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Introduction

Amplitude analyses: a powerful analysis technique; study of dynamical structure of a
decay amplitude by analysing kinematical distributions of decay products.

Basically, anything beyond fitting invariant mass peaks is an amplitude analysis.

What kind of dynamical structure of the amplitude we are taking about?

Multibody decay X → abc . . . almost never occurs in a single point in space.

There are forces acting between decay products. Can be seen as production of
resonant intermediate states: D → R1(→ ab)c . . ..

The same decay can have many intermediate resonant amplitudes that interfere.
Amplitude analyses provide information about these interfering components.
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Introduction

Why is this interesting?

Search for New Physics: if we look for the contributions that give the amplitudes
different from SM (e.g. B → K∗µµ, B → Kππγ).

Hadron spectroscopy: study of resonance states themselves (mass, width, spin,
parity, etc.), including exotic (e.g. pentaquarks)

Direct access to phases of different components, which can exhibit CP violation
(e.g. charmless B decays).

Study of the properties of the initial state X (e.g. X itself can be a quantum
superposition of two states; measurements of CKM angles, e.g. D0 →multibody
from B decays).

How does one do it technically?

Typically, one should know the complex structure of each of the interfering
amplitudes

The fit to kinematic distribution in data gives relative magnitudes and phases
between amplitude components.

There are also other, more model-independent ways of doing amplitude analyses
(examples later).
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Part I
2D: Dalitz plot analyses
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Two-body decay kinematics
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Two-body decay (e.g. Bs → µ+µ−).
Kinematics is completely fixed by
conservation laws.

D → ab: in D rest frame decay is
isotropic (unless D is non-scalar and is
polarised),

~pa = −~pb

|pa|2 = |pb|2 =
(M2

D − (Ma −Mb)2)(M2
D − (Ma + Mb)2)

4M2
D

[PDG review: Kinematics]

Can measure branching ratios, CP asymmetries, etc., but no access to individual
amplitudes.
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Three-body decays of scalars: Dalitz plot

Three-body decays D → abc: things are becoming more interesting.

In D rest frame, all a, b, c lie in the plane (e.g. p
(z)
a,b,c ≡ 0).

Rotate coordinates such that e.g. ~pc = (0, p
(y)
c , 0).

Five kinematic observables (p
(x)
a , p

(y)
a , p

(x)
b , p

(y)
b , p

(y)
c , ), but 3 constraints from

kinematics (conservation of momentum in x , y , conservation of energy).
Two internal degrees of freedom remain, fully defined by dynamics of the decay.
Can take any pair of independent parameters as variables for amplitude
parametrization: Dalitz plot.
Most common choice: two pairs of invariant masses squared (e.g. m2

ab, m2
bc).

3 pairs are linearly dependent: m2
ab + m2

ac + m2
bc = M2

D + M2
a + M2

b + M2
c

Phase space is uniform in variables m2
ab, m2

bc :

dΓ =
1

(2π)3

1

32M3
|A(m2

ab,m
2
bc)|2dm2

abdm2
bc .

Any non-uniformity is due to dynamical
properties of amplitude A(m2

ab,m
2
bc).

[PDG review: Kinematics]

[Physics of B factories: Dalitz analysis section]
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A bit of history: Richard Dalitz and θ/τ puzzle

R. H. Dalitz (1925–2006)
[“On the analysis of τ -meson data and the nature of the τ -meson”, Phil. Mag. 44 (1953)

1068]

Decays of two strange particles with consistent masses were observed in 1950-s:

θ+ → π+π0: JP = 0+, 1−, 2+ . . .

τ+ → π+π−π+: JP = 0−, 1±, 2± . . .

Is it two different partciles, or one?

R.H. Dalitz: plot in two variables,
functions of kinetic energies T1,2,3 and
Q = mθ − 3mπ:

x =

√
3(T1 − T2)

Q
,

y =
2T3 − T1 − T2

Q
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A bit of history: Richard Dalitz and θ/τ puzzle

The distributions of events in x , y should depend on
JP of the initial state

JP = 0− 1

JP = 1+ p2

JP = 1− p4q4 sin2 θ cos2 θ

JP = 2+ p2q4 sin2 θ
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A bit of history: Richard Dalitz and θ/τ puzzle

The data is consistent with JP = 0− for
τ+

But θ+ → π+π0 cannot have JP = 0−!

Why two different particles with the same
mass?

Solution (C.S. Wu et al., 1957):
parity violation in weak interaction
(β decay of 60Co)

Now, θ+ and τ+ are known as charged
kaon.

Anton Poluektov Amplitude analyses Ecole de Gif, Clermont-Ferrand, 10-14 September 2018 10/45



Helicity angle distribution

Consider quasi-two-body amplitude in three-body decays: D → AR(→ BC)

DA R θ

B

C

Take the angle θ between the R direction
in D rest frame, and BC direction in R
rest frame.

θ is Lorentz-invariant and can be
expressed as a function of Dalitz plot
variables.

cos θ =
M2

ab −M2
ab,min

M2
ab,max −M2

ab,min

Distribution of θ depends on the spin of the intermediate state R. Legendre
polynomial PJ(x); A ∝ PJ(cos θ)

J = 0 A(x) = 1

J = 1 A(x) = x

J = 2 A(x) = 1
2
(3x2 − 1)

J = 3 A(x) = 1
2
(5x3 − 3x)

The density is of course p(cos θ) ∝ |A(cos θ)|2.
Anton Poluektov Amplitude analyses Ecole de Gif, Clermont-Ferrand, 10-14 September 2018 11/45



Lineshapes; Breit-Wigner distribution

Consider quasi-two-body amplitude in three-body decays: D → AR(→ BC)

The distribution in another Dalitz plot variable, M2
BC , is now defined by the dynamics

of the decay.

This is a much more difficult question; most of the uncertainty in current
measurements is due to lineshape parametrisation.

Many models are on market. Still a lot of development.

Model-independent approaches can be used sometimes.

Single narrow (ΓR � MR) resonance: Breit-Wigner parametrisation.

In any other cases (several overlapping resonances with the same quantum numbers,
wide resonance with Γ ' M) the BW parametrisation is, strictly speaking, not
physical. Nevertheless, it is often used and gives reasonable results.

(more about this later)
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Lineshapes; Breit-Wigner amplitude

Single narrow (ΓR � MR) resonance: Breit-Wigner parametrisation

ABW =
1

M2
R −M2

MC − iMRΓR

“Argand plot”

Counter-clockwise rotation of the phase with increasing M2
bc .

Essential: e.g. clockwise rotation would correspond to complex-conjugate BW
amplitude, which is unphysical.
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Resonances on the Dalitz plot

Phase-space decay

Scalar in ab channel

Scalar in bc channel

Scalar in ac channel

Vector in ab channel

Tensor (J = 2) in ab channel

Two scalars in ab and bc channels,
∆φ = 0◦

Two scalars in ab and bc channels,
∆φ = 90◦

Two scalars in ab and bc channels,
∆φ = 180◦

Scalar and vector in ab channel,
∆φ = 0◦
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Three-body decays on the Dalitz plot
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Dynamics (line shape)
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components can be accessed though
interference with other structures.

Model-dependent fits: typically isobar
model (sum of resonant/nonresonant
components)

Semi-model-independent fits: describe
some partial waves as complex
bins/splines, determine amplitude and
phase through interference with other
components.

Model-independent partial wave analysis
(PWA): for spin J, polynomials up to 2J
order. Helicity as a function of M2

AB .
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Three-body decays on the Dalitz plot
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Isobar framework

Most of current analyses treat the 3-body (or n-body amplitude) as a coherent sum of
quasi-two-body amplitudes in different channels (ab, bc, ac for 3-body):

A =
∑
i

CiR
(ab)
i (m2

ab)T
(ab)
i (θab)+∑

j

CjR
(bc)
i (m2

bc)T
(bc)
i (θcb)+

∑
k

CkR
(ac)
i (m2

ac)T
(ac)
i (θac)

This is called isobar model.

The density p(m2
ab,m

2
bc) = |A(m2

ab,m
2
bc)|2 is fitted to density of events in data (after

accounting for background and non-uniform efficiency).

Typically, complex amplitudes Ci,j,k are free parameters in the fit. as can be some of
resonance parameters (masses, widths of not-so-well-known resonances).

Many more variations of this scheme are possible, some of which will be illustrated
later.
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Spin formalisms

You will see different expressions for angular terms in the literature:

Helicity formalism: angular distribution as a function of helicity angle θ(mbc)

M1 = cos θ

M2 = cos2 θ − 1

3

Zemach tensors: expressions involving 3-momenta

M1 = −2~p · ~q

M2 =
4

3
[3(~p · ~q))2 − (|~p||~q|)2]

Both formalisms lead to the same angular distributions TJ(m2
bc).

But not fully equivalent: modify lineshapes R(m2
ab).

Centrifugal term qL (where q is the breakup momentum): should be artificially
included in R(m2

ab) for helicity formalism to match Zemach tensors.

Fully covariant formalism possible: will be discussed later.
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Line shapes: Breit-Wigner

Breit-Wigner resonant shape with various
corrections

R(m2
ab) =

FR(~q)FD(~p)

(m2
0 −m2

ab)− im0Γ(m)

Mass-dependent width Γ(M):

Γ(M) = Γ0

[
p(M)

p0

]2LR+1
mR

M
F 2
R(M, LR),

Blatt-Weisskopf centrifugal barrier factors Fi . Take into account the non-pointlike
nature of resonance R and decaying particle D, respectively.

FR,D(M, L) =


1 L = 0√

1+z2
0

1+z2(M)
L = 1√

9+3z2
0 +z4

0
9+3z2(M)+z4(M)

L = 2

Where z(M) = p(M)d and z0 = p(MR)d , and d is the radial parameter (typically, a
few GeV−1).
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Line shapes: non-resonant amplitudes

In many cases, amplitude fits require wide slowly-varying amplitude. Not very physical,
but can be due to

Effective parametrisation of some unknown states with small stats (not sufficient
to reveal detailed structures)

Contributions from resonances outside kinematic boundaries

”Non-resonant” shapes

Charm decays (relatively small phase space): often a constant term is sufficient

Beauty decays, especially charmless: more sophisticated models are in use.

R(m2
ab) = exp(−αm2

ab)

or more advanced ones (LASS, kappa, ”dabba” etc.)
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Line shapes: K -matrix

Sum of Breit-Wigners with the same quantum numbers violates unitarity.

K-Matrix: ensure unitarity of the amplitude by construction.
Unitarity (= conservation of probability of the scattering process) only makes sense
when all available channels are involved. E.g. the amplitude in π+π− channel will
depend on the resonances in K +K− channel (rescattering!).

Ai (s) = (I − iK(s)ρ(s))−1
ij Pj(s)

where i , j are channel indices (e.g. ππ, KK , 4π, ηη, etc.), ρ(s) is phase space factor.
Resonances correspond to poles of the K -matrix. Parametrisation:

Kij(s) =

(∑
α

gαi gαj
m2
α − s

+ f scatt
ij

1− sscatt
0

s − sscatt
0

)
fA0(s)

Parameters of K -matrix (pole couplings g and scattering amplitudes f ) are taken from
the global analysis of π+π− (pπ−) scattering data.
Production vector has the same poles as K matrix

Pi (s) =
∑
α

βαgαi
m2
α − s

+ f prod
1i

1− sprod
0

s − sprod
0

Parameters β, f depend on production mechanism and are fit parameters.
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Line shapes: other parametrisations

Flatté: a particular case of K -matrix with only one pole and two channels. Useful if
2nd channels opens near the resonance mass (e.g. for f0(980)→ ππ to account for
rescattering from KK)

R(m2
ab) =

1

m2
0 −m2

ab − im0(g1ρ1(m2
ab) + g2ρ2(m2

ab))

K-matrix if not a silver bullet: while preserving unitarity it violates analyticity
(phase-space term).

There are formalisms that attempt to preserve both, but these are very expensive
computationally.
[JPAC]: collaboration of theorists and experimentalists aims to solve this eventually

Kinematical effects in rescattering can lead to structures that can resemble resonances

Cusps: rescattering without binding.
[E.S.Swanson, Phys. Rev. D91 034009, 2015]
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Square Dalitz plot

B → charmless decays: very large phase space, resonances concentrate near the edges
Modified phase space magnifying interference regions, mass vs. helicity angle

[BaBar collaboration, PRD72 052002 (2005)]

Anton Poluektov Amplitude analyses Ecole de Gif, Clermont-Ferrand, 10-14 September 2018 22/45

https://arxiv.org/abs/hep-ex/0507025


Dalitz plot analyses: signal selection

Amplitude analyses generally require sufficiently clean selection (uncertainty due to
background)

“Standard ” figures of merit for selection optimisation (S/
√

S + B) are not well
motivated.

[[PRL 112 (2014) 011801]]
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Uncorrected invariant masses would result in fuzzy Dalitz plot (different M(DKπ) give
somewhat different phase space).

Kinematic fit to constrain M(DKπ) to be equal to M(Bs).
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Dalitz plot analyses: unbinned fit

Minimise the unbinned negative logarithmic likelihood:

−2 lnL = −2
N∑
i=1

ln ptot(xi ),

Where xi is a (vector of) data points, ptot(x) is normalised total density:

ptot(x) = p(x)ε(x)
nsig

N + pbck(x)
nbck

Nbck
,

Signal and background normalisations:

N =

∫
D

p(x)ε(x) dx , Nbck =

∫
D

pbck(x) dx ,

Normalisation has to be recalculated at every minimisation step: computationally
heavy.
Trick that works if only Ci are floating: expand the normalisation as

N =
∑
i,j

CiC
∗
j

∫
D

Re(Ai (x)A∗j (x))dx


where the integrals have to be calculated only once.
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Dalitz plot analyses: acceptance effects

Efficiency over the Dalitz plot is not uniform because of detector acceptance and
selection requirements.

Typically obtained from full simulation. Various choices to parametrise the shape:

Histogram

Polynomials

Kernel density (with edge correction)
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Dalitz plot analyses: acceptance effects

Non-uniform efficiency can be handled by including the scattered data from simulation
directly into the likelihood normalisation term
Apply MC integration for normalisation term (forget about background for simplicity):

−2 lnL = −2
N∑
i=1

ln p(xi )ε(xi )/N = −2
N∑
i=1

ln p(xi )−2
N∑
i=1

ln ε(xi )+2N ln
M∑
j=1

p(yj)ε(yj)

yj are uniformly distributed normalisation points. Forget about constant term:

−2 lnL = −2
N∑
i=1

ln p(xi ) + 2N ln
M∑
j=1

p(yj)ε(yj)

Can see 2nd term as sum over uniform events each entering with weight ε(yi ).

Equivalent: can take the sum over non-uniform sample of events obtained from the
uniform sample yi which passed the detector acceptance with probability ε(yj). ⇒ do
not need to parametrise ε(x)!
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Dalitz plot analyses: backgrounds

Two approaches to handle background:

cFit: Needs explicit background parametrisation (e.g. data from sidebands)

Could be difficult for multidimensional fits

Additional systematics due to parametrisation

sFit: Statistical subtraction of the background from the sideband distribution using
sWeight technique [M. Pivk and F. Le Diberder, NIM A555, 356–369 (2005)]

Each event is given a weight wi (calculated from signal/background
discriminating distribution, e.g. B mass), negative for background-like and
positive for signal-like events.

The weight wi enters each data term in the likelihood:

−2
N∑
i=1

ln p(xi ) → − 2
N∑
i=1

wi ln p(xi )

Statistically subtract background. Functional parametrisation of the background
is not needed.

Assumes no correlation between the fitted distribution and the discriminating
distribution (inv. mass of the mother particle)

Larger stat. uncertainty in case of high background
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Dalitz plot analyses: momentum resolution

Finite momentum resolution results in finite resolution in Dalitz variables.

After the kinematic fit M(abc) ≡ MD the resolution of m2
ab,m

2
bc will be

non-uniform (better near the edges, worse in the center of Dalitz plot). Needs MC
study.

Can often be ignored if the amplitude contains only amplitudes with Γ� σ(m).
Otherwise, have to numerically convolve |A|2 with the resolution function.
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Dalitz plot analyses: reporting results

Fit results expressed in terms of complex couplings Ci depend on the details of the
formalism used. Not always easy to reproduce.

Fit fractions:

FFi =

∫
D
|CiAi |2dD∫

D
|
∑
i

CiAi |2dD

Interference fit fractions:

IFij =

∫
D

Re(CiC
∗
j AiA∗j )dD∫

D
|
∑
i

CiAi |2dD

Note that
∑
i

FFi 6= 100% due to

interference.

Rather,
∑
i

FFi +
∑
i 6=j

IFij = 100%

IFij between states with different quantum
numbers should be zero (orthogonality!)
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Evaluating fit quality

Log. likelihood −2 lnL does not provide the absolute measure of fit quality.

Binned χ2:

If the Dalitz plot distribution is very
non-uniform, adaptive binning (∼ equal
population in bins)

Calculate χ2/ndf and its probability.

However, ndf is not well defined:
ndf = Nbins − Npars is underestimation
because the parameters are obtained from an
unbinned fit.

Calculate effective ndf using toy MC:

Generate many toy datasets from the fitted amplitude

Calculate binned χ2 for each of them.

Choose ndfeff such that the distribution of p(χ2, ndfeff) is uniform (exact
coverage).

Typically Nbins − Npars ≤ ndfeff ≤ Nbins

There are unbinned goodness-of-fit test as well:
[M. Williams, JINST 5:P09004 (2010)]
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Choice of intermediate resonances

Adding more terms to the likelihood will describe the given dataset better.

Adding too much complexity to the model reduces predictive power

How do we balance this? LASSO procedure:

−2 lnL → −2 lnL+ λ
∑
i

√∫
|CiAi (D)|2dD

Penalise log likelihood by the term proportional to
∑√

FFi .

Recipes to choose reasonable values of λ exist (keywords: Akaike and Bayesian
information criteria).

Choose λ which minimises

AIC(λ) = −2 lnL+ 2r , BIC(λ) = −2 lnL+ r ln n

r — number of amplitudes over certain threshold
n — number of events in dataset

[Model selection for amplitude analysis, B. Guegan, j. Hardin, J. Stevens, M. Williams]
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Amplitude analysis frameworks

Amplitude fits involve a lot of complicated calculations. Several frameworks are
available to simplify the task. In many cases, modern parallel architectures
(multithreading, GPU) can be used to optimise calculations.

Laura++
A powerful tool for traditional 2D Dalitz plot analyses (including time-dependent)
Single-threaded, but many clever optimisations

MINT
Can do 3-body as well as 4-body final states

GooFit
GPU-based fitter, able to do amplitude fits.

AmpGen
Just-in-time compiler for amplitudes
Can generate code for GooFit

Ipanema-β
GPU-based, python interface (pyCUDA)

qft++
Not a fitter itself, but a tool to operate with covariant tensors (used internally by
MINT)

TensorFlowAnalysis
Set of functions to make amplitude fits and MC generation in Google TensorFlow.
Python interface, generates code for multithreaded CPU/GPU.

... and a lot of private analysis-specific code.
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CP violation in B → hhh

[[PRL 112 (2014) 011801]]
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Integrated asymmetries:

ACP(B± → π±π+π−) = + 0.117± 0.021± 0.009± 0.007(J/ψK +)

ACP(B± → π±K +K−) =− 0.141± 0.040± 0.018± 0.007(J/ψK +)
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Dalitz plot anlayses: B0
s → D0K−π+ [PRD 90 (2014) 072003]
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Dalitz plot anlayses: B0
s → D0K−π+ [PRD 90 (2014) 072003]
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Dalitz plot anlayses: B0
s → D0K−π+ [PRD 90 (2014) 072003]
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Dalitz plot anlayses: B0 → D0π+π− [PRD 92 (2015) 032002]
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Dalitz plot anlayses: B0 → D0π+π− [PRD 92 (2015) 032002]
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Dalitz plot anlayses: B0 → D0π+π− [PRD 92 (2015) 032002]

Comparison of isobar and K -matrix for spin-0 π+π− wave
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There are differences, but the effect on the fit quality is small.
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Model-independent approaches: Legendre moments

Allow to investigate the helicity structure as a function of m2 without performing a fit.
Use the fact that partial wave with spin J is a Legendre polynomial PJ(cos θhel).

Weight events as functions of helicity:

wi = PL(cos θhel)

Partial waves with spins up to J give moments up to 2J in the event density.

If we are limited to S , P and D waves:

〈P0〉 = |h0|2 + |h1|2 + |h2|2
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Legendre moments: B− → D+K−π− [PRD 91 (2015) 092002]

Resonances only in one channel: D+π−: ideal for Legendre polynomial approach
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Legendre moments: B− → D+K−π− [PRD 91 (2015) 092002]

Consider contributions up to spin-3:
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Moments 6 and 7 consistent with 0: no evidence for PW
with spin-3.

Spin-2 apparent in moment 4: single state D∗2 (2460)

Moment 3 differs from 4: interference with spin-2 and
broad spin-1

Moments 1 and 3 differ again: interference of spin-1 and
spin-0 (broad as well)
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Legendre moments: B− → D+π−π− [arXiv:1608.01289]

Resonances only in D+π−, but two identical pions in the final state: need to
symmetrise the amplitude
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Legendre moments: B− → D+π−π− [arXiv:1608.01289]

Consider contributions up to spin-3:
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Some activity in moments 6 and 7: evidence for PW with
spin-3.
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Model-independent S-wave: B− → D+π−π− [arXiv:1608.01289]

Large data sample allows to describe the S-wave by a model-independent
spline-interpolated shape.
Re(A) and Im(A) in each node are fitted.
Interference with higher-spin waves provides information about the phase.

Resonance Spin Model Parameters

D∗
2(2460)0 2 RBW

Determined from data (see Table ??)
D∗

1(2680)0 1 RBW
D∗

3(2760)0 3 RBW
D∗

2(3000)0 2 RBW

D∗
v(2007)0 1 RBW m = 2006.98 ± 0.15 MeV, Γ = 2.1 MeV

B∗0
v 1 RBW m = 5325.2 ± 0.4 MeV, Γ = 0.0 MeV

Total S-wave 0 MIPW See text Re
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Phase rotation due to resonant
D∗(2400) state.
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D0 → K 0
Sπ

+π− Dalitz plot

The amplitude contains O(10)
resonant contributions in
Kπ (K∗, K∗0 , K∗2 ) and
ππ (ρ, ω, f0, f2 etc.) channels

D0 → K 0
Sπ

+π− decay is unique to combine the
following properties:

High branching fraction.

Rich resonance structure ⇒ significant
phase variations across the phase space.

Can be used to effectively measure the properties
of D0 − D0 admixture which appears in a few
measurements:

γ measurement in B → DK

D0 mixing and CP violation

β measurement in B0 → Dπ0.
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CKM angle γ: D → K 0
Sπ

+π− decay from B → DK

Measures CKM phase γ at tree level, ⇒ SM reference point.
B− → D0K−:

V ∗
us

Vcbb c

s

ū
B−

D0

K−

ū

ū

A ∼ VcbV ∗us ∼ Aλ3

+

B− → D0K−:

V ∗
cs

Vub

b u

s

c̄

B−

D0

K−ū ū

A ∼ VubV ∗cs ∼ Aλ3(ρ− iη)

If D0 and D0 decay into the same final state: |D̃〉 = |D0〉+ rBe±iγ+iδB |D0〉 for B±
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2D kinematic distribution of
D → K0

Sπ
+π− from B± → DK±

p±(m2
+,m

2
−) = |AD + rBe

±iγ+iδ AD |2

where AD is known from
flavour-specific D∗ → D0π decays

Obtain unknown rB , δB and γ.
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Part II

Multidimensional amplitude analyses

to be continued...
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