Results from the simulations of the ALTO observatory

http://alto-gamma-ray-observatory.org

Michael Punch - APC Laboratory, Paris (France), IN2P3/CNRS & Linnaeus University --- for the ALTO group ----Yvonne Becherini – Linnaeus University (Sweden) Jean-Pierre Ernenwein - Aix-Marseille University (France) Satyendra Thoudam - Linnaeus University (Sweden) Tomas Bylund - Linnaeus University (Sweden) Mohanraj Senniappan - Linnaeus University (Sweden)

Linnæus University

- A Wide Field-of-View (~ 2 sr) gamma-ray observatory:
 - In the Southern hemisphere \rightarrow Daily observations of Southern sources

Project born in 2014 at Linnaeus University after we received a research grant from

• At high altitude (~ 5 km)

the Crafoord Foundation (Sweden)

The ALTO project

Particle detectors

٠

- Hybrid detectors
- Excellent timing accuracy
- Modular design
- Simple to construct
- Long duration
- "Open Observatory"

- \rightarrow Observations may be done 24h per day
- \rightarrow Improved S/B discrimination

 \rightarrow Low threshold E \geq 200 GeV

- \rightarrow Improved angular resolution (~ 0.1° at few TeV)
- \rightarrow Phased construction and easy maintenance
- → Minimize human intervention at high-altitude
- \rightarrow Should operate for 30 years
- → Distribute data to the community "à la Fermi-LAT"

ALTO Science Goals

Daily monitoring of Southern targets:

- Transients and variable sources;
- Active Galactic Nuclei, Gamma-Ray Bursts (if spectra favourable), X-ray binaries;
- Galactic centre and central region;
- Alerts to other observatories;
- Multi-year light-curves;
- High-end of the sources' spectra;
- Search for Pevatrons;

H.E.S.S. PKS 2155-304 (blazar) flare

Cen A

Study of extended sources:

Fermi Bubbles, Vela SNR, AGN radio lobes;

Credit: NASA/DOE/Fermi LAT Collaboration, Capella Observatory, and Ilana Feain, Tim Cornwell, and Ron Ekers (CSIRO/ATNF), R. Morganti (ASTRON), and N. Junkes (MPIfR)

Other accessible goals:

- Search in past data if detections of:
 - gravitational waves or
 - neutrinos;
- Study of the cosmic-ray composition and anisotropy;
- Dark matter searches;
- EBL studies (if threshold low enough);
- Search for Lorentz invariance violation;
- Axion-like particles from distant AGNs.

Current Collaboration

ALTO Observatory Essentials

Linnæus University

Energy range ≥ 200 GeV

~1200 detector units

Southern Hemisphere

(Chile/Argentina)

Altitude ~5 km a.s.l

- Advanced electronics:
 - WaveCatcher
 - + White Rabbit timing system
- Sub-ns timing
- Small-sized, closed-packed WCDs
 - Low dead-space ("packing factor" ~70%)
- Scintillation detectors

An ALTO detector unit

An ALTO "cluster"

Cluster = Group of 6 Units = 6 x (WCD + SLD)

- WCDs on concrete "table"
- SLDs below "table", on telescopic rails
- Advanced electronics for 6-tank "cluster", WaveCatcher + White Rabbit:
- Trigger channel precisely time-stamped with "White Rabbit" system;
- Analogue memories + ADCs to measure the waveform of the detector pulses;

ALTO ClusterWCD tank

• SLD box

Concrete table

• No cables from central DAQ room, only fibres.

Each cluster to have common:

- Electronics readout unit
- Solar panel + battery
- Communication/data to central DAQ room by fibre only

Linnæus University

F TI

ALTO Monte Carlo Simulations

Monte-Carlo simulations

Air shower simulation: CORSIKA (version 7.4000)

- Realistic model of Earth's atmosphere, magnetic field, refractive index,
- Electromagnetic and hadronic interactions based on particle physics models.

Parameter	Gamma rays	Proton	
Observation height	5.1 km	Same	
Energy	10 GeV-100 TeV	158 GeV-100 TeV	
Spectral slope	-2.0	-2.7	
Zenith angle	Fixed at 18°	0-30°	
Azimuth angle	Fixed at 180°	0-360°	
Magnetic field	ALMA site	Same	
Core position (from array centre)	0-100 m (square)	Same	
No. of showers	~17 million	~21 million (→ 12 minutes!)	

Note:

- No reuse of Corsika showers currently
- Future: planning for
- protons simulations up to 48°
- gamma-ray simulation at multiple zenith angles (18, 32, 41°)

Monte-Carlo simulations

Linnæus University

13 🕯

Single particles from Air Showers Energy Distribution

ALTO

- Shower Muons have median energy a factor of several hundred higher than Shower Gammas/Electrons
- Factor >100 more Muons at median in Proton vs. Gamma showers

Linnæus University

16

scintillators at large distance from the core

Linnæus University

17

ALTO Event Reconstruction

Linnæus University

19

Shower core reconstruction

Gamma ray (1 TeV, 18°)

Arrival direction reconstruction

t _i =	$=\frac{d_{i}}{\cos\psi}+\frac{r_{i}}{\sin\psi}-\frac{\cos\psi}{(\cot^{2}\psi-1)}\times$	
	$\begin{cases} r_{\rm i} \cot^3 \psi - \sqrt{a^2 \cot^4 \psi + r_{\rm i}^2 \cot^2} \end{cases}$	$\psi - a^2$
	$d_{\rm i} = d_0 - lx_{\rm i} - my_{\rm i},$,
	$r_{\rm i} = \sqrt{D_{\rm i}^2 - \left(d_{\rm i} - d_{\rm c}\right)^2} - \frac{d_{\rm i}}{\cot\psi},$	
	$D_{\rm i} = \sqrt{(x_{\rm c} - x_{\rm i})^2 + (y_{\rm c} - y_{\rm i})^2},$	
	· · · · · · · · · · · · · · · · · · ·	

*Outliers outside 6 ns removed.

ALTO

Examples of time profiles

log10(TEnergy)=2.6-2.8

ALTO

Examples of time profiles

log10(TEnergy)=3-3.2

ALTO

Examples of time profiles

log10(TEnergy)=4-4.2

ALTO Waveforms

Reduction in waveform sampling for lower dead-time & read-out data rate

- Waveform sampling step:
 - Initially with 0.5ns, max of cell
 - (checked also time reaching threshold)
- Lowered based response for
 - Shower core reconstruction accuracy
 - Arrival direction accuracy
- Interpolation to max based on 3 cells

- Checked at various energies
 - With minimum number of WCDs
 - Ndet_water >= 20
 - With condition fitted core is <60m from array centre
 - Otherwise, reconstruction is bad
 - Results, illustrated in next slides
 - No effect on core reconstruction
 - Slight effect on direction accuracy
- \rightarrow we choose to use 2.5ns sampling

Energy	1	TeV	10	TeV
Sampling	0.5ns	2.5ns	0.5ns	2.5ns
Core accuracy	5.5m	5.5m	0.9m	1.0m
Direction accuracy	0.7°	0.7°	0.175°	0.20°

Reduction in waveform sampling for lower dead-time & read-out data rate

1 TeV gamma showers (Zenith=18°, RCore<60m)

Core position accuracy

Arrival direction accuracy

Reduction in waveform sampling for lower dead-time & read-out data rate

10 TeV gamma showers (Zenith=18°, RCore<60m)

Core position accuracy

Arrival direction accuracy

ALTO Analysis

Parameters used or developed for ALTO

- **9 parameters** chosen from a wider list of tested ones. These parameters:
- have distributions which differ between proton and gamma events
- don't show a strong (anti-)correlation with others
- are not ranked lowest in the BDT analysis in all the bins (i.e. used often in nodes)

• Parameters:

- Charge Residual RMS and mean,
 - from charge Observed Expected (from NKG fit) in triggered WCDs
- **Compactness**: ratio of total number of WCDs triggered to the max. charge 20m beyond reconstructed core in shower plane
- Parameters from the Hillas fit on the :
 - Reconstructed Length of Hillas Ellipse
 - Hillas Ellipse Ratio: expected charges in the Hillas ellipse for all WCDs to that in the Hillas ellipse for triggered WCDs
- Radial density: ratio of # WCDs triggered to the sum of the products of {charge by distance} beyond 10 m.
- Parameters involving information from the scintillators:
 - **SCMdist**: The distance between the reconstructed core position and Centroid of triggered scintillators in the shower plane
 - WCD/SD number ratio: # scintillator tanks triggered to the # WCDs triggered.
 - WCD/SD charge ratio: total charge seen in scintillators to the total charge seen in WCDs.

ALTO Pre-cuts

- ALTO
- Some of these parameters are used for "Pre-cuts" to remove badly reconstructed events, essentially high impact parameters beyond array edge
- Precuts foreseen for AGN-observations:
 - N_Det >= 5
 - log₁₀(err_RSize/RSize) < 0
 - (aka, low energy cut / Rsize cut)
 - $\log_{10}(\text{RrM})/(-1.075*\log_{10}(\text{MaxExpRadius})+3.53) < 1$
 - (aka, high energy cut / RrM cut)
 - CAVEAT: The precuts values applied here were developed for an earlier reconstruction → Re-optimization needed
- Precuts foreseen monitoring purposes, N_Det >= 3
- Precuts forseen for Galactic sources,
 - All the above AGN cuts
 - NDet_water few tens of WCDs (TBD)

ALTO Pre-cuts Effect

For Gammas

32

ALTO Pre-cuts Effect

For Protons

ALTO Analysis bins

- Sample divided into 4 increasing RSize ranges (bins)
 - Independent analysis developed for each bin (using MVA-BDT)
 - For each, a gamma efficiency was required
 - Training applied gave the proton efficiency shown.

Bin No. ≑	RSize limit (Number of events trained)	True Energy Mean (in GeV)	Gamma Efficiency	Proton Efficiency
1	1.00 - 3.78 (31605)	343	0.4	0.130
2	3.78 - 4.08 (31208)	729	0.6	0.110
3	4.08 - 4.40 (28351)	1273	0.8	0.099
4	4.40 - 7.00 (26803)	4874	0.9	0.039

Parameters used or developed for ALTO

Distributions for 4 bins in RSize, (low to high \rightarrow worst to best

ALTO

1.5 2 2.5

Multi-Variate Analysis – Boosted Decision Trees

- The Decision Trees based on sequence of binary conditions on discriminating variables. Final leaves labelled Signal or Background
- Boosting by re-weighting events to form many trees, which can then be pruned to give best results
- ROOTs MVA-BDT software provides many features
 - e.g. check of the correlations between parameters
 - See result for bin4 in RSize (after removal of highly (anti-) correlated params):

Linnæus University

37 🏅

ALTO Results from Simulations, Reconstruction, Analysis

• Application of BDT to full set of Monte Carlos

• Application of BDT to full set of Monte Carlos

Linnæus University

41 🎙

- (Two asides)
 - What counts for the sensitivity plot is the **bias in E**_{reco}
 - 68% containment of error around E_{True} , used by CTA, nicely combines bias and sigma

- PSF
 - Determining cut for 68% containment of Gammas

• **Sensitivity** for 1yr live-time on a source at 18°:

• CAVEATs:

- High-energy response will be improved when using pre-cuts adapted to reconstruction
- Further improvements overall expected now that the chain is complete

ALTO

- ALTO simulations and Analysis now quite mature
 - · We have a complete and detailed simulation of a realizable detector
 - We have completed the full chain up to the sensitivity curves
 - · Many parameters developed and tested
 - MVA- BDT machinery in place and working
 - \rightarrow Now, some time for optimizations based on full chain
 - Note: we are not convinced on the validity of the "strawman" approach
 - Even if it helps to estimate performance of different array types relatively
 - \rightarrow Need full realistic simulations and a complete reconstruction / analysis chain
- ALTO planned publication(s) before the EOY on this basis
 - Including the response at different Zenith angles, and to a "moving source"
 - Background work on gain given by the use of the Scintillator layer muon tagging
 - Effect of "cluster trigger", versus no cluster trigger
- Future steps
 - Extend detector by either/both:
 - Outrigger clusters, clearly will improve for a slightly increased cost
 - Graded array, with more distant clusters further away
 → possibly overall improvement for similar cost
- Status of the project with further information can be found at the website:
 - → http://alto-gamma-ray-observatory.org/
- For enquiries about the project, please contact yvonne.becherini@lnu.se

