france for euclide 6 s y m p o s i u m

Galaxy Clustering SWG activity report

Sylvain de la Torre (LAM)

Galaxy Clustering SWG

Leads: Will Percival, Luigi Guzzo, Yun Wang (deputy) SWG weekly telecon on Monday 5pm SWG yearly meeting joint with LE3-GC Jan-Feb

- Reorganisation of the WPs (on-going)
 - **WP 1**. Observational Systematics. Merging current "Sample Selection", "Mask/Slitless", and "Liaison with Sims" WPs
 - **WP 2**. Likelihood Fitting, link to future IST: likelihood
 - WP 3. Non-linear effects. (including current "Reconstruction" WP), link to future IST: non-linear
 - **WP 4**. Higher-order statistics
 - WP 5. Additional GC probes (a.k.a. current "New Probes")
 - **WP 6**. Photo-z Clustering

Open call for new WP leads: consider applying!

Currently 2/16 French WP leads

Summary

Galaxy clustering systematics tiger team

Synergies with CS–SWG, SPV2, OU–LE3–GC

Galaxy Clustering Systematics

Set up in March of a *tiger team* dedicated to study and budget systematic error affecting the GC probe

Based on current knowledge of Euclid characteristics

The team worked for about 9 months (until October) and produced a 60 page-long document

Not intended to give the definitive systematic error budget but perform a first overview and provide recommendations to improve on its estimation

Galaxy Clustering Systematics

Galaxy Clustering Systematics The menu

Sources of systematic errors classified in three parts: data, theory, likelihood

	_				
4.1	Data sy	ystematics			
	4.1.1	Spectrophotometric calibration and sky brightness variations			
	4.1.2	Milky Way extinction			
	4.1.3	Obscuration effects			
	4.1.4	Redshift measurement error			
	4.1.5	Confusion from overlapping spectra			
	4.1.6	Deep field			
	4.1.7	Clustering estimators: power spectrum			
	4.1.8	Clustering estimators: two-point correlation function			
	4.1.9	Clustering estimators: wide angle effects			
4.2	Theory	v systematics			
	4.2.1	Nonlinear evolution of dark-matter			
	4.2.2	Redshift-space distortions			
	4.2.3	Galaxy density bias			
	4.2.4	Galaxy velocity bias			
	4.2.5	Relative velocity and density perturbations between baryons and dark matter			
	4.2.6	Light cone (& other projections) effects			
	4.2.7	Reconstruction			
	4.2.8	The impact of massive neutrinos			
4.3	Likelihood systematics				
	4.3.1	Incorrect propagation of the noise in the covariance matrix			
	4.3.2	Biased estimates of the covariance matrix			
	4.3.3	Cosmology dependence of the covariance matrix			
	4.3.4	Incorrect shape of the likelihood function			
	4.3.5	Combination of results from multiple statistics			
		1			

Galaxy Clustering Systematics Baseline

For data and likelihood parts define a baseline galaxy clustering model based on Flagship (1.3.1)

8.21

1.35-1.8

 7.42×10^{-4}

euclid 6

Galaxy Clustering Systematics Data

 \geq Impact of Ha emitter number density and variation of flux limit

Galaxy Clustering Systematics Data

euclid 6

Estimation of random redshift errors in Flagship

9

Galaxy Clustering Systematics Data

euclid 6

Gaussian z-error PDF vs true zerror PDF

Galaxy Clustering Systematics Data

baseline error: 0.0016

Redshift systematic error (overlapping spectra, line misidentification)

Mitigation by forward modelling spectra overlaps in the random sample or pairwise weights: still to be studied in detail!

Galaxy Clustering Systematics Theory

Non-linear dark matter clustering

Perturbation Theory allows reaching 1-2% level accuracy up to k_{max} = 0.2-0.25: e.g. MPTbreeze, RegPT, gRPT, ...

EFT can improve on accuracy but with more nuisance parameters

Semi-analytical models calibrated on simulations (Halofit, HM code, emulators) can potentially reach smaller scales

Relative velocity/density between baryons and dark matter

Secondary effect: 1%? change on amplitude and position of BAO peak

Galaxy biases

Detailed non-linear and non-local bias models (4 parameters) can be used, but unclear how these nuisance parameters affect final constraints

Velocity bias: include as an additional nuisance parameter?

Assembly bias?

Galaxy Clustering Systematics Likelihood

Impact of cosmology-dependent data covariances

Impact of biased data covariances (approx. methods to build mocks)

13 CM-2PCF-GC: about 5000-10000 runs required

euclic

Galaxy Clustering Systematics Summary

Systematic offect	Responsible	impact	impact	Maturity
Systematic effect	WP or group	on BAO	on RSD	of mitigation
Photometric calibration	WP2	small	small	high
Milky Way extinction	WP2	small	small	high
Redshift measurement error	WPI	small	medium?	high
Confusion from overlapping spectra	WP2	unknown	unknown	low
Deep field	WP2	small?	small?	low
Clustering estimators: power spectrum	OU-LE3	small	small	high
Clustering estimators: two-point correlation function	OU-LE3	small	small	high
Clustering estimators: wide-angle effects	WPX	small	small	high
Reconstruction	WP4	large	none	medium
Nonlinear evolution of dark-matter	none	medium	large	medium
Redshift-space distortions	none	low	large	low
Galaxy density bias	none	low	large	low
Massive neutrinos	none	low	large	medium
Galaxy velocity bias	none	low	large	low
Variations of model template with cosmology	WP4?	low	unknown	low
Lightcone & projection effects	WPX	low?	low?	low
Relative velocity and density perturbations between	none	small?	small?	smalla
baryons and dark matter	I.C. W.	Siliali :	Sinan :	Strait :
Noise in the covariance matrix	WP3	small	small	high
Biased estimates of the covariance matrix	WP3	small-med?	small-med	high
Cosmology dependence of the covariance matrix	WP3	small?	small	low
Incorrect shape of the likelihood function	WP3	unknown	unknown	low
Combination of results from multiple statistics	WP3	small	small	high

Redshift error Spectra confusion

Non-linear evolution of dark matter

Rel. vel. baryons & dark matter

Bias & cosmologydep. in cov. matrix

- Small components: $\sigma_{\rm sys}/\sigma_{\rm stat} < 0.2$.
- Medium components: $0.2 < \sigma_{\rm sys} / \sigma_{\rm stat} < 0.45$
- Large components: $\sigma_{\rm sys}/\sigma_{\rm stat} > 0.45$.

Summary

Galaxy clustering systematics tiger team work

Synergies with CS-SWG, SPV2, OU-LE3-GC

Synergies with CS–SWG, SPV2, LE3–GC *Flagship validation*

Galaxy clustering measurements in Flagship

Comparison to theoretical expectations (both stateof-the-art non-linear & linear predictions)

Issue in the quadrupole moments: unable to reproduce theoretical RSD within stat. error!

france for Lid Euclid

Synergies with CS–SWG, SPV2, LE3–GC Flagship validation

Galaxy clustering measurements in Flagship

Comparison to theoretical expectations (both stateof-the-art non-linear & linear predictions)

Issue in the quadrupole moments: unable to reproduce theoretical RSD within stat. error!

Already present in flagship haloes... velocities?

Haloes

Andrea Pezzotta et al.

Synergies with CS–SWG, SPV2, LE3–GC *LE3–GC validation*

Last validation of 2PCF-GC, PK-GC, CM-2PCF-GC (first priority)

10

Conclusion

- Significant work achieved in the last year
- Galaxy clustering systematics document (60 pages) written (now being reviewed)
- New synergies with SPV2, E2E–GC groups
- Reorganisation of the SWG WPs : work more as *Tiger Teams*, more paper oriented
- Need more involvement of the French community