

SCIENCE CASE FOR A WIDE FIELD-OF-VIEW VERY-HIGH-ENERGY GAMMA-RAY OBSERVATORY IN THE SOUTHERN HEMISPHERE

ANDREA ALBERT, R. ARCEO, SEGEV BENZVI, THOMAS BRETZ, ALBERTO CARRAMIÑANA, SABRINA CASANOVA, PIERRE CRISTOFARI, PAOLO DESIATI, DANIELA DORNER, JUAN CARLOS DÍAZ-VÉLEZ, GIUSEPPE DI SCIASCIO, NISSIM FRAIJA, JAVIER GONZALEZ, H. MARTÍNEZ-HUERTA, MIGUEL MOSTAFA, MAGDALENA GONZALEZ, JIM HINTON, JEAN-PHILIPPE LENAIN, R. LÓPEZ-COTO, FILIPE DE O. SALLES, ANA PICHEL, ELISA PRANDINI, ANDREAS REISENEGGER, JÉRÔME RODRIGUEZ, ADRIAN C. ROVERO, MARCOS SANTANDER, KONSTANCJA SATALECKA, HARM SCHOORLEMMER, FABIAN SCHÜSSLER, ANDRES SANDOVAL, MONICA SEGLAR-ARROYO, AION VIANA, THOMAS WEISGARBER, FELIX WERNER, RUIZHI YANG, AND YOUR NAME CAN BE HERE...

CONTENTS

1. Introduction and Goal of this document	2
2. Instrumental Context	3
3. Unveiling Galactic Particle Accelerators	5
3.1. Pulsar emissions constraining the local positron flux and diffusion	
coefficients	6
3.2. Fermi bubbles	8
3.3. PeVatrons	10
3.4. Gamma Rays from Molecular Clouds in the Gould Belt	14
4. Monitoring the Transient Sky	14
4.1. Active Galactic Nuclei	15
4.2. Galactic monitor	26
4.3. Gamma-Ray Bursts and Gravitational Waves	29
4.4. High-energy neutrinos	32
4.5. Multi-messenger correlations	34
4.6. Exploratory searches for new transient phenomena	35
5. Probing Physics Beyond the Standard Model	36
5.1. Dark Matter	36
5.2. Primordial Black Holes	40
5.3. Testing Lorentz invariance with SGSO	41
6. Cosmic-ray observations	42
6.1. Spectrum and composition	42
6.2. Anisotropy	45
6.3. Electron spectrum and anisotropy	47
1	

Review of the white paper

https://v1.overleaf.com/ 9778425nsxphywwjcmj

https://www.sgso-alliance.org/ SGSOWiki/doku.php? id=white_paper

Fabian Schüssler

Reviewers

- Stefan Funk + Marianne Lemoine-Gourmard
 - Section 3 "Unveiling Galactic Particle Accelerators"

Markus Böttcher

Section 4 "Monitoring the Transient Sky" (focussing on AGNs)

Marcos Santander

Section 4 "Monitoring the Transient Sky" (focussing on MWL/MM)

Pat Harding

Section 5 "Probing Physics Beyond the Standard Model"

Andreas Haungs

Section 6 "Cosmic-ray observations"

Gavin Rowell

Sections 1, 2 and 7 "Introduction", "Context" and "Design considerations"

General comments

Need estimate of angular resolution

crucial for Galactic sources, but relevant almost everywhere

Sensitivity figure(s) should be shown in the introduction

Comparison with CTA

- it is not always obvious why and how SGSO can do better than CTA (e.g. individual Galactic sources, molecular clouds, etc.)
- If SGSO is better then IACTs, then say why/how and to what result SGSO can do. Don't just say that the IACTs can't do this or that...

Unveiling Galactic Particle Accelerators

Pevatrons

- sensitivity to extended sources is additional driver (e.g. SNR G150.3+4.5 with hard spectrum in Fermi-LAT)
- discuss unidentified sources like HESS J1641-463, J1741-302 and J1826-130
- maybe re-organise: Pevatrons as general concept

LMC

- no cut-off detected by H.E.S.S. in SRN N132D
- superbubble 30 Doradus C

PWNe

- extend discussion, e.g. complementarity and input to CTA
- many HAWC high-E sources in coincidence with PWNe
- e.g. implications for the CRs in the Galaxy

Diffuse emission + Fermi bubbles

- Add diffuse Galactic emission as observation (not only as background)?
- Why is SGSO suited for this despite its relatively poor angular resolution?
- Quantify Fermi-bubble studies

SOUTHERN

GAMMA-RAY SURVEY OBSERVATORY

Monitoring the Transient Sky

Focus on what SGSO can do that other can't

- focus on low energy performance (not the lack of events at high E)
- Iarge redshifts would be good for EBL studies (not "too distant to be detected")

Be precise, explain how SGSO would do the analyses

- don't use standard phrase (e.g. "we need population studies to understand particle acceleration", etc.)
- How will SGSO improve over HAWC (only 2 detected EGAL sources)?
- What does the "unbiased survey" bring for the physics
- more examples: how would known light-curves look like, how many flares can be expected (Fermi extrapolations?), etc.

finalize the missing subsections or remove them

 also reduce length for topics that are challenging for SGSO (or provide more details on advantages over CTA, e.g. EBL studies)

more details for GRB detections and neutrino follow-up

Probing physics beyond the Standard Model

- SGSO DM sensitivity should be compared to existing limits and projected CTA sensitivity
- How do the different systematics between SGSO and CTA influence the results?
- Worse PSF => less sensitive to differences in DM profiles
- Emphasize the possibility to analyze newly found objects (e.g. dSph)

Cosmic rays

- Do we really need a 0.5 km² array to be competitive?
 - What can we learn with an array of the straw man layout?
- Quantify the electron spectrum measurement? Range? Uncertainty?
- What about the electron anisotropy?
- Highlight that SGSO will cover an interesting RA and energy range (sharp transition between 10 and 200 TeV)
- HAWC CR spectrum does not agree with other measurement: discuss
- Elaborate on EAS model studies
- Wording could be more precise/careful
 - the knee as end of the Galactic CRs is not a fact (e.g. "component B")
 - define "standard picture of CRs"

Summary and next steps

- Finalize the missing sub-sections
 - timescale?
 - do we need to focus on the main/crucial points?
- Go through the comments
 - dedicated sub-group meetings (inviting the referees)
 - distribution of work ("who is doing what")
 - update the draft

Summary and next steps

- Finalize the missing sub-sections
 - timescale?
 - do we need to focus on the main/crucial points?
- Go through the comments
 - dedicated sub-group meetings (inviting the referees)
 - distribution of work ("who is doing what")
 - update the draft
- Authorlist
 - Opt-out (by default all SGSO members)?
 - Opt-in (open to all SGSO members)?
- Journal submission? Or only arXiv?
 - Which journal?
- Start work on Decadal survey paper(s)