CMS Status

Journées LCG-France Mathew Nguyen 20-07-2018

Outline

Talk is roughly time ordered:

- Challenges faced in 2017
- Developments for 2018
- Status of 2018 so far
- (Limited) information about the future

Primary sources:
Offline & computing week, 9 – 13 April
CMS week, 16 – 20 April
NB: Next week is CMS week, so information may soon be out of date

2017 data taking

- 2017 was a full LHC "production" year
- Instantaneous luminosity of 2 x 10³⁴ cm⁻² s⁻¹, 2x design
- CMS faced a couple of major challenges:
 - 1. Installation of new pixel detector and subsequent failures
 - 2. Computing resources stretched to maximum

Detector challenge: DCDC converters

- Pixel detector replaced during 2016 2017 EYETS
- Towards end of the year started to lose channels during power cycle
- Failures come from "DCDC converters" used to power detector
- Had to replace 1st layer of pixels along w/ DCDC converters in 2018.
- Luckily, investigations show only a modest impact on performance
- Problem is now finally understood and mitigations steps are in place

Computing challenge: T0→T1 x-fers

- Phase change after TS2 (mid-Sept), w/ higher than expected pile-up
- Enormous pressure placed on transfer of data from T0 to T1s
 - o 3 GB/s T0 output
 - Up to 10 PB / week (70 PB total)
- Spike in data volume + chronic under-pledging of CMS T1s
 - → disk constantly at quota, requiring lots of manual intervention

Full resource utilization

- Starting from xmas 2017, HLT (50k cores) enabled as a production resource (important test for 2019+ operations)
- During EYETS routinely reached a record 200k cores
 - 90% of 2017 data processed by January 1st
 - > 10B 2017 MC events + 1 B early 2018 MC + phase II MC
- More than 70 B events processed in 18 months

Special runs

No heavy-ion run in 2017, but:

- XeXe pilot run in Oct
- pp "reference run": HLT rate increased from 1 kHz to 35 kHz, recording 4PB of data.
 Large backlog of transfers from disk to tape
- Low energy, high beta* run

The mystery of CMS CPU inefficiency

A task force was formed to investigate growing CPU inefficiency vs. time w.r.t. ATLAS

Performance improvements related to 1)

CMS software is fully multi-threaded

- → expect reduced CPU efficiency in exchange for reduced memory.
- → Not sufficient to explain inefficiency

Inefficiency considered into two pieces

- 1) Submission infrastructure
- 2) Job-level, i.e., "payload" inefficiency
- A number of improvements were made to grid submission to better handle fluctuating job pressure
- Residual inefficiency mostly on payload side. Major source is multithread jobs executing external (typically Fortran) code.

2018: Another production year

Integrated luminosity goal from LHC

https://indico.cern.ch/event/705545/attachments/1613081/2562222/ Chamonix Summary Fk Bordry 7 March 2018.pdf

But even more demanding than 2017

- Larger data volume
- Large trigger rate proposals for special runs (heavy-ions, low PU)
- "Parking" of data for b-physics, i.e., not reconstructed until LS2

A better CMS in 2018

- Tracker detector reinstalled
 - Failed DCDC converters replaced
 - 75% of barrel pixel modules replaced
 - o Reconditioned and in stable operation with 97% active channels
- Phase I HCAL upgrade completed
 - HPDs replaced by SiPMs for higher photo-detection efficiency
 - Removed source of coherent noise
 - Increased longitudinal segmentation (2-3 → 6-7 readout depths)

Also, a better T0 for CMS

- T0 migration from a dedicated infrastructure to a shared one
 - With the CERN-T2, and with ATLAS!
 - Enabled by switch from OpenStack to HTCondor
- Much easier on CMS side to use CERN resources
 - T0 & T2 jobs are running on the same machines, driven by priority
 - No need to partition EOS space into distinct areas: T0 buffer can be enlarged at the expenses of Analysis Space
 - All together, a system which is easier to steer, also at the last second

Addressing T0→T1 bottleneck

- System tests conducted in March-April
- Results will be used to map datasets to T1s
- For CCIN2P3, 100 Gb connection will help (but only after this year)

	WAN bandwidth (Gbps)
DE_KIT	20, VO shared
ES_PIC	
FR_CCIN2P3	20→100 (end 2018), VO shared
IT_CNAF	60→2×100 (when?), VO shared
RU_JINR	10
UK_RAL	30→100 (soon)
US_FNAL	100

CRAB developments

- CRAB is the CMS user interface to the grid ("CMS Remote Analysis Builder")
- For tape-resident datasets, now automatically requests staging (w/ some protections)
- Now splits jobs automatically to reduce running many small jobs, which are dominated by initialization time

2018 data so far

Almost two weeks ahead of the prediction

CMS taking data efficiency ~ 95%

CMS Integrated Luminosity, pp, 2018, $\sqrt{s}=$ 13 TeV

Current status

- Now in the first Machine Development week
- Then a short Technical Stop
- Followed by the VdM scan and β* 90m run

Recent physics news (LHCP)

Observation of ttH production

Observation of $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states

PRL 120, 231801 (2018)
Data collected <= 2016

arXiv:1805.11192 Includes data from 2017

Data format evolution

Mini-AOD

- Size: ~ 40 kB per event
- Stable definition,
 produced ~ 2x per year
- Widely used for analysis, increasingly used for upgrades

Nano-AOD

- o Size: ~ 1 kB per event!
- > Entire Run 2 = 50 TB!
- Commissioning in 2018, targeting 50% usage
- Potential game changer for longterm computing needs

LS2 plans

- Detector work
 - Pixel layer 1 and DCDC replacement
 - Muon CSC and GEM upgrades
 - 0 ...
- Analysis of 150 fb⁻¹ legacy dataset
- HL-LHC will increasingly compete for resources
 - Several TDRs still to done
 - Possible there will be a computing TDR

Computing during LS2

Preliminary!

2019 resources

- Primary task: full reprocessing of Run 2 data and MC (60 B events)
- HLT heavily utilized in model
- T0 assumed to be 100% available
- No major changes wrt 2018, except parked data reconstruction
- Compensated by aggressive disk and tape cleaning

Initial thoughts on 2020

- Tail of Run 2 legacy production
- o Peak of Run 2 analysis
- Run 3 MC production, including detector commissioning
- Continued HL-HLC MC for TDRs

Long-term projections

U.S. CMS asked to estimate long-term computing needs, including HL-LHC era Currently using a naïve extrapolation, mostly illustrates scale of the problem Does not incorporate technological improvements, or proposed data-format evolution Of course the main driver of resources is the trigger rate

Pledge flexibility

- Computing needs are variable, hitting peaks, e.g., during a reprocessing campaign
- Certain resources intrinsically variable
 - o Opportunistic resources, e.g, Open Science Grid
 - Commercial clouds
 - Non-HEP supercomputing sites
- On-going reflection towards adapting the pledge system to dynamic resources
- Expect WLCG to receive a proposal from CMS along these lines

Summary

- 2017 was a record year in terms of data taking, but several challenges had to be overcome
 - Issues w/ pixel detector
 - Throughput from T0 to T1
- Lessons were learned for 2018. So far off to a good start, but we continue to find ways to push the envelope
 - Reconfiguration of T0
 - Improvements to CPU efficiency / job submission infrastructure
 - Introduction of ultra-compact data-tier
- Planning is becoming concrete for LS2. Will be intense despite the lack of new data.