Airborne Inter-Calibration of H.E.S.S. Telescopes

Jacques Muller • Cosmic Explosions 2019 • 27 May – 6 June 2019

Contents

Introduction

- Drone Measurements
- Other Advantages of Drone

Introduction

Gamma-Ray Astronomy

- Gamma-Ray: Photon (γ) with energy above 100keV
- Atmosphere = Calorimeter
- \rightarrow "atmospheric shower" of secondary particles
- Relativistic e⁻ / e⁺ in atmospheric showers emit Cherenkov radiation (γ emitted by charged particles faster than speed of light in medium)
- Background: Hadrons & e⁻ / e⁺ entering atmosphere
 - Hadrons: More irregular showers & might contain muon
 - e- / e+ (& hadrons): Reaching earth almost uniformly from all direction (due to turbulent galactic magnetic fields)

Cherenkov Telescopes

- Showers detected by large Cherenkov telescope arrays such as H.E.S.S., MAGIC & Veritas
- H.E.S.S. constituted of 4 small telescopes on square (CT1-4) and 1 big telescope in centre (CT5)
- Planned Cherenkov Telescope Array (CTA):
 > 100 telescopes over 2 sites

Jacques Muller • Airborne Inter-Calibration of H.E.S.S. Telescopes • Cosmic Explosions 2019 • 27 May – 6 June 2019

Inter-Calibration of Cherenkov Telescope

- Multiple telescopes \rightarrow cross-calibration necessary
- Currently: Atmospheric muons (single track)
 - Very similar spectrum than $\boldsymbol{\gamma}$
 - Ring shaped events
- Well enough for current arrays
- Future instruments such as CTA:
 - Higher precision
 - Multiple telescopes sensitive to different energies
 - \rightarrow Wavelength dependent effects
 - Not possible with muons as spectrum fixed (Cherenkov at low altitude)
- Solution: Drone with LED emitting pulses flying above telescope array
 - Calibrate telescopes by comparing images in camera of different telescopes
 - First inter-calibration of Cherenkov telescopes with single light source
 - cf. A.M. Brown, "On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform", Astroparticle Physics 97 (2018)

Drone Measurements

Jacques Muller • Airborne Inter-Calibration of H.E.S.S. Telescopes • Cosmic Explosions 2019 • 27 May – 6 June 2019

Event Selection

- Three types of events in data: Drone events, cosmic-ray events and muon rings
- Selection of drone events based on 2 criteria:
 - 3 or more telescopes triggered
 - Minimum image amplitude
- Less than 0.3% of events classified differently for 2 criteria → very consistent results, even though no big correlation in categories expected
- Worse separation with other possible selection variables

Position Determination of Drone

- Precise position crucial for intercalibration to work (*I* dependent on *d*)
- Direction w.r.t. each telescope: From pointing direction & centre of gravity of image in camera
- Drone at "intersection" (point with minimal sum of squared distances to the lines: χ² analytically minimized)
- Statistical uncertainty: 0.1m perpendicular to pointing direction & 0.65m in pointing direction

$\chi^2 = d(l_1, D)^2 + d(l_2, D)^2 + d(l_3, D)^2 + d(l_4, D)^2$

Inter-Calibration of Telescopes

- $I \propto \frac{1}{d^2}$ (Change due to atmospheric absorption negligible for small differences of d)
- Relative efficiency of telescope $i: \epsilon_i = \frac{(Id^2)_i}{\langle (Id^2)_i \rangle}$
- Statistical uncertainty from uncertainty on Id² in each telescope and uncertainty propagation
- Telescopes inter-calibrated within 4.1% (w.r.t to previous muon inter-calibration)
- Best consistency ever achieved with two methods without common uncertainties

	Telescope	Relative efficiency	Uncertainty on relative efficiency
	CT1	1.0288	0.0003
	CT2	0.9732	0.0003
S	CT3	1.0414	0.0004
	CT4	0.9567	0.0003

Other Advantages of Drone

Pointing Corrections

- Bending of telescope mast due to weight leads to mispointings of telescopes
- Mispointings lead to shift of position of image in camera
- Effect corrected for with pointing corrections derived from mechanical model of structure
- Can also be measured using residuals in triangulation of position determination
- Verify and ameliorate H.E.S.S. pointing corrections

Outlook

- Monitor lowest layers of atmosphere (absorption)
- Use drone for flatfielding (inter-calibration of the different pixels of a telescope) too
- In future campaigns:
 - Inclusion of CT5 to test real cross-calibration of different telescope types
 - Mount multiple LEDs emitting at different wavelengths on drone (Investigating wavelength dependency of inter-calibration)
- Further information:
 - A.M. Brown, "On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform", Astroparticle Physics 97 (2018)
 - H.E.S.S. source of the month of February: https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2019/02/

