
Introduction to Lattice QCD

Antoine Gérardin

Ecole de GIF - Saveurs Lourdes

Clermont-Ferrand, 10-14 September 2018



Overview of lattice QCD

I Why lattice QCD?

I How lattice QCD works

I Limitations of lattice QCD

I Example of observables accessible from lattice QCD

I Masses, decay constant, form factors . . .

I I will not give too many details about algorithmic aspects



Color charge

I QCD is based on the gauge group SU(3) : three colors (red, green, blue)

I Quarks carry a SU(3) color

I Anti-quarks also carry SU(3) (anti)-colors

I Gluons carry a color and a anticolor

→ Gluons carry a color charge : different from QED (photon electrically neutral)

→ Gluons interact with themself via QCD !



Mesons and baryons

I Quarks and gluons are not directly observed in detectors

I We observe only hadrons (bound states, colorless particles)

• Mesons (quark + anti-quark)

green+anti-green blue+anti-blue red+anti-red

u du ddu u du ddu u du ddu

• Baryons (three quarks or three anti-quarks)

red + blue + green

u u
d



Asymptotic freedom

• Running of the strong coupling

strong force gets weaker
at short distances

I High-energy regime

• quarks weakly coupled

• “seen” as individual entities by sufficiently ener-
getic probes

• perturbation theory applicable !



Confinement

• Running of the strong coupling

• Strong force get stronger with the
distance

• Only bound states are observed (color
singlets)

• As soon as there is enough energy, a
new quark/anti-quark pair is created

I Low-energy regime

• quarks strongly coupled : mesons and hadrons

• relevant degrees of freedom are hadrons

• perturbation theory breaks down → need different
techniques



Why lattice QCD?

Strong interaction is omnipresent

I Hadrons structure and masses

I The « form factors » of hadrons

I The products of high energy collisions : pp→ X (hadrons)

I No general exact solution to QCD

Goals of Lattice QCD

I validate QCD as fundamental theory of strong interaction

I understand confinement

I compute basic hadron properties

I compute electroweak amplitudes involving hadrons

I study exotic states of matter (quark-gluon plasma, ...)

I · · ·

Advantages

X Non-perturbative tool
X Rigorous calculation : it is not a model
X The precision can be systematically improved

Disadvantages

7 Need supercomputers (expensive calculations)
7 Gives a numbers (not an analytic expression)



Lattice QCD

Lattice QCD



QCD Lagrangian

QCD is described by the Lagrangian

L = −1

2
Tr [FµνF

µν] +

Nf∑
f=1

ψf(x)
(
i /D −mf

)
ψf(x) , /D = γµ [∂µ − igAµ(x)]

I ψf = (u, d, c, s, b, t) : 6 quark flavors

→ Spinor field : 1 color index (a = 1, 2, 3) + 1 Dirac index (α = 1, 2, 3, 4) : (ψf)
a
α

I Aa
µ(x) : gluon field

→ 1 color index + 1 Lorentz index

I F a
µν = ∂µA

a
ν − ∂νAa

µ + gfabcA
b
µA

c
ν , fabc are the structure constants of SU(3)

Looks similar to the QED Lagrangian, except for the additional color index : fabc 6= 0



Gauge invariance

L = −1

2
Tr [FµνF

µν] +

Nf∑
f=1

ψf(x)
(
i /D −mf

)
ψf(x) , /D = γµ [∂µ − igAµ(x)]

I The Lagrangian is invariant under local rotations in color space : group SU(3)

Ω(x)†Ω(x) = 1

I Ω(x) = exp (iωa(x)Ta) ∈ SU(3) depends on the space-time position x

ψ(x) −→ ψ′(x) = Ω(x)ψ(x)

ψ(x) −→ ψ
′
(x) = ψ(x)Ω†(x)

Aµ(x) −→ A′µ(x) = Ω(x)Aµ(x)Ω†(x)− i

g
∂µΩ(x) Ω†(x)

I Covariant derivative obeys the simple transformation rule
Dµψ(x)→ Ω(x)Dµψ(x)

I The Field strengh

Fµν(x) =
i

g
[Dµ, Dν] −→ Ω(x)Fµν(x)Ω†(x)

I Parallel transporter :

UP (z, y) = P exp

(
ig0

∫
P
Aµ dxµ

)



The path integral formalism

The vacuum expectation value of an observable O is given by

〈O〉 =
1

Z

∫
D[U ]

∫
D[ψ]D[ψ] O[ψ, ψ, U ] eiS[U,ψ,ψ]

I In the previous formula we have to sum over all « paths » (field configurations)

−→ The weight is given by the action

−→ factor « i » : quantum interferences between paths

I In QED, on can use perturbation theory to compute 〈O〉 order by order in the small
coupling αQED

S[U, ψ, ψ] = S0[U, ψ, ψ] + αQED Sint[U, ψ, ψ] + · · ·
−→ Leads to the diagrammatic expansion (Feynman diagrams)

I The strong coupling is not small (at small energies)

−→ perturbation theory does not work

Idea : evaluate the path integral numerically



The path integral formalism

The vacuum expectation value of an observable O is given by

〈O〉 =
1

Z

∫
D[U ]

∫
D[ψ]D[ψ] O[ψ, ψ, U ] eiS[U,ψ,ψ]

Problems :

I ill-defined object

I factor « i » : large oscillations, difficult to integrate numerically

Solution :

I discretization of the theory on a hypercubic lattice

−→ this is just a choice of regularization of the theory (like dimensional regularization)

−→ finite number of degrees of freedom : path integral well defined

−→ regularization adapted to numerical calculations

I rotate to imaginary time (Wick rotation)

eiS[U,ψ,ψ] → e−SE [U,ψ,ψ]

−→ no oscillation anymore
−→ based on analytic properties of QFT



Lattice QCD
I QCD (euclidean) Lagrangien :

L = −1

2
Tr [FµνF

µν ] +

Nf∑
i=1

ψi(x)
(
/D +mi

)
ψi(x) , /D = γµ [∂µ − igAµ(x)]

I Break-up spacetime into a 4D grid : lattice spacing a, spatial extent L, time extent T

I Lattice spacing : natural UV regulator for the theory

1) Rotational/translational Lorentz symmetries are broken

2) Gauge symmetry is preserved

Quark fields ψ(x), ψ(x) on each site

- ψaα(x) : α = Dirac index
a = color index

⇒ 3× 4 = 12 complex numbers per site

Glue field Uµ(x) on links : parallel transporter

Uµ(x) = Peig
∫ x+aµ̂
x

Aν(y)dyν ∈ SU(3)

- A field configuration {Uµ} is a set of SU(3) matrices

⇒ 9× 4 = 36 complex numbers per site

Uµ

ψ(x)

L = 3− 6 fm

a

< 0.1 fm



Physical size a lattice

Uµ

ψ(x)

L = 3− 6 fm

a

< 0.1 fm

Typical lattice

I L3 × T = 483 × 96

I ≈ 800× 106 degrees of freedom

I a ∈ [0.04 : 0.1] fm (L ∈ 2− 6 fm)

Proton radius ≈ 0.9 fm



Discretization of the gauge action

Wilson action for gluons
I In the continuum :

Scont
G = −1

2

∫
d4xTr [FµνF

µν]

I We want to preserve gauge invariance symmetry

Uµ(x) = exp
(
iaAa

µT
a
)

= 1 + iaAa
µT

a + ... ∈ SU(3)

Under a gauge transformation Ω(x) ∈ SU(3) : ψ(x)→ Ω(x)ψ(x)

Uµ(x)→ Ω(x)Uµ(x)Ω†(x+ aµ̂)

Uµ(x)Uµ(x+ aµ̂)→ Ω(x)Uµ(x)Uµ(x+ aµ̂)Ω†(x+ 2aµ̂)



Discretization of the gauge action

Wilson action for gluons
I In the continuum :

Scont
G = −1

2

∫
d4xTr [FµνF

µν]

I We want to preserve gauge invariance symmetry

Uµ(x) = exp
(
iaAa

µT
a
)

= 1 + iaAa
µT

a + ... ∈ SU(3)

Plaquette :

Pµν(x) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν(x)

Pµν(x) = 1 + ig0a
2Fµν − 1

2g
2
0a

4F 2
µν +O(a6)



Discretization of the gauge action

Wilson action for gluons
I In the continuum :

Scont
G = −1

2

∫
d4xTr [FµνF

µν]

I We want to preserve gauge invariance symmetry

Uµ(x) = exp
(
iaAa

µT
a
)

= 1 + iaAa
µT

a + ... ∈ SU(3)

Plaquette :

Pµν(x) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν(x)

Pµν(x) = 1 + ig0a
2Fµν − 1

2g
2
0a

4F 2
µν +O(a6)

I We define the lattice action

SG[U ] =
1

g2
0

∑
x∈Λ

∑
µ,ν

Re Tr [1− Pµν(x)] = Scont
G [U ] +O(a2)

I Other choices are possible. They differ by an O(a2) ambiguity.
→ Can be use to reduce discretization errors



Discretization of the fermionic part of the action

Wilson fermions
I In the continuum (free case) :

Scont
F =

∫
d4x ψ(x) [γµ∂µ +m]ψ(x)

I ψ(x) and ψ(x) are defined on each site of the lattice

I Naive discretization :

SF = a4
∑
x∈Λ

Ψ(x)
[
γµ∂

s
µ +m

]
Ψ(x)

∂sµΨ(x) =
Ψ(x+ aµ̂)−Ψ(x− aµ̂)

2a

I Interacting theory : ∂µ → Dµ = ∂µ − ig0Aµ

∇s
µΨ(x) =

Uµ(x)Ψ(x+ aµ̂)− U †µ(x)Ψ(x− aµ̂)

2a

I Gauge invariance is preserved : ∇µΨ(x)→ Ω(x)∇µΨ(x)

I But maybe too naive ...



Doublers

I In the free theory, the Dirac operator is given by

D = γµ∂
s
µ +m −→ D̃(p) =

i

a

∑
µ

γµ sin (apµ) +m , pµ =
π

L
nµ

I The propagator (inverse of the Dirac operator) is given by

D̃−1(p) =
−ia−1

∑
µ γµ sin (apµ) +m

a−2
∑

µ sin2 (apµ) +m2

I pole at p2 = −m2 when a→ 0

I 15 other poles pµ ∈
[
0, πa
]
, µ ∈ [0, 3]

I Interacting theory : doublers can interact with each other via loop corrections
I It is important to remove them properly



Doublers

I In the free theory, the Dirac operator is given by

D = γµ∂
s
µ +m −→ D̃(p) =

i

a

∑
µ

γµ sin (apµ) +m , pµ =
π

L
nµ

I The propagator (inverse of the Dirac operator) is given by

D̃−1(p) =
−ia−1

∑
µ γµ sin (apµ) +m

a−2
∑

µ sin2 (apµ) +m2

I pole at p2 = −m2 when a→ 0

I 15 other poles pµ ∈
[
0, πa
]
, µ ∈ [0, 3]

I Interacting theory : doublers can interact with each other via loop corrections
I It is important to remove them properly

Solution

DW = γµ∇s
µ +m− a

2
∇∗µ∇µ

SF = a4
∑
x∈Λ

ψ(x)DWψ(x)
breaks chiral symmetry

→ Wilson fermions : 〈Alat(x)〉 = 〈Acont(x)〉+O(a)

→ We can add a new term to remove leading discretization errors (Wilson-Clover fermions)

〈Alat(x)〉 = 〈Acont(x)〉+O(a2)



Discretizations of the fermionic action

I There are many different actions

I They are all equivalent in the continuum limit ( → QCD !)

I But they have different features at finite value of the lattice spacing

Action Advantages Disadvantages

Staggered X computationally very fast 7 fourth root problem

7 complicated Wick contractions

7 taste mixing

Wilson-Clover X computationally fast (×10) 7 breaks chiral symmetry

7 needs operator improvement

Twisted mass fermions X computationally fast (×10) 7 breaks chiral symmetry

X automatic O(a)-improvement 7 violation of isospin

Domain wall X improved chiral symmetry 7 computationally expensive (×100)

Overlap fermions X exact chiral symmetry 7 computationally expensive (×100)



Discretizations of the fermionic action

I There are many different actions

I They are all equivalent in the continuum limit ( → QCD !)

I But they have different features at finite value of the lattice spacing

Action Advantages Disadvantages

Staggered X computationally very fast 7 fourth root problem

7 complicated Wick contractions

7 taste mixing

Wilson-Clover X computationally fast (×10) 7 breaks chiral symmetry

7 needs operator improvement

Twisted mass fermions X computationally fast (×10) 7 breaks chiral symmetry

X automatic O(a)-improvement 7 violation of isospin

Domain wall X improved chiral symmetry 7 computationally expensive (×100)

Overlap fermions X exact chiral symmetry 7 computationally expensive (×100)

- We now have a discrete formulation of the action X

- How to perform the path integral ?



Gauge invariance

I In the continuum, the fundamental fields are

- ψ(x) (fermions)

- Aµ(x) (gluons)

LF = ψ(x)
(
/D +m

)
ψ(x) , /D = γµ [∂µ − igAµ(x)]

I Naive discretization :

SF =
a3

2

∑
x∈Λ

(
ψi(x)γµψ(x+ aµ̂)− ψ(x)γµψ(x− aµ̂)

)
− a4ig

∑
x∈Λ

ψ(x)Aµ(x)ψ(x)

+ma4
∑
x∈Λ

ψ(x)ψ(x)

I This discretization couples the quark field at neighboring sites

I Breaks local gauge invariance

I Gauge invariance is easy to implement using the link variables Uµ(x)



Wick contractions

I In LQCD, expectation values are given by the (finite) path integral (SE is the euclidean action) :

〈O〉 =
1

Z

∫
D[Uµ]D[ψ, ψ] O[Uµ, ψ, ψ] e−SE [Uµ,ψ,ψ]

I SE = SG + SF

I Lattice spacing : natural UV regulator for the theory [rigorous definition of the path integral]

I Integration over fermionic variables
SF = a4

∑
x∈Λ

ψ(x)DWψ(x)

→ Action quadratic (like in the free theory)
→ can be computed using Wick contractions∫
D[ψ]D[ψ] e−SF = detDW∫
D[ψ]D[ψ] ψi(y) ψj(x) e−SF = −

(
D−1
W

)
ij

detDW

C2(x) =
∑
~x

〈
(
ψγ5ψ

)†
(t, ~x)

(
ψγ5ψ

)
(0)〉

P (t)P (0)

→ The results depends on D−1[Uµ]

→ One needs to compute the inverse of a huge matrix !

〈O〉 =
1

Z

∫
D[Uµ] 〈O〉F [Uµ] detD e−SG



Monte Carlo sampling

〈O〉 =
1

Z

∫
D[Uµ] 〈O〉F [Uµ] detD e−SG

I Assumes detD e−SG > 0 : it acts as a weight function

I Stochastic evaluation using Monte-Carlo methods :

1) generate n gauge configurations {U (i)
µ } with a probability distribution P ∝ e−SG+ln detD

2) on each gauge configuration, compute 〈O〉F [U
(i)
µ ] (Wick contractions, require D−1[U

(i)
µ ])

3) compute expectation values :

O =

n∑
i=1

〈O〉F [U
(i)
µ ] = 〈O〉+ δO → statistical error

The calculation is done in two parts :

Generation of gauge configurations

I independent of the observable

I very expensive (n = O(103))

I need to be done only once for all

I Lattice collaborations : ETMC, CLS, UKQCD, ...

Computation of the observable

I write the different Wick contractions

I compute D−1[Uµ] on each gauge configuration

I inverse of a huge matrix

I compute the correlation function



Supercomputers



Setting the scale

Consider QCD with two degenerate quarks

I The lattice action depends on two free parameters :

→ The quark mass : m = mu = md

→ The value of the coupling constant : g0

→ Those are bare parameters : g0(a),m(a) (lattice spacing = regulator)

I Numerically : only dimensionless quantities can be computed : amπ, afπ, ...

How to tune the bare parameters on a lattice simulation ?

I Tune the quark mass such that
(
mπ

mp

)
lat

=
(
mπ

mp

)
exp

I Determine a in physical units from (amπ)lat and mphys
π

→ The continuum limit must be taken using a constant line of physics

→ mπ,mp � a−1 while keeping
(
mπ

mp

)
lat

constant

I In principle the result depends on the observables chosen to set the scale (not unique)

→ At low energies, small effect : decoupling

→ Some observables are better than others (statistical precision, experimental accuracy, ...)



Systematic errors in lattice QCD
Statistical error

I Monte-Carlo algorithm : statistical error → ∼ 1/
√
Nmeas

Systematic errors

I Finite lattice spacing : a 6= 0

→ Symanzik’s improvement programme

I Finite volume V
→ one should take the infinite volume limit
→ χPT can help in some cases (pion dominates FSE)

I Unphysical quark masses
→ It is difficult to simulate light quarks
(algorithmic performances, need large volume)

→ Use different values of the quark masses
→ Again, χPT can help
→ Today : many simulations at physical point (But volume effects ...)

I Number of dynamical quarks : « Nf »

→ Nf = 0 : quenched approximation. Neglect all fermion loops. Cheap but lost unitarity.

→ Nf = 2 : only two light quarks u and d in the sea with mu = md.

→ Nowadays most simulations used Nf = 2 + 1, Nf = 2 + 1 + 1.



Example



Conclusion

I Lattice QCD is a specific regularization of QCD

→ hypercubic lattice : finite number of degrees of freedom

→ adapted to numerical simulations : quarks live on sites, gluons on links

→ Explicitly gauge invariant

→ Not unique : different formulations exists (important cross-check)

→ it is not a model ! But :

I The path integral is estimated stochastically using Monte Carlo sampling

→ Statistical errors

I Finite lattice spacing, finite volume, Nf = 2, 2 + 1, ...

→ Systematic errors

In principle errors are under control and can be systematically reduced



How to compute an observable in LQCD

How to compute an observable in LQCD : meson masses



Meson or baryon masses

I This is one of the simplest quantity to extract on the lattice
I Check if QCD can indeed reproduced the experimental patern (with correct quantum numbers)

I Predicts new particle
I Information about the internal structure of resonances ( ? ?)



Meson or baryon masses

I Construct an operator O with quantum numbers of a given particle (spin, parity,
momentum, ...)

I O(x) = ψ(x)γ5ψ(x) : pseudoscalar (pion quantum numbers)

〈0|O|π〉 6= 0

I Projection at given momentum : O(t, ~p) =
∑

~xO(~x, t) ei~p~x

I Two-point function 〈O†(t)O(0)〉 - Lorentz-invariance : O(t) = eHtO(0)e−Ht

- Completeness relation : 1 =
∑

n
1

2En
|n〉〈n|

〈O†(t)O(0)〉 =
∑
n

〈0|O†(t)|n〉 1

2En
〈n|O(0)|0〉

=
∑
n

〈0|eHtO†(0)e−Ht|n〉 1

2En
〈n|O(0)|0〉

=
∑
n

〈0|Ô†|n〉 1

2En
〈n|Ô|0〉 e−Ent

〈O†(t)O(0)〉 =
Z2
π

2Eπ
e−Eπt × (1 + exponentially suppressed terms)



Pion mass

I Choose O(x) = ψ(x)γ5ψ(x)

I Compute C(2)(t) = 〈O(t)O(0)〉 → |Zπ|2
2Eπ

e−Eπt
ameff = log

(
C(2)(t)

C(2)(t+ a)

)

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25 30 35 40 45
t/a

D200

|~p| = 0

I For t/a > 15 we observe a plateau : extraction of the pion mass amπ in lattice units
I At short time separation : contribution from excited states.
→ can be further reduced using 〈0|O|π〉 6= 0 and 〈0|O|3π〉 ≈ 0



Vector meson mass (« ρ »meson)

I Choose O(x) = ψ(x)γkψ(x) and project on vanishing momentum

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50

E
eff
(t
)

t/a

D200

I Similar behavior (exponential decay)
I Signal deteriorates at large time separation t/a : noise problem
I In this case noise/signal ∝ exp [(mV −mπ)t]

I It is therefore important to use optimal interpolating operators O with large overlap



Pion mass : non-vanishing momentum

I Finite volume : L3 × T
I momentum takes only discrete values : ~p = 2π

L ~n

I L/a = 64 with L = 4.2 fm ⇒ ∆p ≈ 300 MeV : no continuous spectrum !

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25 30 35 40 45
t/a

D200

|~p| = 0
|~p| = 2π

L

I Statistical error increase with |~p|
I the range of |~p| is also bounded (lattice spacing plays the role of the UV regulator)
I This can be a limitation in form factor calculations



Resonances

I This method works for stable particle (via QCD)

I En are eigenvalues of the Hamiltonian in finite volume

I The ρ meson, and most mesons, are resonances

I Requires more sophisticated methods

. In a finite box the two pion interacts with
each other

. Discrete spectrum (and discrete momenta)

. There is a strong resonance ρ(780)

. The interaction between the pions depends
on the volume

[Bulava et al. ’18]

Formalism developed by [Luescher ’91]

Finite volume spectrum ↔ mass and width of the resonance


	Introduction
	Lattice QCD
	How to compute an observable in LQCD

