

A global model of the magneto-rotational instability in proto-neutron stars

Alexis Reboul-Salze¹

J. Guilet 1 , R. Raynaud 1 , M. Bugli 1

1 : AIM, CEA Paris-Saclay

Motivation : Magnetars

 $P - \dot{P}$ diagram See Marta Burgay's talk and Diego Gotz's talk

- Radio Observations
- Hard X-Ray and Soft Gamma observations
 - -> Anomalous X-Ray Pulsar
 - -> Soft Gamma Repeater

How to measure the B field -> Period + Spin down measurement

$$B_{dip} = 10^{14} \left(\frac{P}{5\ s}\right)^{\frac{1}{2}} \left(\frac{\dot{P}}{10^{-11}\ s\ s^{-1}}\right)^{\frac{1}{2}} \text{ G}$$

• Dipolar magnetic field strength of magnetars :

->
$$B_{magnetar} \approx 10^{14} - 10^{15} G$$

Neutron star formation

Neutron star formation

Neutron star formation

Supernova observations

Outstanding explosions : millisecond magnetars ?

Kinetic energy of the explosion

→ Classic Supernova 10⁵¹ ergs→ Hypernova (rare) (<1 %) 10⁵² ergs

 \rightarrow Super-Luminous Supernova (<0.1%)

Luminosity of the supernova :

 \rightarrow Classic Supernova

10⁴⁹ ergs 10⁵¹ ergs

Supernova observations

Supernova observations

Compression of stellar field in core collapse supernovæ : <10¹²-10¹³ G (?)

Magnetic field of NS before merger : 10⁸-10¹² G

Magnetar <u>dipolar</u> strength : ~ 10¹⁴-10¹⁵ G

Amplification mechanism ?

Magnetorotational instability

Both SN & mergers

Similar to accretion disks

Convective dynamo

Both SN & mergers

Similar to planetary & stellar dynamos

I- Presentation of the local models of the MRI

II- A global model of the MRI

III- Preliminary parameter study

Amplification mechanism : magneto-rotational instability (MRI)

MRI mechanism in a simple case :

Local models in accretion disks

Impact of conditions specific to neutron stars?

- \rightarrow neutrinos
- \rightarrow buoyancy (entropy & composition gradients)
- \rightarrow spherical geometry

Guilet et al. 2015

→ Guilet & Müller 2015

Magnetic field amplification in local models

Two regimes : Focus on the viscous regime 10000 growth rate (s⁻¹) 1000 100 ideal viscous 10 **MRI** MRI 10¹⁴ 10¹² **10**¹³ 10¹⁵ 10¹¹ B (Gauss) Guilet et al. (2015), Guilet et al. (2017) Slow growth for weak initial magnetic field

Neutrino Impact

Buoyancy impact Stable stratification

First attempt at a global model

Mösta et al 2015

- First time high enough resolution
- Initial strong dipolar field
- High computational costs

II- A global model of the MRI in a PNS

Our setup

- Simplest model : Incompressible $\rightarrow N_r = 256$, $N_{theta} = 512$, $N_{phi} = 1024$
- Initial velocity is fixed at the outer boundary
- Typical parameters values : $B_0 = 9 \times 10^{14}$, Pm = 16 and Re = 5000

 $\Omega = 10^3~{\rm s}^{-1},\,\nu = 8\cdot 10^{11}~{\rm cm}^2{\rm s}^{-1},\,\eta = 5\cdot 10^{10}~{\rm cm}^2{\rm s}^{-1},r = 25~{\rm km}$

Amplitude of the magnetic field

Results on the magnetic and dipole energies

III-Preliminary parameter study

Small impact of initial conditions and boundary conditions

Small impact of initial conditions and boundary conditions

Dipole strength depends on total magnetic field

Summary and perspectives

• Summary :

Magnetar-like magnetic field strength

A dipole is robustly generated by the small scales

• Perspectives :

Influence of diffusion processes —> Towards more realistic values in models

Add the buoyancy force (stable stratification)

Implement a realistic EoS

Interaction with a convective dynamo?

Sub-grid modelling of the MRI for Magneto-rotational Explosions ?

Conclusions

THANK YOU

ERC Magburst See Matteo Bugli's talk Step 1 : Local model of Step 2 : Global model Etape 3 : Hypernova the MRI Bucciantini+09 ~ 1-5 km ~ 10-50 km ~ 10⁵-10⁶ km Alexis Reboul-Salze & Jérôme Guilet Matteo Bugli Raphaël Raynaud (Convective dynamo)

Conclusions

THANK YOU