

Software & Computing status

L. Poggioli, LAL

- Finalizing Run-2
- -Preparing Run-3
- Towards HL-LHC

Based on

- Various S&C weeks
- HSF/WLCG in Naples March
- Tokyo ATLAS week June
- preGDB on networking 2017

Finalizing Run-2

2018 Operations

- \cdot TC
 - Since April +20% resource
 - 23k slots, 4GB/slot
 - Used by Grid if no TO jobs
- Resource
 - Constant > 300-350k slots
 - Use HLT farm when no run
- Data
 - 2.5B events in AOD
 - 5B events simulated in 2018
 - Moving >1PB, >20GB/s, 2M files/day. Delete 10pB/wk
 - Automatization (replication, preplacement, balancing)

Extra resource (1)

- General effort to handle heterogeneous resource
 - Harvester under development (common interface for ALL type of resource)
 - Event Service allows to work at event level (simulation). Also for sites (local cluster/T3)

Extra Resource (2)

- · Cloud
 - Stable but no real increase
 - Cost gain wrt grid? Manpower?
- · ATLAS@Home: Increasing
 - Free!!
 - Used to backfill sites and optimize CPU usability
- · HPC
 - Not 'free' at prod scale
 - HPC HS06 ~ 1/10 Grid HS06
 - Test by CC@IDRIS. OK but 2.5k/10k slots max

2018: BOINC 11kslots, 3rd site for Simulation

Disk space handling (2018 &LS2)

- Disk space tight
 - Adding 2-3pB/week
 - Priority to dAOD
 - Old AOD&HITS deleted
- Actions
 - FastSim HITS deleted
 - Run Lifetime models
 - AOD compression (LZMA)
- Pledged disk 160pB
 - Primary cannot be deleted
 - Secondary can be deleted if needed

LCG-FR,20/06/2018

_UC

Distributed Analysis (1)

- Run-2 model successful
 - Still too long to reprocess all data
 - Analysis jobs tails
- AOD production for 2018 data
 - Running smoothly
 - Small CPU impact from AOD compression (LZMA)
- 2018
 - 27 trains, 84 derivations
 - dAOD still too big!

CP

Skimmed/slimmed

common analysis

Athena-based analysis

Distributed Analysis (2)

Fraction of distributed analysis jobs vs. time

Typical analysis GRID usage over last 3 months

- Most Grid jobs (60% WT) use dAOD (&AOD)
 as inputs. In agreement with Train model
- 40% WT used by private Simu, Reco & Evgen (incl. Toy MC)

T2/T3 Consolidation

- 2010: All sites required to have storage
- 2016: smallest 50% sites ~ 10% storage
 - Operations heavy for sites and ADC
- Sites w/ small storage: invest in CPU wrt disk
 - Cutoff is 440 TB (0.5% total T2s storage)
 - With +10-15% increase/year (follow flat budget)
- 2018: smallest 40% sites ~ 10% storage
 - Decommissioning in progress (diskless sites)
- Future: decouple storage and CPU
 - "Data lake" model

Distributed Computing status

- Harvester software to interface various platforms
 - eg HPCs: more homogeneity & automation
 - Possible use beyond ATLAS
- Data carousel mode of operation with tapes
 - R&D started to use tapes more efficiently
 - Inputs can be processed asap
 - Processed inputs eviction asap
 - Overall number of copies on disk < 1
- Data management
 - Rucio workshop: Interest samong other experiments (eg CMS)

R&D projects

- Google Ocean: Use Google CPU & storage
 - User analysis
 - · Store analysis copies output for user access & serves as cache
 - Data placement, replication & popularity
 - · Store final derivation of MC and repro data
 - · Google Network to make data available globally
 - Data streaming
 - Evaluate necessary compute for generation of sub-file products (branches/events from ROOT files)
- CSCS (3rd biggest HPC, Switzerland)
 - Evaluate TO spillover & HLT reprocessing
 - Actions (with HL-LHC challenges in view)
 - Port ATLAS code to GPUs (eg HLT code), and machine learning (ML) apps and tracking algorithms
 - · Pioneering EOS evaluation at CSCS w/ CERN & ATLAS

LCG-FR,20/06/2018 Luc

Lines of effort

- Software
 - Leverage additional resources (HPC, Boinc, ...)
 - Improve software and efficiency (SPOT group)
 - Run less full-simulation (and more fast sim)
 - Promote support for software development
- Workflow
 - T1s continue to exercise and improve perf. of DAOD production from tape inputs
 - Harvester, Event service (ES), Overlay (pileup handling),
 - New: Event Streaming service (ESS)
 - · What ES is to computing, ESS is to input data transfer
- Computing Model
 - Nucleus/satellites model
- T2/T3 consolidation

Network: end of Run-2

- 1PB transferred/day@10 GB/s (peak at 20)
- LHCOPN

• Saturation CERN to T1 for some T1s (e.g. RAL) .OK for

Transfer Throughput

end Run-2

- LHCONE

 OK w/ > 10Gb/s for end Run-2

- Remarks

- Use dynamic Data Distribution & job brokerage based on Networking (Perfsonar not integrated enough into DDM)
- Use Network matrix (closeness) to optimize job brokering

Preparing Run-3

Pledges 2019 (prel.)

- C-RSG April: No changes to 2019 requests Oct->now
- Preliminary questions from C-RSG
 - Coping w/ +20% lumi, mcore eff., tape usage, TO spillover impact to grid, tape based workflows (prestaging 'data carousel')

Luc

Preliminary pledges as presented at April C-RSG

	2018 (k)	2019 (k)	Delta (%)
T0 CPU	411	411	0
T0 Disk	26	27	4
T0 Tape	94	94	0
T1 CPU	949	1057	11
T1 Disk	72	88	22
T1 Tape	195	221	13
T2 CPU	1160	1292	11
T2 Disk	88	108	23

LCG-FR,20/06/2018

- Modest increase
- Disk @ T1&T2Slightly high but
- Tape
 - Occupancy below pledges

essential wrt Model

- To catch up in 2018/2019
- Not approved yet!

1

Run-3 scenario (prel.)

- · Run-2
 - In 2018: 2×10^{34} , $\langle \mu \rangle \sim 39$ expect 50fb^{-1}
 - Total ~ 150fb-1
- Run-3
 - 3 years 2021 (shorter), 2022, 2023
 - $\langle \mu \rangle \sim 60-80 \ 3.5 \times 10^{34} \ \text{expect} > 200-300 \text{fb}^{-1}$
 - Trigger rate stays at 1kHz
- · A priori
 - Assumption resources will be 1.5x(resources in 2018) Consistent with flat budget
 - Remember in 2017: +50% data <-> +20% resource

Software for Run-3

- AthenaMT: Move towards a multithreaded framework to use modern architectures
- FastCaloSim: High priority for ATLAS
- Add new detectors to simulation and reconstruction (NSW)
- ACTS (A Common Tracking Software) for tracking. Streamlined ATLAS software, MT by construction. Recommendation to use some ACTS at end of June
- Severe lack of developers 15FTEs missing!!

Progress on simulation(1)

- Validation ongoing but manpower is short!
- Full simulation
 - Dominates CPU usage (45% T)
 - Adds systematic to physics studies (eg VHbb)

FastSimulation

- Uses FastCaloSim (version 2)

73% G4 spent in calorimeters

Use param'zed shower response

- · As fast as V1 &more accurate
- Physics validation underway

- Gain O(100) wrt G4 full simulation

Progress on simulation (2)

Pileup handling

- Standard (hits merging), Data event overlay, MC event overlay
- Overlay are less CPU&IO requiring but put higher constrainst on Condition Databases

FastChain

- After calorimeter biggest CPU usage is Tracker
- FATRAS: Simulation in Tracker (simpler Geometry & interactions with material model)
- Fast digitization algorithm for Inner Tracker
- Reconstruction uses truth-based pattern recog.

- Analysis for Run-3
 Run 2 model very successful
 - Many derived AOD (DAOD) formats O(100)
 - AOD use 55 PB of disk / DAOD use 52 PB of disk
- Two task forces for AOD & DAOD
 - Reduced overall size-#versions used-Smaller evt sizes?
- Scrutiny group at last RRB
 - ATLAS uses more disk than CMS. Difference is growing
 - Encouraged to look into smaller data formats
- · Run 3 Analysis Model Study Group
 - Run-3: More MC (FastSim), Bigger evts (μ), Same #data
 - Reduce disk use by at least 30% for same sample sizes
 - -> AOD, DAOD smaller, store less formats/evt, better tape usage

LCG-FR.20/06/2018 Luc

Network: Run-3

- Data growth faster than disk (under flat budget): -> smaller #replicas, -> more network usage
- Already exploiting federated storage & remote access. Sites need to dimension to handle remote data access. Expect 10-20% (today 5%)
- Remarks
 - · Up to now not needed to pledge netwk resource since sites able to properly dimension disk/cpu/network
 - Today for most countries, 10-100Gb/s from NREN
 - ATLAS would profit of big storage sites with 100Gb/s (target) which will be able to run all the workflows
- Next
 - Event Streaming Service (minimize load on network)
- · More tape usage to store & reread more often -> more LCG-FR,20/06/2018 caches, and more network bandwidth (x2?)

Towards HL-LHC

Towards HL-LHC: Challenges

Inputs

- Trigger rate 10kHz. Increase total evt numbers
- $\langle \mu \rangle$ ~200. Increase in CPU & storage needs (time in Reco, bigger evts)

- Today

- X 3 missing in CPU. Seems affordable (many ideas)
 - R&D inside HSF, Accelerators (GPU, FPGA), Extra-resources (HPC, R&D with Google,...)
 - FastSim, Detecor layout, Machine Learning
- X 7 missing in storage critical (less solutions available)
- HSF well established, WLCG strategy doc. available
- R&D areas
 - Data Organisation and Management Access (DOMA)
- Software upgrade, HSF technical forum

Possible gains for storage

- Disk usage today: ½ AOD, ½ dAOD, and ½ others
 - Others: samples mostly on tape, rotating onto disk cache when needed for processing (e.g. simu hits)
- · -> Extend tape carousel to AOD & ultimately dAOD
 - Also Possible: Make AODs 10x smaller à la CMS, Streamline some physics analyses
- Difficult
 - Tape means delay, delicate workflows handling, but
 (d)AOD workflows time critical and very complex already
 - Tape is a geographically limited resource at T1s, while processing resources are much more widely distributed
- Limitation of # replicas
- >=1 replicas on disk today, -> dynamic, managed availability of actively used data via Data Lake, replica count <<1

Summary

- · ATLAS S&C in very good shape!
 - Now able to focus on refinements, performance, and look to future with R&D
- ATLAS should be front and center in common R&D (inside HSF community)
- Run-3 a priori OK within flat budget. Key issue is software: AthenaMT & FastSim
- · HL-LHC
 - Trend lines are good in CPU (constant progress)
 - Plans in storage to be quantified (today critical)
 - R&D, 'Data lake' model, non-flat budget?