Introduction to Lattice QCD

Antoine Gérardin

Ecole de GIF - Saveurs Lourdes

Clermont-Ferrand, 10-14 September 2018

& L . /

e



Overview of lattice QCD

Why lattice QCD ?

How lattice QCD works

Limitations of lattice QCD

Example of observables accessible from lattice QCD
Masses, decay constant, form factors . . .

| will not give too many details about algorithmic aspects
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Color charge

» QCD is based on the gauge group SU(3) : three colors (red, green, blue)
» Quarks carry a SU(3) color
» Anti-quarks also carry SU(3) (anti)-colors

» Gluons carry a color and a anticolor

— Gluons carry a color charge : different from QED (photon electrically neutral)

— Gluons interact with themself via QCD !



Mesons and baryons

» Quarks and gluons are not directly observed in detectors
» We observe only hadrons (bound states, colorless particles)
e Mesons (quark + anti-quark)

green+anti-green blue+anti-blue red4anti-red

o e s

e Baryons (three quarks or three anti-quarks)

red + blue + green
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Asymptotic freedom

¢ Running of the strong coupling

April 2016
v T decays (N3LO)
a DIS jets (NLO)
0 Heavy Quarkonia (NLO)
o e'e jets & shapes (res. NNLO)
® c.w. precision fits (NNNLO)
v pp—> jets (NLO)
v pp —> tt (NNLO)

a(Q?)

03+
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QCD a(M,) = 0.1181 £ 0.0011
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» High-energy regime
e quarks weakly coupled

e “seen” as individual entities by sufficiently ener-
getic probes

e perturbation theory applicable!

strong force gets weaker
at short distances



¢ Running of the strong coupling

April 2016
o 2 v T decays (N3LO)
Q) a DIS jets (NLO)
o H koni .
o3l N e+Z§Vj§t8ﬁ‘&arshg§; O o | e Strong force get stronger with the
® e¢.w. precision fits (NNNLO) distance
v pp—> jets (NLO)
—> tt (NNLO
v PP (NNLO) e Only bound states are observed (color
021 singlets)
o e As soon as there is enough energy, a
04| s L 1T new quark/anti-quark pair is created
— QCD o g(M,) = 0.1181 = 0.0011

10 Q [GeV] 100 1000

» Low-energy regime a J
e quarks strongly coupled : mesons and hadrons H

e relevant degrees of freedom are hadrons 3 ]
PJ J

e perturbation theory breaks down — need different
techniques



Why lattice QCD ?

Strong interaction is omnipresent

» Hadrons structure and masses

» The « form factors » of hadrons

» The products of high energy collisions : pp — X (hadrons)
» No general exact solution to QCD

Goals of Lattice QCD

» validate QCD as fundamental theory of strong interaction
understand confinement

compute basic hadron properties

study exotic states of matter (quark-gluon plasma, ...)

Ken Wilenn

>
>
» compute electroweak amplitudes involving hadrons
>
>

Advantages .
Disadvantages

v~ Non-perturbative tool ) )
P X Need supercomputers (expensive calculations)

v" Rigorous calculation : it is not a model . . .
X Gives a numbers (not an analytic expression)

V" The precision can be systematically improved



Lattice QCD

Lattice QCD J




QCD Lagrangian

QCD is described by the Lagrangian

L= —%Tr [F F1] + Zaf(x) (Zm - mf) Vi) D =" [0 — 19 A, ()]
f=1

» ;= (u,d,c,s,b,t) : 6 quark flavors
— Spinor field : 1 color index (a = 1,2,3) + 1 Dirac index (a = 1,2,3,4) : (¢5)%

» Af(z) : gluon field
— 1 color index + 1 Lorentz index

> [, = 0,A5 — 0,A + gfabcAZAi . fabe are the structure constants of SU(3)

Looks similar to the QED Lagrangian, except for the additional color index : fup. # 0

Analogous to photon 3-gluon vertex 4-gluon vertex
exchange of QED



Gauge invariance

c:—§kFF1+§)m Smp) () D =" [0, — igA ()

» The Lagrangian is invariant under local rotations in color space : group SU(3)
Q(2)1Q(z) =1
» O(x) = exp (iw*(x)T,) € SU(3) depends on the space-time position

() — ¢(z) = Qz)()

D(x) — §'(2) = D)0 (2) |
) 4y(2)21(z) = ~0,0(2) O (2)

)
2
L
= S
&
!

» Covariant derivative obeys the simple transformation rule

Dyp(w) = Qx) Dy ()
» The Field strengh

1
Fule) = £[D,, D) — Q(e)Fu(z) (@)
» Parallel transporter :

Up(z,y) = Pexp (z’gO/ A, dx“)
P



The path integral formalism

The vacuum expectation value of an observable O is given by

~ 5 [ P1 [ D@Dl 0. v, ) S

» In the previous formula we have to sum over all « paths » (field configurations)
— The weight is given by the action

— factor « i » : quantum interferences between paths

» In QED, on can use perturbation theory to compute (O) order by order in the small
coupling aqep

S[Ua Ea ¢] - SO[U> Ea ¢] + QQED Sint[Ua Ea ¢] +

— Leads to the diagrammatic expansion (Feynman diagrams)

» The strong coupling is not small (at small energies)

— perturbation theory does not work

Idea : evaluate the path integral numerically



The path integral formalism

The vacuum expectation value of an observable O is given by
1 — — Catrr
©) = [ D1 [ DEIDI 0., U] ST

Problems :
» ill-defined object

» factor « i » : large oscillations, difficult to integrate numerically

Solution :
» discretization of the theory on a hypercubic lattice
— this is just a choice of regularization of the theory (like dimensional regularization)

— finite number of degrees of freedom : path integral well defined

— regularization adapted to numerical calculations Im (k°)
» rotate to imaginary time (Wick rotation) i \
X
eZS[Uvavw] — e_SE[Uan@[}] X.Ee (kﬂ)

— no oscillation anymore \
— based on analytic properties of QFT T



Lattice QCD

» QCD (euclidean) Lagrangien :

Ny

L= —%TI“ [F,uz/F“V] + ZEZ(:U) (lD + ml) ¢z($) , lD — 7“ [au _ igAM(x)]

i=1
» Break-up spacetime into a 4D grid : lattice spacing a, spatial extent L, time extent T’
» Lattice spacing : natural UV regulator for the theory

1) Rotational/translational Lorentz symmetries are broken

2) Gauge symmetry is preserved

® @ @ L o
Quark fields (), {(z) on each site
U
- 9%(z) : o = Dirac index ® ® o— ! ® ®
a = color index
= 3 X 4 = 12 complex numbers per site
_ ® ® ' ® °
Glue field Uy(z) on links : parallel transporter w(@
Uy(z) = Pl ™" A0 ¢ gu(s) , o o " o
< 0.1 fm
- A field configuration {U,,} is a set of SU(3) matrices o ® ® o ®
< >

= 9 x 4 = 36 complex numbers per site



Physical size a lattice

® @ ® @ @
U,u Typical lattice

® @ e—>9 o

> L3 x T =48 x 96

» ~ 800 x 10° degrees of freedom
[ @ @ @ @

V() > 0 [0.04:0.1] fm (L € 2 — 6 fm)
a .
® @ @ ® ® Proton radius ~ 0.9 fm
< 0.1 fm

@ @ o @ @
< >




Discretization of the gauge action

Wilson action for gluons

» |n the continuum : |
Semt = -5 / d*z Tr [F,, F"]

» We want to preserve gauge invariance symmetry

Uu(z) = exp (iaAZT“) =1+iaA;T" + ... € SU(3)

Under a gauge transformation Q(z) € SU(3) : ¥(z) — Q(x)y(x)
Up(t) = QU000 (1 + aj) X m— Xrap
Up(@)Uu(z + ajs) = Q) Uy(2)Un(x + afp) Q' (x + 2af1)

X * X+2ap
X*al



Discretization of the gauge action

Wilson action for gluons

» In the continuum : B
t_ 4
» We want to preserve gauge invariance symmetry

Uu(z) = exp (iaA3T") = 1 +iaAjT 4 ... € SU(3)

Xrav _ ‘ ,

Plaquette :
Py (2) = Uu(2)U, (2 + ap)U(x + ad)Uf ()

P

1 () =1+ igoa®F),, — §goa4F2 + O(a)
X 2 X*ap



Discretization of the gauge action

Wilson action for gluons

» In the continuum :

1
Semt = -5 / d'a Tr [F,, F*]
» We want to preserve gauge invariance symmetry

Uu(z) = exp (z’aAZT“) =1+iaA;T" + ... € SU(3)

X+av ‘

Plaquette :
P (x) = Uy (@)U, (z + ap)Uj(z + a2) U}l (z)

! P
X X+ap

» \We define the lattice action

SalU] = QZZ ReTr [l — By, (v)] = S [U] + O(a?)

0 zeA %

() = 1+ igoa®F, — 3950 F, + O(af)

» Other choices are possible. They differ by an O(a?) ambiguity.

— Can be use to reduce discretization errors



Discretization of the fermionic part of the action

Wilson fermions

» In the continuum (free case) :

Seont / d'z P (z) [0, + m] (2)

» ¢)(z) and 1(x) are defined on each site of the lattice

» Naive discretization :

Sp = a* Z@(m) (7405, + m] V()
xeA
U(z + i) = Uz — o)

9,V (x) = 5

» Interacting theory : 9, — D, = 0, — igoA,

U () (x + afi) — Ul (2)¥(x — aji)
2a

Vi¥(x) =

» Gauge invariance is preserved : V,U(z) = Q(2)V,¥(x)

» But maybe too naive ...



» In the free theory, the Dirac operator is given by

~ i : T
D=v0,+m — D(p):aZ’Yusm(apu)'i‘m P =
I
» The propagator (inverse of the Dirac operator) is given by
~ —ia~! S, Yusin (apy) +m » pole at p? = —m? whena — 0

D™ (p) =

a=2" sin? (ap,) + m? » 15 other poles p, € [0,Z] , p € [0, 3]
I

» Interacting theory : doublers can interact with each other via loop corrections
» It is important to remove them properly



» In the free theory, the Dirac operator is given by
™
D=~0,+m — D ZW sin (ap,,) + . Py =Ny

» The propagator (inverse of the Dirac operator) is given by

5_1( ) = —ta” > Yusin (apy,) +m » pole at p* = —m?* when a — 0
p) = 02 Zu Sin2 (ap,) + m? » 15 other poles p, € [0, E] e l0,3]

» Interacting theory : doublers can interact with each other via loop corrections
» It is important to remove them properly

Solution

a
Dy =3V} +m — V.V,

Sp=a* Y (2) Drto(a A breaks chiral symmetry

reEA

— Wilson fermions : (A"%(2)) = (A“"(z)) + O(a)

— We can add a new term to remove leading discretization errors (Wilson-Clover fermions)

(A" (2)) = (A" (2)) + O(a)



Discretizations of the fermionic action

» There are many different actions
» They are all equivalent in the continuum limit ( — QCD!)

» But they have different features at finite value of the lattice spacing

Action Advantages Disadvantages

Staggered v’ computationally very fast X fourth root problem
X complicated Wick contractions

X taste mixing

Wilson-Clover v' computationally fast (x10) X breaks chiral symmetry

X needs operator improvement

Twisted mass fermions V' computationally fast (x10) X breaks chiral symmetry

V" automatic O(a)-improvement X violation of isospin

Domain wall V" improved chiral symmetry X computationally expensive (x100)

Overlap fermions v exact chiral symmetry X computationally expensive (x100)




Discretizations of the fermionic action

» There are many different actions
» They are all equivalent in the continuum limit ( — QCD!)

» But they have different features at finite value of the lattice spacing

Action Advantages Disadvantages

Staggered v/ computationally very fast X fourth root problem
X complicated Wick contractions

X taste mixing

Wilson-Clover v' computationally fast (x10) X breaks chiral symmetry

X needs operator improvement

Twisted mass fermions V' computationally fast (x10) X breaks chiral symmetry

v" automatic O(a)-improvement X violation of isospin

Domain wall V" improved chiral symmetry X computationally expensive (x100)

Overlap fermions v exact chiral symmetry X computationally expensive (x100)

- We now have a discrete formulation of the action v

- How to perform the path integral ?



Gauge invariance

» In the continuum, the fundamental fields are

- 9p(x) (fermions)
- A, (x) (gluons)

Lr= E(CE) (lD + m) Y(r) D=A" [0y —ig A, ()]

» Naive discretization :

Sr =5 Y (Gi(a) (e +ajp) = (a)ye(e — ap) — a'ig Y G(a) A, (@) ()
xeA

+ma' )y (x)y(x)

reEA

reA

» This discretization couples the quark field at neighboring sites

» Breaks local gauge invariance

» Gauge invariance is easy to implement using the link variables U, (z)



Wick contractions

» In LQCD, expectation values are given by the (finite) path integral (Sg is the euclidean action) :

1 — —
(©) =5 [ PP, 7] O3] et
» Sg =50+ SF

» Lattice spacing : natural UV regulator for the theory [rigorous definition of the path integral]

» Integration over fermionic variables

Sk =a* Y (x)Dwip(x)
zEA
— Action quadratic (like in the free theory)

— can be computed using Wick contractions

— Cy(x) = I f t, T i 0
/DW]DW] e %% = det Dy 2() ;«d}%d}) (. 7) (¢751/’)( )

/Dmmmww%me&=—Wthﬂw Hm<::::::>P@

— The results depends on D[U,]

— One needs to compute the inverse of a huge matrix!




Monte Carlo sampling

» Assumes det D ¢~ 9¢ > 0 : it acts as a weight function

» Stochastic evaluation using Monte-Carlo methods :

1) generate n gauge configurations {U/(f)} with a probability distribution P oc ¢~ ¢ Hndet D

2) on each gauge configuration, compute (O) . [U,(f)] (Wick contractions, require D_l[U,(f)])
3) compute expectation values :

n

O = (O)p [U,(f)] = (0) + 60 — statistical error
i=1

The calculation is done in two parts :

Generation of gauge configurations Computation of the observable
» independent of the observable » write the different Wick contractions
» very expensive (n = O(10%)) » compute D~1[U,] on each gauge configuration
» need to be done only once for all » inverse of a huge matrix

» Lattice collaborations : ETMC, CLS, UKQCD, ... » compute the correlation function



Supercomputers

“INES

Centre Informatique National
de |'Enseignement SUP.GILEEIT




Setting the scale

Consider QCD with two degenerate quarks

» The lattice action depends on two free parameters :
— The quark mass : m = m,, = my
— The value of the coupling constant : g
— Those are bare parameters : gg(a), m(a) (lattice spacing = regulator)

» Numerically : only dimensionless quantities can be computed : am,, afs, ...

How to tune the bare parameters on a lattice simulation ?

» Tune the quark mass such that <f’nﬁ) = (%>
lat exp

p My

» Determine a in physical units from (amy )1, and mP»s

— The continuum limit must be taken using a constant line of physics

— My, m, < a” ' while keeping (%)1 constant
P/ lat
» In principle the result depends on the observables chosen to set the scale (not unique)
— At low energies, small effect : decoupling

— Some observables are better than others (statistical precision, experimental accuracy, ...)



Systematic errors in lattice QCD

Statistical error

» Monte-Carlo algorithm : statistical error — ~ 1/v/Npeas

Systematic errors

» Finite lattice spacing : a # 0

— Symanzik's improvement programme

» Finite volume V'

— one should take the infinite volume limit
— XPT can help in some cases (pion dominates FSE)

» Unphysical quark masses
— It is difficult to simulate light quarks

(algorithmic performances, need large volume)

— Use different values of the quark masses

— Again, xPT can help

\ INACCURATE

) 2 ) accurate & & BAEP
@ TV rrecse
T PRECISE

ACCURATE

— Today : many simulations at physical point (But volume effects ...)

» Number of dynamical quarks : « Ny »

— Ny = 0 : quenched approximation. Neglect all fermion loops. Cheap but lost unitarity.

— Ny =2 : only two light quarks u and d in the sea with m, = my.

— Nowadays most simulations used Ny =2 +1, Ny =2+ 1+ 1.
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» Lattice QCD is a specific regularization of QCD
— hypercubic lattice : finite number of degrees of freedom
— adapted to numerical simulations : quarks live on sites, gluons on links
— Explicitly gauge invariant
— Not unique : different formulations exists (important cross-check)

— it is not a model! But :

» The path integral is estimated stochastically using Monte Carlo sampling

— Statistical errors

» Finite lattice spacing, finite volume, Ny = 2,241, ...

— Systematic errors

In principle errors are under control and can be systematically reduced



How to compute an observable in LQCD

How to compute an observable in LQCD : meson masses J




Meson or baryon masses

» This is one of the simplest quantity to extract on the lattice
» Check if QCD can indeed reproduced the experimental patern (with correct quantum numbers)

2000
E <0
1500 Eg_;_z
> ]
= ol
500 B K — e).(periment
] == width
i o input
1T ¢ QCD
0

» Predicts new particle
» Information about the internal structure of resonances (77)



Meson or baryon masses

» Construct an operator O with quantum numbers of a given particle (spin, parity,
momentum, ...)

» O(x) = (x)y5¢(x) : pseudoscalar (pion quantum numbers)
(0|O]m) # 0

» Projection at given momentum : O(t,p) = 3. O(&, t) e*

» Two-point function (O'(t)O(0)) - Lorentz-invariance : O(t) = ef'O(0)e H!

- Completeness relation : 1 =Y~ =|n)(n

(©1(10(0) = Y010 (Dln)

n

(n]O(0)]0)

t —Ht !
=Y (0Ot (0)e )55 (nO0)[0)

= 3 (010 |n) = (n]O[0) 5

Z2
(O1(1)O(0)) = 25 e Fnt % (1 + exponentially suppressed terms)




Pion mass

» Choose O(z) = ¥(x)y30 () CA(t) )

: i = log | =)
> Compute C?(t) = (O(1)O(0)) — ZL ¢~ Fnt ittt = 108 <C(2)(t T a)

D200
0.3 ‘ ‘

0.25 ] =0 e -
0.2 1
015+ @ 1
0.1 F 1

0.05 +

» For t/a > 15 we observe a plateau : extraction of the pion mass am, in lattice units

» At short time separation : contribution from excited states.
— can be further reduced using (0|O|x) # 0 and (0|O|37) ~ 0



Vector meson mass (« p »meson)

» Choose O(x) = ¥(x)yt(x) and project on vanishing momentum

D200

04 ® . ]

0.3 | ° g

Eog(t)

0.2 |

0.1 - LI

10 20 30 40 50

» Similar behavior (exponential decay)

» Signal deteriorates at large time separation ¢/a : noise problem

» In this case noise/signal o< exp [(my — m;)t]

» |t is therefore important to use optimal interpolating operators O with large overlap



Pion mass : non-vanishing momentum

» Finite volume : L? x T

21 =

» momentum takes only discrete values : p'= T
» L/a =64 with L =4.2 fm = Ap ~ 300 MeV : no continuous spectrum !

D200
0.3 ‘ ‘
°
°
0.25 | ] =0 e -
M= -
02 @ ]
°

015 @ ., 1
e :?:.:.:.!nﬁ...w.‘w
0.1} ., 1
. 99000000000000000000000000000000000000
0.05 | |
0oL ! ! ! I I ! ‘ : ‘

» Statistical error increase with |p]
» the range of |p] is also bounded (lattice spacing plays the role of the UV regulator)
» This can be a limitation in form factor calculations



Resonances

» This method works for stable particle (via QCD)

» [, are eigenvalues of the Hamiltonian in finite volume )

» The p meson, and most mesons, are resonances

» Requires more sophisticated methods

170 -
> In a finite box the two pion interacts with
0 [ each other
\ﬂ130 -
© > Discrete spectrum (and discrete momenta)
90
°T7,(0) 4By (2) > There is a strong resonance p(780)
0AT(1) €A (3)
50 OE+(1) E*+(3) > The interaction between the pions depends
0o AT (2) AT (4) on the volume
ol oBf(2) eEt(4)
0 20 25 30 35 40 |Bulavaetal 18]
Ecm/mﬂ'

Formalism developed by [Luescher '91]

Finite volume spectrum <+ mass and width of the resonance
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