Supernova Group

PISCOLA: Python for Interactive Supernova Cosmology Lightcurve Analysis

Cosmic Explosions 2019
Cargèse, Corsica, France - June 2019

Tomás E. Müller Bravo
Mathew Smith and Mark Sullivan
t.e.muller-bravo@soton.ac.uk

Type la Supernovae

- Produced by White Dwarves (WD) in binary systems
- Lack of Hydrogen in the spectra at peak
- Mean $\mathrm{M}_{\mathrm{B}}{ }^{\text {max }} \sim$ - 19 mag $\left(\mathrm{L}_{\mathrm{SN}} \sim 10^{9}-10^{10} \mathrm{~L}_{\odot}\right)$
- "Low" peak absolute magnitude dispersion

SN 1994D
(HST image)

- Standardisable candles

SNe Ia as standardisable candles

Phillips (1993)

Kim et al. (1997)

Standardising SNe la

SNe Ia Cosmology

Dark Energy Survey (DES) Sample Abbott et al. (2018)

The future of SNe la Cosmology

Decrease statistical uncertainty

1
Wide Field Surveys
(ZTF, LSST, etc.)

Improve standardisation
\downarrow

PISCOLA: Python for Interactive Supernova Cosmology Light-curve Analysis

- Data driven
- Works with any band
- Written in Python v3
- Flexible and easy to use

- Good for exploration

Light-Curves Fits

Müller et al. (in prep.)

B-band Reconstruction

Müller et al. (in prep.)

Light-Curves Decomposition

Non-Negative Matrix Factorization (NMF)

Müller et al. (in prep.)

Summary

- The persistent presence of intrinsic dispersion after standardisation indicate latent unmodeled processes
- Gaussian Process proves to have several advantages over template driven fits
- With PISCOLA and NMF-like techniques we are going to have further understanding of the physics SNe la explosions, improving their standardision as well
- PISCOLA is open source: github.com/temuller

Southampton

Sketches of spectra from Carroll \& Ostlie, data attributed to Thomas Matheson of National Optical Astronomy Observatory.

sn2011fe2.png

Principle Component Analysis (PCA)

The principle components may represent the true building blocks of the objects in our dataset.

