

PROGENITORS OF TYPE I SLSNe and GRBs

David R. Aguilera-Dena

In collaboration with Norbert Langer, Takashi Moriya & Abel Schootemeijer

Argelander-Institut für

JNIVFRSITAT

PROGENITORS OF TYPE I SLSNE & GRBS

SLSNe and GRBs have a lot in common!

- I. Endpoints of massive stars
- 2. Low metallicity environments
- 3. H and He free compact progenitors
- 4. Powered by a central engine
- 5. No well established progenitor mode

CHEMICALLY HOMOGENEOUS EVOLUTION AT $8M_{\odot}$

(Models from Aguilera-Dena, Langer, Moriya & Schootemeijer 2018)

CHEMICALLY HOMOGENEOUS EVOLUTION AT $8M_{\odot}$

(Models from Aguilera-Dena, Langer, Moriya & Schootemeijer 2018)

MASS LOSS, CONTRACTION & ROTATION

$$\tau_{\mathrm{KH},\nu} = \frac{GM^2}{R(L+L_{\nu})}$$

NEUTRINO MEDIATED CONTRACTION+ FAST ROTATION= MASS LOSS & DENSE CSM

(Aguilera-Dena, Langer, Moriya & Schootemeijer 2018)

TO BE, OR NOT TO BE (A MAGNETAR) . . .?

(Aguilera-Dena & Langer in prep.)

O'connor & Ott 2010, Ertl et al. 2016, Sukhbold & Woosley 2014, Ugliano et al. 2012, Muller et al. 2016 ...

PERIODS AND EJECTA MASSES

(Aguilera-Dena & Langer in prep., data from Nicholl et al. 2017)

MAGNETIC FIELDS

(Nicholl et al. 2017, Aguilera-Dena & Langer in prep.)

CONCLUSION

Rotating stars in low metallicity environments might have different evolutionary channels

They could lead to energetic transients like magnetar driven SLSNe and GRBs

They will be powered by a central engine but also interact with their CSM