

Population Prospects for Electromagnetic Counterparts to Neutron Star Mergers in the Gravitational Wave Era

R. Duque, F. Daigne & R. Mochkovitch

June 1st 2019 – Cosmic Explosions 2019

From GRB170817A to O3...

Afterglow, kilonova = great wealth of information!

- ✓ Localization
- ✓ External medium density
- \checkmark Jet kinetic energy
- ✓ Jet geometry
- $\checkmark\,$ Viewing angle
- ✓ Magnetic field
- ✓ And more!

3

From GRB170817A to 03...

Afterglow, kilonova = great wealth of information!

- ✓ Localization
- ✓ External medium density
- ✓ Jet kinetic energy
- ✓ Jet geometry
- ✓ Viewing angle
- ✓ Magnetic field
- ✓ And more!

O3 is here \rightarrow More GW with afterglow and kilonova!

A Real source image **DEC** [mas -23°22'53.38" DEC $\Delta RA[mas]$ 53.39" -53.40' 13h09m48.0695s 48.0690s 48.0685s 48.0680s 48.0675s RA

B

- Which kilonovae and afterglows to expect and what will they look like? •
- How will they help to study the evolution of NS binaries? •
- What insight will they bring on the **GRB jet structure**? •

Ghirlanda et al. 2018

Population model distributions:

Reference model:

Energy: BPL, break energy 2.10⁵² erg, slopes +0.5 and -2 (Ghirlanda et al. 2016)

(Detectable) Event rates for NS-NS

Uncertainties: +200% (intrinsic rate from LIGO-Virgo O2/O3) + uncertainty on population model

- In general: 10-30% events have detectable AG (depending on energy distribution)
- Large deviation from this = constraints on population!

Properties of joint events: viewing angle

+ Other distributions: distance, peak flux, proper motion, ...

- Most events seen off axis!
- Mean angle ~20-30°
- New insight on GRB physics
- → Jet geometry? Origin of lateral structure?
- → GRB dissipation mechanisms (thermal tail?)
- $\rightarrow \pm 10\%$ on axis (GRB!)

GW+GRB ~ 1-10% (O3) (Beniamini et al. 2018)

Binaries in high density media

- **Evidence found** for **fast-merging** binary population (*r*-process element abundance, sGRB rate vs. cosmic SFR, Galactic binary population)
- May be due to high eccentricity, efficient common envelope phase or Kozai-Lidov type mechanisms (Beniamini+2016)
- These merge in **high density** media producing **brighter AG** and are **more likely detected** ($F \sim n^{4/5}$)

Expectations for kilonovae

→ Finding the OT challenging!

Lanthanide-poor

Blue (low κ)

Conclusion

- O3 is here: **several** BNS events are expected, **a few** with **detectable** afterglow, **all with detectable KN**
- **Detectable** is not **detected!**
 - 1. Difficulty to find KN during O3...

2. Increasing difficulty of VLBI imagery (flux and apparent motion) with distance

- Most events are seen off-axis, allowing to probe the jet geometry and emission therein
- Only a few events are necessary to constrain the population of fastmerging binaries.
- **Now**: wait for events, and GRB prompt!

Determining viewing angle and density from multimessenger observations

12

Distance

AG Peak time

AG Peak flux

Remnant proper motion

Long run

Interpretation tools for observations of GRBs in the multimessenger context:

 Modeling of EM counterparts of CO fusions: sGRBs and afterglows

Context: observations by LIGO–Virgo (~2019)

2 Modeling of the general population of GRBs and afterglows

Context: present and future observations:

Swift, Fermi, INTEGRAL, SVOM

1: GRBs & CO fusions

- Distinguish NS-NS and BH-NS?
- Nature of final object? Link with ringdown signal?
- Systematic fusion/GW/sGRB/kilonova/afterglow association?
- GW/GRB delay?

2: General population of GRBs

Rates: (Wei, Cordier et al. 2017a):

- SVOM: 60-70 yr⁻¹
- Swift, Fermi, INTEGRAL: ~100 yr⁻¹
- Radiative processes in GRB (shocks/magnetic reconnection)?
- Ejecta magnetization?
- Other afterglow observables (polarization, imaging)?

Gamma-ray bursts

Paciesas et al. 1996

Gamma-ray bursts

