Gamma Rays (and Cosmic Explosions)

Karl Kosack CEA Saclay / CTA Observatory

Cosmic Explosions 2019 - Cargèse

DE LA RECHERCHE À L'INDUSTRIE

OVERVIEW

Introduction

Medium Energy Gamma Rays

- detection
- science
- future

High-Energy Gamma Rays

- detection
- science
- future

Very High Energy Gamma Rays

- detection
- science
- future

Summary and Outlook

OVERVIEW

Coded-Mask Instruments (INTEGRAL)

Wide FOV Very High-Energy instruments (HAWC/ARGO/SGSO)

Introduction

Medium Energy Gamma Rays

- detection
- science
- future

High-Energy Gamma Rays

- detection
- science
- future

Very High Energy Gamma Rays

- detection
- science
- future

Summary and Outlook

Gamma Rays: definitions

Gamma Rays: definitions

Gamma-rays come from Non-Thermal Emission

Particle Acceleration

Human-made Particle Accelerators

series of radiofrequency cavities

diffusive shock acceleration

Gamma-rays show the sites of cosmic-ray acceleration

Non-Thermal Emission

What radiation do you get from a power-law of particles?

Spectral Energy Distribution for various processes:

Electron population

dN/dE Energy Flux ЩZ log

- **Hadron Population**

radio

- **Hadron Population**

Non-Thermal Emission

Non-Thermal Emission

Some real examples RX J1713.7-3946 (Supernova Remnant)

Crab Nebula (Pulsar Wind Nebula)

Mayer+ (http://dx.doi.org/10.1051/0004-6361/201014108) Tanaka+ (http://dx.doi.org/10.1086/591020)

Gamma-ray Instrument Sensitivities

No focusing optics No CCDs Single Photon Counting

Compton Scattering

Pair Production

Particle Interactions beyond the Photoelectric Effect...

OVERVIEW

Introduction

Medium Energy Gamma Rays

- detection
- science
- future

High-Energy Gamma Rays

- detection
- science
- future

Very High Energy Gamma Rays

- detection
- science
- future

Summary and Outlook

10s of MeV to few GeV

 \star

χ

- Gamma-ray Scatters off electron in detector 1
 - measure E1 and position P1
- Scattered photon seen in Detector 2

► measure E2, P2

- Calculate scattering angle
 - χ_{reco} = cone on
 sky for gamma-ray
 positional origin

- Gamma-ray
 Scatters off electron
 in detector 1
 - measure E1 and position P1
- Scattered photon seen in Detector 2
 - ► measure E2, P2
- Calculate scattering angle
 - χ_{reco} = cone on
 sky for gamma-ray
 positional origin

Compton Gamma-ray Observatory

Arthur Holly Compton

NASA "Great Observatory":

• 1991-2000

COMPTEL instrument:

Nuclear Line Emission at MeV The galaxy in Radioactive Aluminum 26

Decay Chain	Half-Life	Nuclei/ Supernova	Photon Energy (MeV)	Photons/ Disinte- gration	
⁶⁶ Ni→ ⁶⁶ Co→ ⁶⁶ Fe	77.3 d	3 × 10 ¹⁴	0.847 1.238 2.598 1.771 1.038		
₩Ti→₩Sc→₩Ca	47 yr	$6 imes 10^{51}$	0.068 0.078 1.156		
⁶⁰ Fe→ ⁶⁰ Co→ ⁶⁰ Ni	$3 \times 10^{5} \mathrm{yr}$	5×10^{10}	0.059 1.173 1.332		
²⁶ Al→ ²⁶ Mg	$7.4 imes 10^{4} ext{ yr}$	$4 imes 10^{10}$	1.809 1.130	1 0.04	ļ

and Taurus Clouds

http://articles.adsabs.harvard.edu//full/1977ApJ...213L...5R/L000005.000.html https://heasarc.gsfc.nasa.gov/docs/cgro/cgro/comptel_al26.html

Supernova Detection with Comptel

Look at where nucleosynthesis is happening \rightarrow Find SNRs!

https://heasarc.gsfc.nasa.gov/docs/cgro/epo/news/SNR.html

Supernova Detection with Comptel

Look at where nucleosynthesis is happening \rightarrow Find SNRs!

https://heasarc.gsfc.nasa.gov/docs/cgro/epo/news/SNR.html

Right Ascension (2000.0)

Comptel: Crab Nebula

https://heasarc.gstc.nasa.gov/docs/cgro/cgro/comptel_anti.html

Gamma-ray Instrument Sensitivities

Medium energy: The problem...

Medium energy: The problem...

There aren't any telescopes operating in this regime currently!

 Important energy band for Gravitational Wave and multimessenger astrophysics!

Medium energy: The problem...

There aren't any telescopes operating in this regime currently!

- Important energy band for Gravitational Wave and multimessenger astrophysics!
- **Future Proposed Missions:**
 - AMEGO:

- NASA probe-class call
- Prototype Instrument:
 - Beam-test 2019
 - Balloon Flight 2021

Medium energy: The problem...

There aren't any telescopes operating in this regime currently!

- Important energy band for Gravitational Wave and multimessenger astrophysics!
- **Future Proposed Missions:**
 - AMEGO:

- NASA probe-class call
- Prototype Instrument:
 - Beam-test 2019
 - Balloon Flight 2021

• e-ASTROGAM

- http:// eastrogam.iaps.inaf.it/
- ESA M5 call

OVERVIEW

Introduction

Medium Energy Gamma Rays

- detection
- science
- future

High-Energy Gamma Rays

- detection
- science
- future

Very High Energy Gamma Rays

- detection
- science
- future

Summary and Outlook

Detection: High Energy Gamma Rays 100s of MeV to 100s of GeV

Pair-conversion Telescopes

K. Kosack, Cosmic Explosions 2019 22

s 2019 **2**2

Detection: High Energy Gamma Rays 100s of MeV to 100s of GeV

Pair-conversion Telescopes

K. Kosack, Cosmic Explosions 2019 22

s 2019 **2**2

Detection: High Energy Gamma Rays 100s of MeV to 100s of GeV

Pair-conversion Telescopes

K. Kosack, Cosmic Explosions 2019 22

s 2019 **2**2

Pair-conversion Telescopes

- At low energy, poorer reconstruction
- Direction reconstruction (PSF) gets better at higher energies
- Measure energy with a calorimeter
- Reject background with an anticoincidence shield

anti-coincidence shield

- At low energy, poorer reconstruction
- Direction reconstruction (PSF) gets better at higher energies
- Measure energy with a calorimeter
- Reject background with an anticoincidence shield

Instruments:

- LAT: "Large Area Telescope" (GeV)
- GBM "Gamma-ray Burst Monitor" (KeV -MeV)

LAT:

- FoV: > 2 steradians
- Energy Range: 20 MeV 300 GeV
- Coverage:
 - ► all sky (normally once per day, but now 1/3 per day due to failed solar array drive)
- Angular Resolution:
 - ► < 3.5° (100 MeV)
 - $> < 0.15^{\circ} (>10 \text{ GeV})$
 - \blacktriangleright point-source localization: < 0.5'

See Also: AGILE Space Telescope

The GeV Sky > 5000 gamma ray sources!

Catalog : 3FGL

The GeV Sky > 5000 gamma ray sources!

The GeV Sky

> 5000 gamma ray sources!

FSRQ
BL Lac
AGN/NLS1/Sy/G
Bl.unk. CSS/RDG/SSRQ

CTA 1 Pulsar: The first of many pulsars discovered by LAT scientists using only gamma-ray data was the one in supernova remnant CTA 1. A pulsar is a neutron star whose rapid rotation powers beams of radio, X-ray and gamma radiation. Although 10,000 years old, the CTA 1 pulsar still emits a thousand times more energy than our sun. Illustration: NASA SSU E/PO, Simonnet.

Finkbeiner et al.

and south of the Milky Way's central plane. These gammaray "bubbles" may have formed from a past eruption of our galaxy's supermassive black hole. NASA/DOE/Fermi LAT/D.

Crab Nebula: Fermi observations of the Crab Nebula, a young supernova remnant containing a pulsar, reveal gamma-ray flares set off by the most energetic particles ever traced to a specific astronomical object. To account for the days-long flares, scientists say that electrons near the pulsar must be accelerated to energies a thousand trillion (10¹⁵) times greater than that of visible light. Above is a composite of the nebula in visible light and X-rays. NASA/CXC/HST/ASU/J. Hester et al.

The Variable Sky at GeV energies

Fermi-LAT 2008

https://svs.gsfc.nasa.gov/10407

The Variable Sky at GeV energies

Fermi-LAT 2008

https://svs.gsfc.nasa.gov/10407

High-Energy Resources

Fermi Catalogs:

- 3FGL: 3rd Fermi-Lat Gamma-Ray catalog • 3FHL: Highest energy catalog (subset of sources)
- 1SC: First Fermi-LAT supernova catalog

Fermi-Lat Data:

- all publicly available online
- need Fermi Science Tools to analyze
 - spatial-spectral likelihood minimization

OVERVIEW

Introduction

Medium Energy Gamma Rays

- detection
- science
- future

High-Energy Gamma Rays

- detection
- science
- future

Very High Energy Gamma Rays

- detection
- science
- future

Summary and Outlook

Limiting effect: the spectrum!

- Effective collection area of Fermi-Lat is 1 m²
- Count-rate of brightest gamma-ray source (Crab Nebula): 10⁻⁷ Hz above 1 TeV
 - ► a photon every few months!
- beyond a few hundred **GeV: want at least 100,000x bigger!**

Limiting effect: the spectrum!

- Effective collection area of Fermi-Lat is 1 m²
- Count-rate of brightest gamma-ray source (Crab Nebula): 10⁻⁷ Hz above 1 TeV
 - ► a photon every few months!
- beyond a few hundred **GeV: want at least 100,000x bigger!**

4

- With enough distance into a medium (1 interaction length), the secondaries will emit Bremsstrahlung radiation when they encounter a nucleus
- If high enough energy, the Bremsstrahlung photon can pairproduce
- and so on...

This becomes an electromagnetic shower

- number of particles doubles, energy divided by 2 at each step
- eventually shower stops when energy too low

Atmospheric Cherenkov Technique

Showers can be produced in many media, but we want a large detection volume (100,000+ m² needed!):

- Earth's atmosphere is ideal!
- Radiation and interaction length $\approx 37 \text{ g/cm}^2$
- showers form and complete before hitting ground

Atmospheric Cherenkov Technique

Showers can be produced in many media, but we want a large detection volume (100,000+ m² needed!):

- Earth's atmosphere is ideal!
- Radiation and interaction length $\approx 37 \text{ g/cm}^2$
- showers form and complete before hitting ground

photon or e-

EM sub-showers

EM sub-showers

EM sub-showers

EM sub-showers

Single Telescope View d samples time-integrated

nanosecond samples

Sample 000 CT001 (LSTCam), event 007108

Single Telescope View d samples time-integrated

nanosecond samples

Sample 000 CT001 (LSTCam), event 007108

Stereo View Large-Telescope Subarray Medium Telescope Subarray

LSTCam

Stereo View Large-Telescope Subarray Medium Telescope Subarray

LSTCam

Early Gamma Ray Telescopes in the atmosphere by the cosmic radiation. The purpose of this communication is to report the results of some preliminary experiments we have a look back

of pulses/channel 40 Number (

0

Friday, July 6, 2012

IN 1948, Blackett¹ suggested that a contribution approximately 10⁻⁴ of the mean light of the night-sky made using a photomultiplier, which revealed the

thank Mr. W. J. Whitehouse and Dr. E. Bretscher for their encouragement, and Dr. T. E. Cranshaw for the use of the extensive shower array.

Early Gamma Ray Telescop Enged in the atmosphere by the cosmic radiation. The purpose of this communication is to report the results of some preliminary experiments we have a look back

Friday, July 6, 2012

Eridov July 6 2012

IN 1948, Blackett¹ suggested that a contribution approximately 10⁻⁴ of the mean light of the night-sky made using a photomultiplier, which revealed the

thank Mr. W. J. Whitehouse and Dr. E. Bretscher for their encouragement, and Dr. T. E. Cranshaw for the use of the extensive shower array.

Weekes, 1967 "the early days"

Early Gamma Ray Telescop a look back

Friday, July 6, 2012

Eridov July 6 2012

IN 1948, Blackett¹ suggested that a contribution approximately 10⁻⁴ of the mean light of the night-sky made using a photomultiplier, which revealed the

thank Mr. W. J. Whitehouse and Dr. E. Bretscher for their encouragement, and Dr. T. E. Cranshaw for the use of the extensive shower array.

focal length 4.6in.

Weekes, 1967 "the early days"

Some VHE History

Copyright Digital Image Smithsonian Institution, 1998

Friday, July 6, 2012

Whipple 10m teleescope

- **1968:** Built, Single-pixel camera
- Breakthrough: multi-pixel camera: Shower Imaging
- **1989:** First detection of Crab Nebula (at 5 σ)

Many came in between:

- CAT (Pyrenees),
- Durham (Australia)
- HEGRA (Canaries)
- Grace (India)
- CANGAROO (Australia)

Current Atmospheric Cherenkov Telescopes

VERITAS: Arizona, USA 4x 12m. (Northern Hemisphere)

H.E.S.

VERITAS

MAGIC: Canary Islands 2x 17 m (Northern Hemisphere)

HESS: Namibia 4x 12m, 1x 28m (Southern Hemisphere)

ic Explosions 2019 44

Ground-based Telescopes: Visibility

Visible from Southern Hemisphere

Atmospheric Cherenkov Telescopes

Advantages:

- high angular (<0.1°) and energy (<15%) resolution
- very good sensitivity
 - many orders of magnitude better than Fermi-Lat in overlapping energy range!
 - great for short-term variability
- Cheap! (ground-based)
- Upgradable!
 - e.g. add more telescopes to get larger effective area

Disadvantages

- Small(ish) Field-Of-View (3°-10°) → non uniform exposure, must know where to look
- Small duty cycle
 - can't observe in day or with bright moon!
 - \blacktriangleright \approx 1000-1400 hours/year
- No full-sky coverage for single instrument
 - ► limitation of being on Earth
- Limited by atmosphere quality

HESS Galactic Plane Survey

Exposure (very non-uniform!)

The Very-high-energy sky

in the plane, mostly extended sources (pulsar wind nebulae, supernova remnants)

Supernova Remnants

B-field strength map under leptonic scenario

(See Jacco's SNR Talk yesterday)

Remember Vela Jr from COMPTEL?

Remember Vela Jr from COMPTEL?

Remember Vela Jr from COMPTEL?

Discovering new Supernova Remnants

n. Nusack, *Custille Explosions 2019* 52

Pulsar Wind Nebula: HESS J1825-137

HESS

Fermi-LAT

Araya et al., MNRAS 2009

LS 5039: A Gamma-ray Binary

K. Kosack, Cosmic Explosions 2019 54

LS 5039: A Gamma-ray Binary

K. Kosack, Cosmic Explosions 2019 54

PSR B1259-63

Parameter	Value
Distance, D [kpc]	1.5
Eccentricity, e	0.87
Orbital Period, Porb[d]	1273
Last Periastron Passage	2007-07-27
Compact Object	
Pulsar Period, P [ms]	47.7
$\dot{P} = \frac{\mathrm{d}P}{\mathrm{d}t} \left[\frac{\mathrm{S}}{\mathrm{S}}\right]$	2.27579×10^{-15}
Spin-down age, τ [yr]	3×10^{5}
Spin-down luminosity, L_p [erg s ⁻¹]	8×10^{35}
Magnetic field, B[G]	3×10^{11}
Companion Star (B2	Ve)
Temperature [K]	10^{4}
Mass $[M_{\odot}]$	10

Breaking News: Prompt VHE Emission from a GRB

GRB 190114C:

MAGIC Detection!

- First VHE GRB!
- 50s after burst
- \bullet > 20 sigma
- very large zenith angle ► > 300 GeV

Subjects: Gamma Ray, >GeV, TeV, VHE, Request for Observations, Gamma-Ray Burst

The MAGIC telescopes performed a rapid follow-up observation of GRB 190114C (Gropp et al., GCN 23688; Tyurina et al., GCN 23690, de Ugarte Postigo et al., GCN 23692, Lipunov et al. GCN 23693, Selsing et al. GCN 23695). This observation was triggered by the Swift-BAT alert; we started observing at about 50s after Swift T0: 20:57:03.19. The MAGIC real-time analysis shows a significance >20 sigma in the first 20 min of observations (starting at T0+50s) for energies >300GeV. The relatively high detection threshold is due to the large zenith angle of observations (>60 degrees) and the presence of partial Moon. Given the brightness of the event, MAGIC will continue the observation of GRB 190114C until it is observable tonight and also in the next days. We strongly encourage follow-up observations by other instruments. The MAGIC contact persons for these observations are R. Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de) and K. Noda (nodak@icrr.u-tokyo.ac.jp). MAGIC is a system of two 17m-diameter Imaging Atmospheric Cherenkov Telescopes located at the Observatory Roque de los Muchachos on the Canary island La Palma, Spain, and designed to perform gamma-ray astronomy in the energy range from 50 GeV to

First time detection of a GRB at sub-TeV energies; MAGIC detects the GRB 190114C

ATel #12390; Razmik Mirzoyan on behalf of the MAGIC Collaboration Credential Certification: Razmik Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de) on 15 Jan 2019; 01:03 UT

Referred to by ATel #: 12395, 12475

Y Tweet

Look for details soon!

Breaking News: Prompt VHE Emission from a GRB

GRB 190114C:

MAGIC Detection!

- First VHE GRB!
- 50s after burst
- > 20 sigma
- very large zenith angle ► > 300 GeV

Subjects: Gamma Ray, >GeV ToV $\times 10^{3}$, Gamma-Ray Burst Time since triggered [s] f GRB 190114C (Gropp et al., CN 23692, Lipunov et al. GCN d by the Swift-BAT alert; we — 10² ight GRB enabled GIC real-time analysis shows a ting at T0+50s) for energies cm⁻² e zenith angle of observations ss of the event, MAGIC will [keV ght and also in the next days. Fermi The MAGIC contact persons pp.mpg.de) and K. Noda γ 10^{1} neter Imaging Atmospheric chos on the Canary island La nergy range from 50 GeV to Energy [keV]

Referred to Y Tweet The MAGI GCN 23688 23693, Sels started obser significance >300GeV. T (>60 degrees continue the We strongly e for these of (nodak@icrr.u Cherenkov Te. Palma, Spain, greater than 50

First time detection of a GRB at sub-TeV energies; MAGIC detects the GRB 190114C

ATel #12390; Razmik Mirzoyan on behalf of the MAGIC Collaboration Credential Certification: Razmik Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de)

Look for details soon!

Breaking News: GRB Afterglow in VHE y's

HESS detection of GRB 180720B

- 10 hours after burst, 5 sigma > 100 GeV.
- observation 18 days later, no signal
- One of Fermi-GBM highest fluence GRBs

Look for details soon!

Kilonovas?

GW170817

25.0

See also talk by **Skyler Scott (tuesday)**

Very-High-Energy Resources

TeVCat

- tevcat.uchicago.edu, tevcat2.uchicago.edu
- All published sources from all Cherenkov Telescopes
- lots of detail about each source, including links to all subsequent publications

GammaCat / GammaSky

- gamma-sky.net/
- similar to TeVCat, but open-source catalog available (much less detail than TeVCat, however)

HESS Galactic Plane Survey

- www.mpi-hd.mpg.de/hfm/HESS/hgps/
- Catalog as FITS table (includes spectra for each source)
- the only "true" catalog (all identical analysis methodology, single publication), so only exposure bias
- Image data (flux, etc) as FITS images

me to TeVCat!

VHE/TeV gamma rays: the Future!

More Telescopes = larger effective area

Densely Packed Telescopes = higher angular resolution

Multiple Dish Sizes = wider energy coverage for cheaper

- large: 50 GeV 100 GeV
 - fast repointing for GRBs and transients
 - ► expensive
- medium = 100 GeV 30 TeV

► core science

• small = 5 TeV - 100 TeV:

► new frontiers

cheap, easy to make many of them

≈10 PB of gamma-ray data/year processed down to small, standard products

largest telescope array ever

open observatory: you can be a PI!

cherenkov telescope array

the observatory for ground-based gamma-ray astronomy

https://www.cta-observatory.org/

cherenkov telescope array

the observatory for ground-based gamma-ray astronomy

CTA Consortium consists of over 1,420 members working in 200 institutes from 31 countries:

Armenia, Australia, Austria, Brazil, Bulgaria, Canada, Chile, Croatia, Czech Republic, Finland, **France, Germany**, Greece, India, Ireland, **Italy**, Japan, Mexico, Namibia, Netherlands, Norway, Poland, Slovenia, South Africa, **Spain**, Sweden, Switzerland, Thailand, the UK, Ukraine and the USA.

credit: DESY/Milde Science Comm./Exozet

Galactic Longitude

285°

270°

GRBs with CTA

Fermi-LAT

CTA (simulated)

Binaries with CTA

Gaussian Flare (LSI +61 303)

OVERVIEW

Introduction

Medium Energy Gamma Rays

- detection
- science
- future

High-Energy Gamma Rays

- detection
- science
- future

Very High Energy Gamma Rays

- detection
- science
- future

Summary and Outlook

keV X-ray

20 KeV -**≈1** *MeV*

photo-electric effect 400 cm² @ 5keV

Chandra, XMM

grazing-incidence mirror

INTEGRAL

coded-mask

gamma-ray detection in context 100 GeV -

0.2 MeV -**10** MeV

10 MeV -100 GeV

Compton Effect 50 cm² @ 5 MeV

Comptel (no longer flying) **Pair Conversion** 1*m*² @ 1 GeV

Extensive Air Shower > 10⁵ - 10⁶ m² @ 1 TeV

100TeV

Whipple 10m

Comparison

	Compton Telescopes	Fermi-LAT	IACTs (e.g. HESS)	WCTs (HAWC)
Energy Range	Medium-energy Gamma	High-Energy Gamma	Very-High-Energy Gamma	Very-High-Energ Gamma
Field of view	Large	Effectively All-Sky	Small	Half-Sky
PSF (E-dependant)	fair ≈1°	good 0.1-1.0°	good 0.01-0.1°	fair 0.3-0.5°
Energy Resolution	good ≈10%	good ≈10%	good ≈10%	poor 50%-100%
Duty Cycle	very good	very good	poor	very good
Sky Coverage	full	full	half	half
Short-Term Sensitivity	good	good (GeV) poor (>100GeV)	good (>100GeV)	poor

S. Fegan, https://github.com/sfegan/kifune-plot,

original by Tadashi Kifune 1996

Gamma-ray Instrument Sensitivities

backup

Detection: All Sky VHE gammas

See talk by

HAWC High Altitude Water-Cherenkov observatory

HAWC Survey 2014-2018

Other VHE large-FOV instruments:

Sichuan province 4400 m a.s.l.

The TAIGA Hybrid Detector: Imaging and Non-Imaging Techniques

Future All-Sky: SGSO

