Introduction to Lattice QCD

Antoine Gérardin

Ecole de GIF - Saveurs Lourdes
Clermont-Ferrand, 10-14 September 2018

- Why lattice QCD ?
- How lattice QCD works
- Limitations of lattice QCD
- Example of observables accessible from lattice QCD
- Masses, decay constant, form factors
- I will not give too many details about algorithmic aspects

Color charge

- QCD is based on the gauge group $\operatorname{SU}(3)$: three colors (red, green, blue)
- Quarks carry a SU(3) color
(q) (q) q
- Anti-quarks also carry SU(3) (anti)-colors
(q) (q) (q)
- Gluons carry a color and a anticolor

\rightarrow Gluons carry a color charge : different from QED (photon electrically neutral) \rightarrow Gluons interact with themself via QCD !

Mesons and baryons

- Quarks and gluons are not directly observed in detectors
- We observe only hadrons (bound states, colorless particles)
- Mesons (quark + anti-quark)

blue+anti-blue

- Baryons (three quarks or three anti-quarks)

$$
\text { red }+ \text { blue }+ \text { green }
$$

Asymptotic freedom

- Running of the strong coupling

- High-energy regime
- quarks weakly coupled
- "seen" as individual entities by sufficiently energetic probes
- perturbation theory applicable!
strong force gets weaker at short distances

- Running of the strong coupling

- Strong force get stronger with the distance
- Only bound states are observed (color singlets)
- As soon as there is enough energy, a new quark/anti-quark pair is created
- Low-energy regime
- quarks strongly coupled: mesons and hadrons
- relevant degrees of freedom are hadrons
- perturbation theory breaks down \rightarrow need different techniques

Why lattice QCD ?

Strong interaction is omnipresent

- Hadrons structure and masses
- The «form factors » of hadrons
- The products of high energy collisions : $p p \rightarrow X$ (hadrons)
- No general exact solution to QCD

Goals of Lattice QCD

- validate QCD as fundamental theory of strong interaction
- understand confinement
- compute basic hadron properties
- compute electroweak amplitudes involving hadrons
- study exotic states of matter (quark-gluon plasma, ...)

Disadvantages

X Need supercomputers (expensive calculations)
X Gives a numbers (not an analytic expression)

Lattice QCD

Lattice QCD

QCD Lagrangian

QCD is described by the Lagrangian

$$
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left[F_{\mu \nu} F^{\mu \nu}\right]+\sum_{f=1}^{N_{f}} \bar{\psi}_{f}(x)\left(i \not D-m_{f}\right) \psi_{f}(x) \quad, \quad \not D=\gamma^{\mu}\left[\partial_{\mu}-i g A_{\mu}(x)\right]
$$

- $\psi_{f}=(u, d, c, s, b, t): 6$ quark flavors
\rightarrow Spinor field : 1 color index $(a=1,2,3)+1$ Dirac index $(\alpha=1,2,3,4):\left(\psi_{f}\right)_{\alpha}^{a}$
- $A_{\mu}^{a}(x)$: gluon field
$\rightarrow 1$ color index +1 Lorentz index
- $F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f_{a b c} A_{\mu}^{b} A_{\nu}^{c}, \quad f_{a b c}$ are the structure constants of SU(3)

Looks similar to the QED Lagrangian, except for the additional color index : $f_{a b c} \neq 0$

Analogous to photon exchange of QED

3-gluon vertex

4-gluon vertex

$$
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left[F_{\mu \nu} F^{\mu \nu}\right]+\sum_{f=1}^{N_{f}} \bar{\psi}_{f}(x)\left(i \not D-m_{f}\right) \psi_{f}(x) \quad, \quad \not D=\gamma^{\mu}\left[\partial_{\mu}-i g A_{\mu}(x)\right]
$$

- The Lagrangian is invariant under local rotations in color space : group SU(3)

$$
\Omega(x)^{\dagger} \Omega(x)=1
$$

- $\Omega(x)=\exp \left(i \omega^{a}(x) T_{a}\right) \in \operatorname{SU}(3)$ depends on the space-time position x

$$
\begin{aligned}
\psi(x) \longrightarrow \psi^{\prime}(x) & =\Omega(x) \psi(x) \\
\bar{\psi}(x) \longrightarrow \bar{\psi}^{\prime}(x) & =\bar{\psi}(x) \Omega^{\dagger}(x) \\
A_{\mu}(x) \longrightarrow A_{\mu}^{\prime}(x) & =\Omega(x) A_{\mu}(x) \Omega^{\dagger}(x)-\frac{i}{g} \partial_{\mu} \Omega(x) \Omega^{\dagger}(x)
\end{aligned}
$$

- Covariant derivative obeys the simple transformation rule

$$
D_{\mu} \psi(x) \rightarrow \Omega(x) D_{\mu} \psi(x)
$$

- The Field strengh

$$
F_{\mu \nu}(x)=\frac{i}{g}\left[D_{\mu}, D_{\nu}\right] \longrightarrow \Omega(x) F_{\mu \nu}(x) \Omega^{\dagger}(x)
$$

- Parallel transporter:

$$
U_{P}(z, y)=\mathcal{P} \exp \left(i g_{0} \int_{P} A_{\mu} \mathrm{d} x^{\mu}\right)
$$

The path integral formalism

The vacuum expectation value of an observable \mathcal{O} is given by

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathcal{D}[U] \int \mathcal{D}[\bar{\psi}] \mathcal{D}[\psi] \mathcal{O}[\bar{\psi}, \psi, U] e^{i S[U, \bar{\psi}, \psi]}
$$

- In the previous formula we have to sum over all «paths »(field configurations)
\longrightarrow The weight is given by the action
\longrightarrow factor « i »: quantum interferences between paths
- In QED, on can use perturbation theory to compute $\langle\mathcal{O}\rangle$ order by order in the small coupling $\alpha_{\text {QED }}$

$$
S[U, \bar{\psi}, \psi]=S_{0}[U, \bar{\psi}, \psi]+\alpha_{\mathrm{QED}} S_{\mathrm{int}}[U, \bar{\psi}, \psi]+\cdots
$$

\longrightarrow Leads to the diagrammatic expansion (Feynman diagrams)

- The strong coupling is not small (at small energies)
\longrightarrow perturbation theory does not work

Idea : evaluate the path integral numerically

The path integral formalism

The vacuum expectation value of an observable \mathcal{O} is given by

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathcal{D}[U] \int \mathcal{D}[\bar{\psi}] \mathcal{D}[\psi] \mathcal{O}[\bar{\psi}, \psi, U] e^{i S[U, \bar{\psi}, \psi]}
$$

Problems

- ill-defined object
- factor «i»: large oscillations, difficult to integrate numerically

Solution:

- discretization of the theory on a hypercubic lattice
\longrightarrow this is just a choice of regularization of the theory (like dimensional regularization)
\longrightarrow finite number of degrees of freedom: path integral well defined
\longrightarrow regularization adapted to numerical calculations
- rotate to imaginary time (Wick rotation)

$$
e^{i S[U, \bar{\psi}, \psi]} \rightarrow e^{-S_{E}[U, \bar{\psi}, \psi]}
$$

\longrightarrow no oscillation anymore
\longrightarrow based on analytic properties of QFT

- QCD (euclidean) Lagrangien :

$$
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left[F_{\mu \nu} F^{\mu \nu}\right]+\sum_{i=1}^{N_{f}} \bar{\psi}_{i}(x)\left(\not D+m_{i}\right) \psi_{i}(x) \quad, \quad \not D=\gamma^{\mu}\left[\partial_{\mu}-i g A_{\mu}(x)\right]
$$

- Break-up spacetime into a 4D grid : lattice spacing a, spatial extent L, time extent T
- Lattice spacing : natural UV regulator for the theory

1) Rotational/translational Lorentz symmetries are broken
2) Gauge symmetry is preserved

Quark fields $\psi(x), \bar{\psi}(x)$ on each site

- $\psi_{\alpha}^{a}(x): \alpha=$ Dirac index $a=$ color index
$\Rightarrow 3 \times 4=12$ complex numbers per site
Glue field $U_{\mu}(x)$ on links : parallel transporter

$$
U_{\mu}(x)=\mathcal{P} e^{i g \int_{x}^{x+a \hat{\mu}}} A_{\nu}(y) \mathrm{d} y^{\nu} \in \mathrm{SU}(3)
$$

- A field configuration $\left\{U_{\mu}\right\}$ is a set of $\operatorname{SU}(3)$ matrices $\Rightarrow 9 \times 4=36$ complex numbers per site

Typical lattice

- $L^{3} \times T=48^{3} \times 96$
- $\approx 800 \times 10^{6}$ degrees of freedom
- $a \in[0.04: 0.1] \mathrm{fm}(L \in 2-6 \mathrm{fm})$

Proton radius $\approx 0.9 \mathrm{fm}$

Discretization of the gauge action

Wilson action for gluons

- In the continuum :

$$
S_{G}^{\mathrm{cont}}=-\frac{1}{2} \int \mathrm{~d}^{4} x \operatorname{Tr}\left[F_{\mu \nu} F^{\mu \nu}\right]
$$

- We want to preserve gauge invariance symmetry

$$
U_{\mu}(x)=\exp \left(i a A_{\mu}^{a} T^{a}\right)=1+i a A_{\mu}^{a} T^{a}+\ldots \in \mathrm{SU}(3)
$$

Under a gauge transformation $\Omega(x) \in \mathrm{SU}(3): \psi(x) \rightarrow \Omega(x) \psi(x)$
$U_{\mu}(x) \rightarrow \Omega(x) U_{\mu}(x) \Omega^{\dagger}(x+a \hat{\mu}) \quad \mathbf{X} \longrightarrow \mathbf{X}+\boldsymbol{a} \mu$
$U_{\mu}(x) U_{\mu}(x+a \hat{\mu}) \rightarrow \Omega(x) U_{\mu}(x) U_{\mu}(x+a \hat{\mu}) \Omega^{\dagger}(x+2 a \hat{\mu})$

Discretization of the gauge action

Wilson action for gluons

- In the continuum :

$$
S_{G}^{\mathrm{cont}}=-\frac{1}{2} \int \mathrm{~d}^{4} x \operatorname{Tr}\left[F_{\mu \nu} F^{\mu \nu}\right]
$$

- We want to preserve gauge invariance symmetry

$$
U_{\mu}(x)=\exp \left(i a A_{\mu}^{a} T^{a}\right)=1+i a A_{\mu}^{a} T^{a}+\ldots \in \mathrm{SU}(3)
$$

Plaquette:

$$
\begin{aligned}
& P_{\mu \nu}(x)=U_{\mu}(x) U_{\nu}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x+a \hat{\nu}) U_{\nu}^{\dagger}(x) \\
& P_{\mu \nu}(x)=1+i g_{0} a^{2} F_{\mu \nu}-\frac{1}{2} g_{0}^{2} a^{4} F_{\mu \nu}^{2}+\mathcal{O}\left(a^{6}\right)
\end{aligned}
$$

Discretization of the gauge action

Wilson action for gluons

- In the continuum :

$$
S_{G}^{\mathrm{cont}}=-\frac{1}{2} \int \mathrm{~d}^{4} x \operatorname{Tr}\left[F_{\mu \nu} F^{\mu \nu}\right]
$$

- We want to preserve gauge invariance symmetry

$$
U_{\mu}(x)=\exp \left(i a A_{\mu}^{a} T^{a}\right)=1+i a A_{\mu}^{a} T^{a}+\ldots \in \operatorname{SU}(3)
$$

Plaquette:

$$
\begin{aligned}
& P_{\mu \nu}(x)=U_{\mu}(x) U_{\nu}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x+a \hat{\nu}) U_{\nu}^{\dagger}(x) \\
& P_{\mu \nu}(x)=1+i g_{0} a^{2} F_{\mu \nu}-\frac{1}{2} g_{0}^{2} a^{4} F_{\mu \nu}^{2}+\mathcal{O}\left(a^{6}\right)
\end{aligned}
$$

- We define the lattice action

$$
S_{G}[U]=\frac{1}{g_{0}^{2}} \sum_{x \in \Lambda} \sum_{\mu, \nu} \operatorname{Re} \operatorname{Tr}\left[1-P_{\mu \nu}(x)\right]=S_{G}^{\text {cont }}[U]+\mathcal{O}\left(a^{2}\right)
$$

- Other choices are possible. They differ by an $\mathcal{O}\left(a^{2}\right)$ ambiguity.
\rightarrow Can be use to reduce discretization errors

Wilson fermions

- In the continuum (free case):

$$
S_{F}^{\mathrm{cont}}=\int \mathrm{d}^{4} x \bar{\psi}(x)\left[\gamma_{\mu} \partial_{\mu}+m\right] \psi(x)
$$

- $\psi(x)$ and $\psi(x)$ are defined on each site of the lattice
- Naive discretization :

$$
\begin{aligned}
& S_{F}=a^{4} \sum_{x \in \Lambda} \bar{\Psi}(x)\left[\gamma_{\mu} \partial_{\mu}^{s}+m\right] \Psi(x) \\
& \partial_{\mu}^{s} \Psi(x)=\frac{\Psi(x+a \hat{\mu})-\Psi(x-a \hat{\mu})}{2 a}
\end{aligned}
$$

- Interacting theory: $\partial_{\mu} \rightarrow \mathcal{D}_{\mu}=\partial_{\mu}-i g_{0} A_{\mu}$

$$
\nabla_{\mu}^{s} \Psi(x)=\frac{U_{\mu}(x) \Psi(x+a \hat{\mu})-U_{\mu}^{\dagger}(x) \Psi(x-a \hat{\mu})}{2 a}
$$

- Gauge invariance is preserved : $\nabla_{\mu} \Psi(x) \rightarrow \Omega(x) \nabla_{\mu} \Psi(x)$
- But maybe too naive ...
- In the free theory, the Dirac operator is given by

$$
D=\gamma_{\mu} \partial_{\mu}^{s}+m \quad \longrightarrow \quad \widetilde{D}(p)=\frac{i}{a} \sum_{\mu} \gamma_{\mu} \sin \left(a p_{\mu}\right)+m \quad, \quad p_{\mu}=\frac{\pi}{L} n_{\mu}
$$

- The propagator (inverse of the Dirac operator) is given by

$$
\begin{aligned}
\widetilde{D}^{-1}(p)=\frac{-i a^{-1} \sum_{\mu} \gamma_{\mu} \sin \left(a p_{\mu}\right)+m}{a^{-2} \sum_{\mu} \sin ^{2}\left(a p_{\mu}\right)+m^{2}} & \text { pole at } p^{2}=-m^{2} \text { when } a \rightarrow 0 \\
& 15 \text { other poles } p_{\mu} \in\left[0, \frac{\pi}{a}\right], \mu \in[0,3]
\end{aligned}
$$

- Interacting theory : doublers can interact with each other via loop corrections
- It is important to remove them properly
- In the free theory, the Dirac operator is given by

$$
D=\gamma_{\mu} \partial_{\mu}^{s}+m \quad \longrightarrow \quad \widetilde{D}(p)=\frac{i}{a} \sum_{\mu} \gamma_{\mu} \sin \left(a p_{\mu}\right)+m \quad, \quad p_{\mu}=\frac{\pi}{L} n_{\mu}
$$

- The propagator (inverse of the Dirac operator) is given by

$$
\widetilde{D}^{-1}(p)=\frac{-i a^{-1} \sum_{\mu} \gamma_{\mu} \sin \left(a p_{\mu}\right)+m}{a^{-2} \sum_{\mu} \sin ^{2}\left(a p_{\mu}\right)+m^{2}} \quad \text { pole at } p^{2}=-m^{2} \text { when } a \rightarrow 0
$$

- Interacting theory: doublers can interact with each other via loop corrections
- It is important to remove them properly

Solution

$$
\begin{aligned}
D_{W} & =\gamma_{\mu} \nabla_{\mu}^{s}+m-\frac{a}{2} \nabla_{\mu}^{*} \nabla_{\mu} \\
S_{F} & =a^{4} \sum_{x \in \Lambda} \bar{\psi}(x) D_{W} \psi(x)
\end{aligned}
$$

\rightarrow Wilson fermions : $\left\langle\mathcal{A}^{\text {lat }}(x)\right\rangle=\left\langle\mathcal{A}^{\text {cont }}(x)\right\rangle+\mathcal{O}(a)$
\rightarrow We can add a new term to remove leading discretization errors (Wilson-Clover fermions)

$$
\left\langle\mathcal{A}^{\text {lat }}(x)\right\rangle=\left\langle\mathcal{A}^{\text {cont }}(x)\right\rangle+\mathcal{O}\left(a^{2}\right)
$$

- There are many different actions
- They are all equivalent in the continuum limit $(\rightarrow \mathrm{QCD}!)$
- But they have different features at finite value of the lattice spacing

Action	Advantages	Disadvantages
Staggered	\checkmark computationally very fast	\boldsymbol{X} fourth root problem
		\boldsymbol{X} complicated Wick contractions
	\boldsymbol{X} taste mixing	
Wilson-Clover	\checkmark computationally fast $(\times 10)$	\boldsymbol{X} breaks chiral symmetry
		\boldsymbol{X} needs operator improvement
Twisted mass fermions	\checkmark computationally fast $(\times 10)$	\boldsymbol{X} breaks chiral symmetry
	\checkmark automatic $O($ a $)$-improvement	\boldsymbol{X} violation of isospin
Domain wall	\checkmark improved chiral symmetry	\boldsymbol{X} computationally expensive $(\times 100)$
Overlap fermions	\checkmark exact chiral symmetry	\boldsymbol{X} computationally expensive $(\times 100)$

- There are many different actions
- They are all equivalent in the continuum limit $(\rightarrow \mathrm{QCD}!)$
- But they have different features at finite value of the lattice spacing

Action	Advantages	Disadvantages
Staggered	\checkmark computationally very fast	\boldsymbol{X} fourth root problem
		\boldsymbol{X} complicated Wick contractions
	\boldsymbol{X} taste mixing	
Wilson-Clover	\checkmark computationally fast $(\times 10)$	\boldsymbol{X} breaks chiral symmetry
		\boldsymbol{X} needs operator improvement
Twisted mass fermions	\checkmark computationally fast $(\times 10)$	\boldsymbol{X} breaks chiral symmetry
	\checkmark automatic $O($ a $)$-improvement	\boldsymbol{X} violation of isospin
Domain wall	\checkmark improved chiral symmetry	\boldsymbol{X} computationally expensive $(\times 100)$
Overlap fermions	\checkmark exact chiral symmetry	\boldsymbol{X} computationally expensive $(\times 100)$

- We now have a discrete formulation of the action
- How to perform the path integral?

Gauge invariance

- In the continuum, the fundamental fields are
- $\psi(x)$ (fermions)
- $A_{\mu}(x)$ (gluons)

$$
\mathcal{L}_{F}=\bar{\psi}(x)(\not D+m) \psi(x) \quad, \quad \not D=\gamma^{\mu}\left[\partial_{\mu}-i g A_{\mu}(x)\right]
$$

- Naive discretization :

$$
\begin{aligned}
S_{F}=\frac{a^{3}}{2} \sum_{x \in \Lambda}\left(\bar{\psi}_{i}(x) \gamma_{\mu} \psi(x+a \hat{\mu})-\bar{\psi}(x) \gamma_{\mu} \psi(x-a \hat{\mu})\right)-a^{4} i g \sum_{x \in \Lambda} & \bar{\psi}(x) A_{\mu}(x) \psi(x) \\
& +m a^{4} \sum_{x \in \Lambda} \bar{\psi}(x) \psi(x)
\end{aligned}
$$

- This discretization couples the quark field at neighboring sites
- Breaks local gauge invariance
- Gauge invariance is easy to implement using the link variables $U_{\mu}(x)$
- In LQCD, expectation values are given by the (finite) path integral (S_{E} is the euclidean action) :

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathcal{D}\left[U_{\mu}\right] \mathcal{D}[\psi, \bar{\psi}] \mathcal{O}\left[U_{\mu}, \psi, \bar{\psi}\right] e^{-S_{E}\left[U_{\mu}, \psi, \bar{\psi}\right]}
$$

- $S_{E}=S_{G}+S_{F}$
- Lattice spacing : natural UV regulator for the theory [rigorous definition of the path integral]
- Integration over fermionic variables

$$
S_{F}=a^{4} \sum_{x \in \Lambda} \bar{\psi}(x) D_{W} \psi(x)
$$

\rightarrow Action quadratic (like in the free theory)
\rightarrow can be computed using Wick contractions

$$
\begin{array}{ll}
\int D[\psi] D[\bar{\psi}] e^{-S_{F}}=\operatorname{det} D_{W} & C_{2}(x)=\sum_{\vec{x}}\left\langle\left(\bar{\psi} \gamma_{5} \psi\right)^{\dagger}(t, \vec{x})\left(\bar{\psi} \gamma_{5} \psi\right)(0)\right\rangle \\
\int D[\psi] D[\bar{\psi}] \psi_{i}(y) \bar{\psi}_{j}(x) e^{-S_{F}}=-\left(D_{W}^{-1}\right)_{i j} \operatorname{det} D_{W} & P(0)
\end{array}
$$

\rightarrow The results depends on $D^{-1}\left[U_{\mu}\right]$
\rightarrow One needs to compute the inverse of a huge matrix!

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathcal{D}\left[U_{\mu}\right]\langle\mathcal{O}\rangle_{F}\left[U_{\mu}\right] \operatorname{det} D e^{-S_{G}}
$$

Monte Carlo sampling

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathcal{D}\left[U_{\mu}\right]\langle\mathcal{O}\rangle_{F}\left[U_{\mu}\right] \operatorname{det} D e^{-S_{G}}
$$

- Assumes $\operatorname{det} D e^{-S_{G}}>0$: it acts as a weight function
- Stochastic evaluation using Monte-Carlo methods :

1) generate n gauge configurations $\left\{U_{\mu}^{(i)}\right\}$ with a probability distribution $\mathcal{P} \propto e^{-S_{G}+\ln \operatorname{det} D}$
2) on each gauge configuration, compute $\langle\mathcal{O}\rangle_{F}\left[U_{\mu}^{(i)}\right]$ (Wick contractions, require $D^{-1}\left[U_{\mu}^{(i)}\right]$)
3) compute expectation values :

$$
\overline{\mathcal{O}}=\sum_{i=1}^{n}\langle\mathcal{O}\rangle_{F}\left[U_{\mu}^{(i)}\right]=\langle\mathcal{O}\rangle+\delta \mathcal{O} \rightarrow \text { statistical error }
$$

The calculation is done in two parts :
Generation of gauge configurations
Computation of the observable

- independent of the observable
- very expensive ($n=\mathcal{O}\left(10^{3}\right)$)
- need to be done only once for all
- write the different Wick contractions
- Lattice collaborations : ETMC, CLS, UKQCD, ...
- compute the correlation function

Supercomputers

Setting the scale

Consider QCD with two degenerate quarks

- The lattice action depends on two free parameters:
\rightarrow The quark mass : $m=m_{u}=m_{d}$
\rightarrow The value of the coupling constant : g_{0}
\rightarrow Those are bare parameters : $g_{0}(a), m(a)$ (lattice spacing $=$ regulator)
- Numerically : only dimensionless quantities can be computed : $a m_{\pi}, a f_{\pi}, \ldots$

How to tune the bare parameters on a lattice simulation?

- Tune the quark mass such that $\left(\frac{m_{\pi}}{m_{p}}\right)_{\text {lat }}=\left(\frac{m_{\pi}}{m_{p}}\right)_{\exp }$
- Determine a in physical units from $\left(a m_{\pi}\right)_{\text {lat }}$ and $m_{\pi}^{\text {phys }}$
\rightarrow The continuum limit must be taken using a constant line of physics
$\rightarrow m_{\pi}, m_{p} \ll a^{-1}$ while keeping $\left(\frac{m_{\pi}}{m_{p}}\right)_{\text {lat }}$ constant
- In principle the result depends on the observables chosen to set the scale (not unique)
\rightarrow At low energies, small effect: decoupling
\rightarrow Some observables are better than others (statistical precision, experimental accuracy, ...)

Statistical error

- Monte-Carlo algorithm : statistical error $\rightarrow \sim 1 / \sqrt{N_{\text {meas }}}$

Systematic errors

- Finite lattice spacing : $a \neq 0$
\rightarrow Symanzik's improvement programme
- Finite volume V
\rightarrow one should take the infinite volume limit
$\rightarrow \chi$ PT can help in some cases (pion dominates FSE)
- Unphysical quark masses
\rightarrow It is difficult to simulate light quarks
(algorithmic performances, need large volume)
\rightarrow Use different values of the quark masses

\rightarrow Again, χ PT can help
\rightarrow Today : many simulations at physical point (But volume effects ...)
- Number of dynamical quarks : 《 N_{f} »
$\rightarrow N_{f}=0$: quenched approximation. Neglect all fermion loops. Cheap but lost unitarity.
$\rightarrow N_{f}=2$: only two light quarks u and d in the sea with $m_{u}=m_{d}$.
\rightarrow Nowadays most simulations used $N_{f}=2+1, N_{f}=2+1+1$.

Example

$f_{\mathrm{B}}^{\delta}(y, a) / \mathrm{GeV}$

- Lattice QCD is a specific regularization of QCD
\rightarrow hypercubic lattice: finite number of degrees of freedom
\rightarrow adapted to numerical simulations: quarks live on sites, gluons on links
\rightarrow Explicitly gauge invariant
\rightarrow Not unique: different formulations exists (important cross-check)
\rightarrow it is not a model! But :
- The path integral is estimated stochastically using Monte Carlo sampling
\rightarrow Statistical errors
- Finite lattice spacing, finite volume, $N_{f}=2,2+1, \ldots$
\rightarrow Systematic errors

In principle errors are under control and can be systematically reduced

How to compute an observable in LQCD : meson masses

Meson or baryon masses

- This is one of the simplest quantity to extract on the lattice
- Check if QCD can indeed reproduced the experimental patern (with correct quantum numbers)

- Predicts new particle
- Information about the internal structure of resonances (??)

Meson or baryon masses

- Construct an operator \mathcal{O} with quantum numbers of a given particle (spin, parity, momentum, ...)
- $\mathcal{O}(x)=\bar{\psi}(x) \gamma_{5} \psi(x)$: pseudoscalar (pion quantum numbers)

$$
\langle 0| \mathcal{O}|\pi\rangle \neq 0
$$

- Projection at given momentum : $\mathcal{O}(t, \vec{p})=\sum_{\vec{x}} \mathcal{O}(\vec{x}, t) e^{i \vec{p} \vec{x}}$
- Two-point function $\left\langle\mathcal{O}^{\dagger}(t) \mathcal{O}(0)\right\rangle \quad$ - Lorentz-invariance : $\mathcal{O}(t)=e^{H t} \mathcal{O}(0) e^{-H t}$
- Completeness relation : $1=\sum_{n} \frac{1}{2 E_{n}}|n\rangle\langle n|$

$$
\begin{aligned}
\left\langle\mathcal{O}^{\dagger}(t) \mathcal{O}(0)\right\rangle & =\sum_{n}\langle 0| \mathcal{O}^{\dagger}(t)|n\rangle \frac{1}{2 E_{n}}\langle n| \mathcal{O}(0)|0\rangle \\
& =\sum_{n}\langle 0| e^{H t} \mathcal{O}^{\dagger}(0) e^{-H t}|n\rangle \frac{1}{2 E_{n}}\langle n| \mathcal{O}(0)|0\rangle \\
& =\sum_{n}\langle 0| \hat{\mathcal{O}}^{\dagger}|n\rangle \frac{1}{2 E_{n}}\langle n| \hat{\mathcal{O}}|0\rangle e^{-E_{n} t}
\end{aligned}
$$

$$
\left\langle\mathcal{O}^{\dagger}(t) \mathcal{O}(0)\right\rangle=\frac{Z_{\pi}^{2}}{2 E_{\pi}} e^{-E_{\pi} t} \times(1+\text { exponentially suppressed terms })
$$

- Choose $\mathcal{O}(x)=\bar{\psi}(x) \gamma_{5} \psi(x)$
- Compute $C^{(2)}(t)=\langle\mathcal{O}(t) \mathcal{O}(0)\rangle \rightarrow \frac{\left|Z_{\pi}\right|^{2}}{2 E_{\pi}} e^{-E_{\pi} t} \quad a m_{\mathrm{eff}}=\log \left(\frac{C^{(2)}(t)}{C^{(2)}(t+a)}\right)$

$$
a m_{\mathrm{eff}}=\log \left(\frac{C^{(2)}(t)}{C^{(2)}(t+a)}\right)
$$

D200

- For $t / a>15$ we observe a plateau: extraction of the pion mass $a m_{\pi}$ in lattice units
- At short time separation: contribution from excited states.
\rightarrow can be further reduced using $\langle 0| \mathcal{O}|\pi\rangle \neq 0$ and $\langle 0| \mathcal{O}|3 \pi\rangle \approx 0$

Vector meson mass ($<\rho »$ meson)

- Choose $\mathcal{O}(x)=\bar{\psi}(x) \gamma_{k} \psi(x)$ and project on vanishing momentum

- Similar behavior (exponential decay)
- Signal deteriorates at large time separation t / a : noise problem
- In this case noise/signal $\propto \exp \left[\left(m_{V}-m_{\pi}\right) t\right]$
- It is therefore important to use optimal interpolating operators \mathcal{O} with large overlap

Pion mass : non-vanishing momentum

- Finite volume : $L^{3} \times T$
- momentum takes only discrete values : $\vec{p}=\frac{2 \pi}{L} \vec{n}$
- $L / a=64$ with $L=4.2 \mathrm{fm} \Rightarrow \Delta p \approx 300 \mathrm{MeV}$: no continuous spectrum !

- Statistical error increase with $|\vec{p}|$
- the range of $|\vec{p}|$ is also bounded (lattice spacing plays the role of the UV regulator)
- This can be a limitation in form factor calculations

Resonances

- This method works for stable particle (via QCD)
- E_{n} are eigenvalues of the Hamiltonian in finite volume
- The ρ meson, and most mesons, are resonances
- Requires more sophisticated methods

Formalism developed by [Luescher '91]
Finite volume spectrum \leftrightarrow mass and width of the resonance

