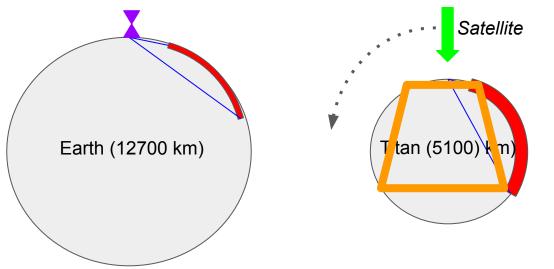

Low OrBit Survey Titan Energetic Radio array (LOBSTER)

Filip, Raphael, Tomas*2, David

Scientific Aims

- Significant interest in ultra-high energy (UHE) cosmic rays and neutrinos
 - GRAND (mountain target with 200k radio array)
 - POEMMA (Cherenkov radiation from space)
 - ARA-37 & ARIANNA (in-ice radio detectors)
 - ANITA (balloon-borne radio detectors)
- Study cosmogenic UHE neutrino flux in PeV EeV range
 - Partially unprobed energy range with 100 1000 times higher flux
 - Obtain full-sky map
- Determining the source of acceleration of highest energy cosmic rays (above the 'ankle')
- UHE neutrino transient sources
- Search for steady point sources of UHE neutrinos


Principle

- High energy neutrinos interact in rock producing tau particles
- Tau particles interact with atmosphere create extensive air showers
- Shower particles gyrate around (e.g. Earth's) magnetic field and produce synchrotron emission
- Emission can be detected at radio frequencies

Placement of antennae on Titan

- Distance traveled in rock for neutrino interaction to produce tau
 - 100-1000 km for Earth (GRAND)
 - Scales to 140-1400 km for Titan mean density (1.88 g/cm3 compared with 2.26 g/cm3 for Earth rock GRAND)
- Titan parameters
 - Atmospheric density: 4.4 that of Earth's, so air shower will be produced
 - Magnetic field of Saturn at Titan is 0.001 G (comparable to 0.01 G of Earth)

- Flux x100 per satellite unit
- 100-1800 events/year (at EeV energy)
- No atmospheric CR and neutrinos

General design

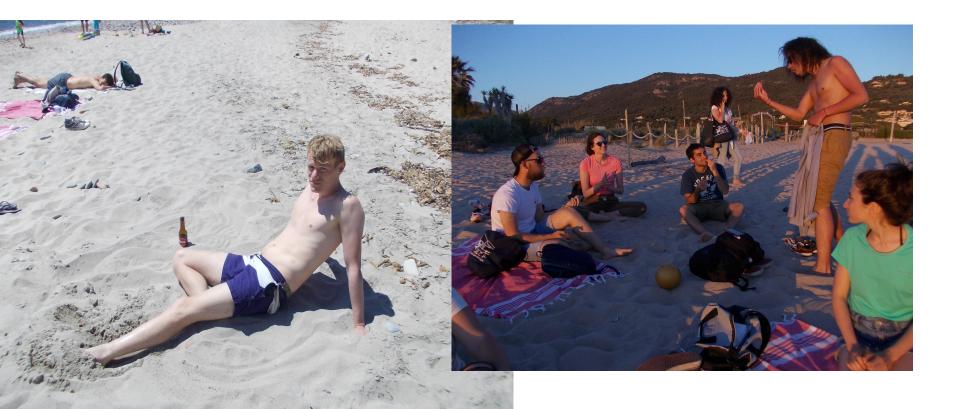
- MotherLobster with computation node and accurate atomic clock
- Array of antennae deployed in two low Titan orbits (300 km, 310 km)
- Frequency range: 5-80 MHz
- Detailed Monte Carlo required for optimal array layout
- Open observatory; for a better worldTM

Improvement on current and proposed facilities

- Neutrino flux
 - Increase neutrino detections by a factor of 100 1000
- Atmospheric background
 - Major problem with ground-based neutrino detectors is the flux of atmospheric neutrinos
 - Antennae in space significantly reduce this problem
- Sky coverage
 - GRAND has very limited sky coverage
 - LOBSTER will survey entire sky
- Efficient collective area

Secondary science aims

- Radio studies of Saturn and its moons
 - Mapping exoweather via lightning detection
- Use LOBSTER as a radio relay device
- Timekeeping needed for accurate timestamps also allows for studies of celestial mechanics over large stretches of time very accurately
 - Orbits of Titan and Saturn
 - Tests of gravity in the weak regime


Budget estimates

- Pre-launch development:
 - 1000 antennae (source: GRAND): 100 M
 - Solar panels + 10 Uranium batteries for electronics: 50 M
- Launch vehicle and launch services: 502 M (source: Cassini)
- Tracking: 50M (source: Cassini)
- Mission operations for 10-year lifetime: 198 M
- Total: 900M

• Second possibility: Piggyback

Thank you for your attention

