Multidimensional Simulations of Pair Instability Supernovae Explosions

Th.

Nina Smirnova

PhD student in Annecy-le-Vieux, France

Collaborators: Chardonnet P., Chechetkin V.

Massive stars

$\gamma+\gamma=e^++e^-$ - Pair Instability

* Outcome most sensitive to helium core mass

Pair-instability may be infrequent in solar metallicity stars

* Happens at high entropy (low density at a given T) and thus in the most massive stars.

The Key point: the thermal instability

The rate of reactions are very sensitive with T: the rates increase rapidly with T

Above some critical temperature where the nuclear energy released overcomes the energy losses, self acceleration of nuclear reaction is possible $\dot{E}_{nuc}(\rho, T) \neq \dot{E}_{\nu}(\rho, T) + div(\kappa \nabla T)$

Physical models in simulation

Nuclear reactions

Neutrino losses

Hydrodynamics 1D/2D/3D

Stellar EOS

Self-gravity

4/14

Our codes for PISN Simulations

Initial configuration

Presupernova configuration from 1D code Baranov et al.(2013)

Polytropic model with $\gamma = 4/3$

100% Oxygen core. No envelope!

TABLE 4.1: Pre-supernova models and parameters of explosion.						
Model	$M_{\rm tot}$	$E_{\rm bind}$	ρ_c	$T_{\rm max}$	$E_{\rm nuc}$	Fate
	$[M_\odot]$	$[10^{51}~{\rm erg}]$	$[10^5~{\rm g/cc}]$	$[10^9~{\rm K}]$	$[10^{51}~{\rm erg}]$	
95(1)	95	-4.93	1.50			CC
95(2)	95	-2.41	2.40		_	CC
95(3)	95	-1.61	2.60	4.39	39.9	PISN
95(4)	95	-1.11	2.80	4.31	37.1	PISN
95(5)	95	-0.63	3.00	4.20	35.0	PISN
100(1)	100	-2.43	2.00			$\mathbf{C}\mathbf{C}$
100(2)	100	-1.12	2.50	4.56	44.7	PISN
100(3)	100	-0.69	2.65	4.32	41.5	PISN

Envelope of He and H

Oxygen core

PISN explosion simulation (central ignition)

PISN model with central ignition for t = 28s. Logarithm of density (on the left plot) is shown in units of $\rho_c = 2.65 \times 10^5 g/cm^3$. Temperature (on the right plot) is shown in units of $T_c = 2.36 \times 10^9 K$. Grid $148 \times 148 \times 148$

2D Simulation with PPML code

PISN model with central ignition(a) for t = 28s. Logarithm of density (a) is shown in units of $\rho_c = 2.65 \times 10^5 g/cm^3$. Temperature (b) is shown in units of $T_c = 2.36 \times 10^9 K$. Grid $1024 \times 1024 \times 1024$

NEW PARADIGM: MULTICORE EXPLOSION

 Nuclear burning could cause the development of large-scale convection (Arnett 2011)

if convection occurs prior the moment of pair instability the contraction and explosion could be non symmetrical.

- Inhomogeneities in *T* and *ρ* could cause ignition of spots to occur in the core.
- ► Explosion in the simulation was set by 21 ignition points, which were distributed randomly. Total energy inserted is 5 × 10⁵² erg

PISN explosion simulation (multicore ignition)

PISN model with multicore ignition for t = 28s. Logarithm of density (right plot) is shown in units of $\rho_c = 2.65 \times 10^5 g/cm^3$. Temperature (left plot) is shown in units of $T_c = 2.36 \times 10^9 K$.

3D Simulation of PISN

PISN with $100M_{\odot}$ with multicore ignition for t = 28s after beginning of explosion. Density is shown in g/cm^3 .

3D Simulation of PISN

PISN with $100M_{\odot}$ with multicore ignition for t = 28s after beginning of explosion. Temperature is shown in units of keV ($1keV = 1.16 \times 10^7 K$).

IN VERY CLOSE FUTURE...

• Add into 3D code MARPLE Stellar EOS (in a progress).

• Simulate symmetrical and asymmetrical explosions in 3D with all physics included for different initial configurations of star (mass, rotation, central temperature and density).

• Compare a prediction of the elements abundance produced during core explosion.

• Build a light curves for PISN.

Thank you

for your attention!

2D Simulation of PISN with $100 \ensuremath{M_{\odot}}$ with multicore ignition .