• •

Pre-SN Evolution of Massive Star

Norbert Langer

Bonn University & MPI für Radiastronomie Bonn

GW events

Cargese, May 29, 2019 - p.2/44

•

mass $\uparrow \longrightarrow$ our ignorance \Uparrow

G stars

- Iow chance to be binary product
- $\dot{M} \simeq 0$
- high internal stability $(\beta = 1)$
- B fields ubiquitous massive stars are so relevant
- SNe, GRBs, NSs, BHs
- determine state of ISM
- dominate chemical evolution

O stars

- high chance to be binary product
- self-evaporate
- at verge of instability $(\beta \rightarrow 0)$
- B fields sporadic

The stellar mass determines the fate

 $\frac{1}{\rho} \frac{P}{R} \sim \frac{M}{R^2}$ hydrostatic eq. and $P \sim \rho T$ ideal gas and T = const. burning temperature

The stellar mass determines the fate

NL 2012, ARAA

Massive star \neq Massive star

- metallicity
- rotation
- binarity
- magnetic fields
- "ordinary" evolution (< 30%)

The Hunter diagram: early B stars

Cargese, May 29, 2019 – p.7/44

•

Metallicity & the Eddington limit

•

•

Cargese, May 29, 2019 – p.8/44

•

Metallicity & the Eddington limit

complete opacity

complete opacity: e⁻-scattering + ff + bf + bb + ...

• massive stars: $\kappa_{
m Fe} \simeq 2\kappa_{
m e}$

opacity increases with density

$M - L_{\rm Eddington}$ relation

•

$M - L_{\rm Eddington}$ relation

•

$M - L_{\rm Eddington}$ relation

Inflation: 1D

•

Inflation: 3D

Jiang et al. 2016

The Galactic sHRD

600 stars: distance- and reddening-independent

Castro et al. 2014

Cargese, May 29, 2019 – p.16/44

CMD of Westerlund 1

Clark et al. 2014

Inflation as f(Z)

•

Sanyal et al. 2017

• •

Chemical gradients

From core H-burning: $dX/dq \simeq 2$

9, 2019 – p.20/44

post-H-burning: $dX/dq \uparrow$

SMC supergiants: H-gradient

• Cargese, May 29, 2019 – p.22/44

SMC supergiants: H-gradient

Schootemeijer+ 2019

Cargese, May 29, 2019 – p.23/44

Supergiant-HMXBs: H-gradient

Quast+ 2019

Cargese, May 29, 2019 – p.24/44

Supergiant-HMXBs: H-gradient

Quast+ 2019

Cargese, May 29, 2019 – p.25/44

SMC WR stars

SMC WR stars: H-gradient

Schootemeijer+ 2018

Cargese, May 29, 2019 – p.27/44

Quasi-chemically homogeneous evolution

•

•

Cargese, May 29, 2019 – p.28/44

long-duration GRBs (collapsars)

- massive core \Rightarrow black hole
- compact size $\Rightarrow \frac{R_*}{c} \simeq \tau_{engine}$
- rapid rotation \Rightarrow centrifugal barrier $\Rightarrow j \simeq 10^{16} \, {\rm cm}^2 {\rm s}^{-1}$

Woosley 1993

Chemically homogeneous evolution

$v_{rot} \uparrow \Rightarrow$ internal mixing timescale $\tau_{mix} \downarrow$

For $M > 10 \,\mathrm{M}_{\odot}$: $\tau_{\mathrm{mix}} \simeq \tau_{\mathrm{nuc}} \Rightarrow$ Chem. homogeneous evolution

Maeder 1987; Yoon & Langer 2005; Woosley & Heger 2006

Cargese, May 29, 2019 – p.30/44

Chemically homogeneous evolution

Brott et al. 2011

CHE: how frequent?

\Rightarrow single star are slowly rotating

Ramirez Agudelo, Simon Diaz, Sana, et al. 2013, A&A, 560, A29

IGRB progenitors at $Z=10^{-3}$

Yoon et al. 2006

sCHE: SLSNe & IGRBs

Aguilera Dena+ 2018: see his talk

Cargese, May 29, 2019 – p.34/44

Binaries!

Sana et al., Science, 2012

Forming BH+BH merger

Marchant+ 2016

Forming the brightest ULXs

Marchant+ 2017

Cargese, May 29, 2019 - p.37/44

•

Magnetic stars

• •

HD 148937 O6.5f?p: a smoking gun?

_eitherer & Chavarria-K. 1987

Cargese, May 29, 2019 – p.39/44

Merger products

MS merger: blue stragglers

post-MS blue merger: 5.6 16M_☉ – \mathbf{O} $18M_{\odot}$ – 22M_o -5.4 $24 M_{\odot}$ 0 28M₀ 5.2 (°7/7)601 4.8 4.6 4.4 0 4.2 15 10 35 30 25 20 40 5 0 T_{eff}[kK]

supergiant

Petermann+ 2015

Cargese, May 29, 2019 – p.40/44

B-field decay

Fossati+ 2018, May 29, 2019 – p.41/44

B-field decay: mass dependent

Cargese, May 29, 2019 - p.42/44

Advanced evolution

Can stable large scale fields prevail?

- intermediate mass stars: magnetic Herbig AeBe (10%) → Ap/Bp star (10%) → magnetic WD (10%)
- massive stars: magnetic OB (10%) \rightarrow magnetar (10% ?)

flux conservation: B-fields scale within uncertainties

