularisation: tapering 
  

(Paz & Sánchez 2015)

Original cov.

Tap. cov.
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Summary

Elena Sarpa   EUCLID FRANCE GC-SWG,  4-6-‘18

❖ 105 particles, CPU time = 8h

❖ Polynomial expansion at 10th order (ZA: 1st order)

❖ LCDM DEUS halos simulation instead of 2-LPT mocks (!!!)

❖ Work in progress: 

redshift space computations, 
fit with tapered Con matrix, 
modelling od RSD

Thank you for the attention
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eFAM Results: fitting mocks 2pcf
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eFAM run

• Radius of sampled sphere: r
ext

= 990 Mpc h �1

• Number of halos per mock: N
halos

⇠ 56000

• Computing time per mock: cputime =  3h

2pt correlation function

• Code: Cosmo Bologna Lib by Federico Marulli

1

• Estimator: Landy and Szalay, i.e. ⇠(r) = DD(r)+RR(r)�2DR(r)
RR(r)

• Sample: Sphere of r
Sph

= 700 Mpc h�1

• Number of halos: N
halos

⇠ 23 000

• Number of random particles: N
random

= 50 x N
halos

• Sampled range: 30 Mpc h�1 < r < 200 Mpc h�1

• Number of bins: 17

Modelling of the 2pt correlation function

• Code: Cosmo Bologna Lib by Federico Marulli

• Power spectrum calculator: CAMB

• Minimization method: MCMC

• Model: P (k) = [P
lin

(k) � P
smooth

(k)]e�k

2⌃2
nl/2 + P

smooth

(k)

• Fitting Formula: ⇠(r) = b2⇠model(↵r) + A0 + A1
r

+ A2
r

2

• Fitting Parameters: ⌃
nl

, ↵, b�8, A0, A1, A2

• Priors: uniform

1
http://apps.difa.unibo.it/files/people/federico.marulli3/CosmoBolognaLib/Doc/html/index.html
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Figure 6. The distribution of all 600 mock correlation functions,
both pre- (blue) and post-reconstruction (red). The data points
show the 6dFGS correlation function with errors from the diago-
nal of the constructed COLA mock covariance matrix. The post-
reconstruction data points have been displaced by +1h�1

Mpc for
clarity.

5.3 Post-Reconstruction

We apply density field reconstruction to both the data and
COLA mock catalogues. In doing so a galaxy bias of b = 1.82

(Beutler et al. 2011) and a growth rate of f (z
e�

= 0.097) =
0.579 were assumed. Our results are independent of this
choice as shown later in Section 6.3. When calculating the
displacement field, the overdensity field was smoothed us-

ing a Gaussian smoothing kernel, S(k) = e�(kR)
2/2, with the

smoothing scale of R = 15 h�1

Mpc. Using the calculated
displacement field as a proxy for the non-linear evolution,
the catalogues were shifted to move the field back into the
psuedo-linear regime. The reconstruction algorithm gave a
mean galaxy shift of s̄ = 5.87 h�1

Mpc.
The correlation function post-reconstruction has an es-

timator that includes both a shifted random S and indepen-
dent unshifted random catalogues R (Padmanabhan et al.
2012),

⇠(s) = SS(s)
RR(s)

✓
nr
ns

◆
2

+
DD(s)
RR(s)

✓
nr
nd

◆
2

� 2

DS(s)
RR(s)

 
n2

r

ndns

!
. (18)

As in the pre-reconstruction case, we use the smoothing
parameter fit from the mean of the mocks with a prior ⌃nl =
4.8 ± 2.0h�1

Mpc. The marginalised constraint on the shift
parameter ↵ post-reconstruction is ↵ = 0.895 ± 0.042(±0.235

0.079

)
with �2/⌫ = 9.49/11 = 0.86 (the error in the bracket show-
ing the non-Gaussianity at the 98% confidence level). The
model, data and �2 distribution are displayed in Figure 7.
The ↵ post-reconstruction found has a non-Gaussian likeli-
hood beyond the 1� region which means that although the
value is displaced from the average, it is still consistent with
the mock catalogues (discussed further in Section 6).

6 TESTS ON THE MOCK CATALOGUES

6.1 Fitting the mean of the mocks

We fit both the pre/post reconstruction average correla-
tion functions from the mock population. This fit makes
use of the covariance matrices, which have been rescaled
by the number of realisations N, C

mean

= C
one

/N. The best
fit model is shown in Figure 8 with ↵

pre

= 0.999 ± 0.0065

and ↵
post

= 0.997 ± 0.0035 giving an improvement factor of
I = �↵,pre

/�↵,post

⇠ 1.86.

6.2 Comparison between data and fits to
individual mocks

To make comparisons between the mock population and the
data, each of the 600 realisations used to produce the co-
variance matrices were individually fit. ⇠ 30% of the mock
catalogues in the population did not have a well constrained
measurement of ↵, a similar fraction to that found for the
SDSS MGS analysis (Ross et al. 2015). To ensure that this
comparison was performed only on the mocks that have a
relevant detection of the BAO feature, we select a subsam-
ple having 1� contours (��2 = 1) within the prior region
0.7 < ↵ < 1.3 (both pre- and post-reconstruction). This cut
reduces the population to 70% of its original number. Com-
parisons of the distributions of best-fitting �2, the value of ↵
pre/post-reconstruction and �↵ the 1� error bound (Fig. 9)
show that the data realisation is within the locus of mea-
surements from this subsample of the mocks.

The distribution of errors on ↵, shows that for our
mocks we see 80% of these mocks have �↵,pre

/�↵,post

> 1,
as would be expected after applying density field recon-
struction. Our detection in the data of the BAO peak us-
ing our model, which marginalises over broadband shape,
is at the ⇠ 1.9� level pre-reconstruction and ⇠ 1.75�
post-reconstruction. In the subsample of the mocks pre-
reconstruction 18% have a detection higher than this and
post-reconstruction this increases to 52%. The mean detec-
tion level pre/post-reconstruction for the mocks is 1.5� and
1.8� respectively. This increase in the number of high signifi-
cance detections in the mocks shows the expected trend from
density field reconstruction to, on average, enhance the sig-
nificance of detection. The lower left plot in Figure 9 shows
however that in 28% of cases, in the mock sample, recon-
struction lowers the significance of detection. The reduction
of significance seen in the data realisation is therefore likely
a case of the data being one of these “unlucky” samples.
When comparing the pre-reconstruction significance detec-
tion to Beutler et al. (2011) we find a lower value, this is due
to a number of conservative alterations. These include (1)
a change in the fitting model to include polynomial terms
that marginalise over the shape giving more freedom, (2) a
change of fitting range from 10 h�1

Mpc < s < 200 h�1

Mpc

to 30 h�1

Mpc < s < 200 h�1

Mpc and (3) the new robust co-
variance matrix made from the COLA-based mocks rather
than log-normal realisations (but which has slightly larger
covariance amplitude).
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