Introduction to Lattice QCD

Antoine Gérardin

Ecole de GIF - Saveurs Lourdes Clermont-Ferrand, 10-14 September 2018

- ► Why lattice QCD?
- ► How lattice QCD works
- ► Limitations of lattice QCD
- ► Example of observables accessible from lattice QCD
- ► Masses, decay constant, form factors . . .
- ▶ I will not give too many details about algorithmic aspects

Color charge

- ▶ QCD is based on the gauge group SU(3) : three colors (red, green, blue)
- ► Quarks carry a SU(3) color

► Anti-quarks also carry SU(3) (anti)-colors

► **Gluons** carry a color and a anticolor

- \rightarrow Gluons carry a color charge : different from QED (photon electrically neutral)
- \rightarrow Gluons interact with themself via QCD !

Mesons and baryons

- ► Quarks and gluons are not directly observed in detectors
- ▶ We observe only hadrons (bound states, colorless particles)
 - <u>Mesons</u> (quark + anti-quark)

• Baryons (three quarks or three anti-quarks)

red + blue + green

• Running of the strong coupling

► High-energy regime

- quarks weakly coupled
- "seen" as individual entities by sufficiently energetic probes
- perturbation theory applicable !

strong force gets weaker at short distances

Confinement

• Running of the strong coupling

• Strong force get stronger with the distance

- Only bound states are observed (color singlets)
- As soon as there is enough energy, a new quark/anti-quark pair is created

► Low-energy regime

- quarks strongly coupled : mesons and hadrons
- relevant degrees of freedom are hadrons
- \bullet perturbation theory breaks down \rightarrow need different techniques

Why lattice QCD?

Strong interaction is omnipresent

- ► Hadrons structure and masses
- ► The « form factors » of hadrons
- ▶ The products of high energy collisions : $pp \rightarrow X$ (hadrons)
- ► No general exact solution to QCD

Goals of Lattice QCD

- ▶ validate QCD as fundamental theory of strong interaction
- understand confinement
- compute basic hadron properties
- compute electroweak amplitudes involving hadrons
- ▶ study exotic states of matter (quark-gluon plasma, ...)

Advantages

- \checkmark Non-perturbative tool
- \checkmark Rigorous calculation : it is not a model
- \checkmark The precision can be systematically improved

Ken Wilson

Disadvantages

- X Need supercomputers (expensive calculations)
- X Gives a numbers (not an analytic expression)

Lattice QCD

QCD Lagrangian

QCD is described by the Lagrangian

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \left[\mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu} \right] + \sum_{f=1}^{N_f} \overline{\psi}_f(x) \left(i \mathbf{D} - m_f \right) \psi_f(x) \quad , \quad \mathbf{D} = \gamma^{\mu} \left[\partial_{\mu} - ig \mathbf{A}_{\mu}(x) \right]$$

▶ $\psi_f = (u, d, c, s, b, t)$: 6 quark flavors

 \rightarrow Spinor field : 1 color index (a = 1, 2, 3) + 1 Dirac index $(\alpha = 1, 2, 3, 4) : (\psi_f)^a_{\alpha}$

- ► $A^a_{\mu}(x)$: gluon field
 - \rightarrow 1 color index + 1 Lorentz index
- ► $F^a_{\mu\nu} = \partial_\mu A^a_\nu \partial_\nu A^a_\mu + g f_{abc} A^b_\mu A^c_\nu$, f_{abc} are the structure constants of SU(3)

Looks similar to the QED Lagrangian, except for the additional color index : $f_{abc} \neq 0$

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \left[\mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu} \right] + \sum_{f=1}^{N_f} \overline{\psi}_f(x) \left(i \mathbf{D} - m_f \right) \psi_f(x) \quad , \quad \mathbf{D} = \gamma^{\mu} \left[\partial_{\mu} - ig \mathbf{A}_{\mu}(x) \right]$$

► The Lagrangian is invariant under local rotations in color space : group SU(3) $\Omega(x)^{\dagger}\Omega(x) = 1$

▶ $\Omega(x) = \exp{(i\omega^a(x)T_a)} \in SU(3)$ depends on the space-time position x

$$\psi(x) \longrightarrow \psi'(x) = \Omega(x)\psi(x)$$

$$\overline{\psi}(x) \longrightarrow \overline{\psi}'(x) = \overline{\psi}(x)\Omega^{\dagger}(x)$$

$$A_{\mu}(x) \longrightarrow A'_{\mu}(x) = \Omega(x)A_{\mu}(x)\Omega^{\dagger}(x) - \frac{i}{g}\partial_{\mu}\Omega(x)\Omega^{\dagger}(x)$$

 \blacktriangleright Covariant derivative obeys the simple transformation rule

$$D_{\mu}\psi(x) \to \Omega(x)D_{\mu}\psi(x)$$

► The Field strengh

$$F_{\mu\nu}(x) = \frac{i}{g} [D_{\mu}, D_{\nu}] \longrightarrow \Omega(x) F_{\mu\nu}(x) \Omega^{\dagger}(x)$$

► Parallel transporter :

$$U_P(z,y) = \mathcal{P} \exp\left(ig_0 \int_P A_\mu \,\mathrm{d}x^\mu\right)$$

The vacuum expectation value of an observable $\ensuremath{\mathcal{O}}$ is given by

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U] \int \mathcal{D}[\overline{\psi}] \, \mathcal{D}[\psi] \, \mathcal{O}[\overline{\psi}, \psi, U] \, e^{iS[U, \overline{\psi}, \psi]}$$

▶ In the previous formula we have to sum over all « paths » (field configurations)

- \longrightarrow The weight is given by the action
- \longrightarrow factor « i » : quantum interferences between paths
- ▶ In QED, on can use perturbation theory to compute $\langle O \rangle$ order by order in the small coupling $\alpha_{\rm QED}$

 $S[U, \overline{\psi}, \psi] = S_0[U, \overline{\psi}, \psi] + \alpha_{\text{QED}} S_{\text{int}}[U, \overline{\psi}, \psi] + \cdots$

 \longrightarrow Leads to the diagrammatic expansion (Feynman diagrams)

- ► The strong coupling is not small (at small energies)
 - \longrightarrow perturbation theory does not work

Idea : evaluate the path integral numerically

The vacuum expectation value of an observable ${\cal O}$ is given by

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U] \int \mathcal{D}[\overline{\psi}] \mathcal{D}[\psi] \mathcal{O}[\overline{\psi}, \psi, U] e^{iS[U, \overline{\psi}, \psi]}$$

Problems :

- \blacktriangleright ill-defined object
- ▶ factor « i » : large oscillations, difficult to integrate numerically

Solution :

- ▶ discretization of the theory on a hypercubic lattice
 - \longrightarrow this is just a choice of regularization of the theory (like dimensional regularization)
 - \longrightarrow finite number of degrees of freedom : path integral well defined
 - \longrightarrow regularization adapted to numerical calculations
- ▶ rotate to imaginary time (Wick rotation)

 $e^{iS[U,\overline{\psi},\psi]} \to e^{-S_E[U,\overline{\psi},\psi]}$

- \longrightarrow no oscillation anymore
- \longrightarrow based on analytic properties of QFT

Lattice QCD

► QCD (euclidean) Lagrangien :

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \left[F_{\mu\nu} F^{\mu\nu} \right] + \sum_{i=1}^{N_f} \overline{\psi}_i(x) \left(\not\!\!D + m_i \right) \psi_i(x) \quad , \quad \not\!\!D = \gamma^{\mu} \left[\partial_{\mu} - ig A_{\mu}(x) \right]$$

- \blacktriangleright Break-up spacetime into a 4D grid : lattice spacing a, spatial extent L, time extent T
- ► Lattice spacing : natural UV regulator for the theory
 - 1) Rotational/translational Lorentz symmetries are broken
 - 2) Gauge symmetry is preserved

Quark fields $\psi(x), \overline{\psi}(x)$ on each site

- $\psi^a_{\alpha}(x)$: α = Dirac index a = color index $\Rightarrow 3 \times 4 = 12$ complex numbers per site

Glue field $U_{\mu}(x)$ on links : parallel transporter

$$U_{\mu}(x) = \mathcal{P}e^{ig \int_{x}^{x+a\hat{\mu}} A_{\nu}(y) \mathrm{d}y^{\nu}} \in \mathrm{SU}(3)$$

- A field configuration $\{U_{\mu}\}$ is a set of SU(3) matrices $\Rightarrow 9 \times 4 = 36$ complex numbers per site

Physical size a lattice

Typical lattice

- $\blacktriangleright L^3 \times T = 48^3 \times 96$
- $\blacktriangleright \approx 800 \times 10^6 \; {\rm degrees}$ of freedom
- ▶ $a \in [0.04:0.1]$ fm ($L \in 2 6$ fm)

Proton radius $\approx 0.9~{\rm fm}$

Wilson action for gluons

► In the continuum :

$$S_G^{\text{cont}} = -\frac{1}{2} \int \mathrm{d}^4 x \, \mathrm{Tr} \left[F_{\mu\nu} F^{\mu\nu} \right]$$

► We want to preserve gauge invariance symmetry

$$U_{\mu}(x) = \exp\left(iaA^a_{\mu}T^a\right) = 1 + iaA^a_{\mu}T^a + \dots \in \mathrm{SU}(3)$$

Under a gauge transformation $\Omega(x) \in SU(3) : \psi(x) \rightarrow \Omega(x)\psi(x)$

$$U_{\mu}(x) \rightarrow \Omega(x) U_{\mu}(x) \Omega^{\dagger}(x+a\hat{\mu})$$
 X \checkmark

 $U_{\mu}(x)U_{\mu}(x+a\hat{\mu}) \rightarrow \Omega(x)U_{\mu}(x)U_{\mu}(x+a\hat{\mu})\Omega^{\dagger}(x+2a\hat{\mu})$

Discretization of the gauge action

Wilson action for gluons

 \blacktriangleright In the continuum :

$$S_G^{\rm cont} = -\frac{1}{2} \int \mathrm{d}^4 x \, \mathrm{Tr} \left[F_{\mu\nu} F^{\mu\nu} \right]$$

► We want to preserve gauge invariance symmetry

$$U_{\mu}(x) = \exp\left(iaA^a_{\mu}T^a\right) = 1 + iaA^a_{\mu}T^a + \dots \in \mathrm{SU}(3)$$

Plaquette :

$$P_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\nu}^{\dagger}(x)$$
$$P_{\mu\nu}(x) = 1 + ig_0a^2F_{\mu\nu} - \frac{1}{2}g_0^2a^4F_{\mu\nu}^2 + \mathcal{O}(a^6)$$

Wilson action for gluons

 \blacktriangleright In the continuum :

$$S_G^{\text{cont}} = -\frac{1}{2} \int \mathrm{d}^4 x \, \mathrm{Tr} \left[F_{\mu\nu} F^{\mu\nu} \right]$$

► We want to preserve gauge invariance symmetry

$$U_{\mu}(x) = \exp\left(iaA^a_{\mu}T^a\right) = 1 + iaA^a_{\mu}T^a + \dots \in \mathrm{SU}(3)$$

Plaquette :

$$P_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\nu}^{\dagger}(x)$$
$$P_{\mu\nu}(x) = 1 + ig_0 a^2 F_{\mu\nu} - \frac{1}{2}g_0^2 a^4 F_{\mu\nu}^2 + \mathcal{O}(a^6)$$

► We define the lattice action

$$S_G[U] = \frac{1}{g_0^2} \sum_{x \in \Lambda} \sum_{\mu, \nu} \operatorname{Re} \operatorname{Tr} \left[1 - P_{\mu\nu}(x) \right] = S_G^{\operatorname{cont}}[U] + \mathcal{O}(a^2)$$

• Other choices are possible. They differ by an $\mathcal{O}(a^2)$ ambiguity. \rightarrow Can be use to reduce discretization errors

Discretization of the fermionic part of the action

Wilson fermions

▶ In the continuum (free case) :

$$S_F^{\text{cont}} = \int \mathrm{d}^4 x \ \overline{\psi}(x) \left[\gamma_\mu \partial_\mu + m \right] \psi(x)$$

- $\blacktriangleright \ \psi(x)$ and $\psi(x)$ are defined on each site of the lattice
- ► Naive discretization :

$$S_F = a^4 \sum_{x \in \Lambda} \overline{\Psi}(x) \left[\gamma_\mu \partial^s_\mu + m \right] \Psi(x)$$
$$\partial^s_\mu \Psi(x) = \frac{\Psi(x + a\hat{\mu}) - \Psi(x - a\hat{\mu})}{2a}$$

▶ Interacting theory : $\partial_{\mu} \rightarrow \mathcal{D}_{\mu} = \partial_{\mu} - ig_0 A_{\mu}$

$$\nabla^s_{\mu}\Psi(x) = \frac{U_{\mu}(x)\Psi(x+a\hat{\mu}) - U^{\dagger}_{\mu}(x)\Psi(x-a\hat{\mu})}{2a}$$

▶ Gauge invariance is preserved : $\nabla_{\mu}\Psi(x) \rightarrow \Omega(x)\nabla_{\mu}\Psi(x)$

▶ But maybe too naive ...

Doublers

► In the free theory, the Dirac operator is given by

$$D = \gamma_{\mu}\partial^{s}_{\mu} + m \longrightarrow \widetilde{D}(p) = \frac{i}{a}\sum_{\mu}\gamma_{\mu}\sin(ap_{\mu}) + m , \quad p_{\mu} = \frac{\pi}{L}n_{\mu}$$

▶ The propagator (inverse of the Dirac operator) is given by

$$\widetilde{D}^{-1}(p) = \frac{-ia^{-1}\sum_{\mu}\gamma_{\mu}\sin\left(ap_{\mu}\right) + m}{a^{-2}\sum_{\mu}\sin^{2}\left(ap_{\mu}\right) + m^{2}} \qquad \blacktriangleright \text{ pole at } p^{2} = -m^{2} \text{ when } a \to 0$$

$$\blacktriangleright \text{ 15 other poles } p_{\mu} \in \left[0, \frac{\pi}{a}\right], \ \mu \in [0, 3]$$

Interacting theory : doublers can interact with each other via loop corrections
 It is important to remove them properly

Doublers

▶ In the free theory, the Dirac operator is given by

$$D = \gamma_{\mu}\partial_{\mu}^{s} + m \quad \longrightarrow \quad \widetilde{D}(p) = \frac{i}{a}\sum_{\mu}\gamma_{\mu}\sin\left(ap_{\mu}\right) + m \quad , \quad p_{\mu} = \frac{\pi}{L}n_{\mu}$$

▶ The propagator (inverse of the Dirac operator) is given by

$$\widetilde{D}^{-1}(p) = \frac{-ia^{-1}\sum_{\mu}\gamma_{\mu}\sin\left(ap_{\mu}\right) + m}{a^{-2}\sum_{\mu}\sin^{2}\left(ap_{\mu}\right) + m^{2}} \qquad \blacktriangleright \text{ pole at } p^{2} = -m^{2} \text{ when } a \to 0$$
$$\blacktriangleright \text{ 15 other poles } p_{\mu} \in \left[0, \frac{\pi}{a}\right], \ \mu \in [0, 3]$$

 \blacktriangleright Interacting theory : doublers can interact with each other via loop corrections

It is important to remove them properly

Solution

$$D_{W} = \gamma_{\mu} \nabla_{\mu}^{s} + m - \frac{a}{2} \nabla_{\mu}^{*} \nabla_{\mu}$$

$$S_{F} = a^{4} \sum_{x \in \Lambda} \overline{\psi}(x) D_{W} \psi(x)$$
 breaks chiral symmetry

 \rightarrow Wilson fermions : $\langle \mathcal{A}^{\text{lat}}(x) \rangle = \langle \mathcal{A}^{\text{cont}}(x) \rangle + \mathcal{O}(a)$

 \rightarrow We can add a new term to remove leading discretization errors (Wilson-Clover fermions)

$$\langle \mathcal{A}^{\text{lat}}(x) \rangle = \langle \mathcal{A}^{\text{cont}}(x) \rangle + \mathcal{O}(a^2)$$

- ► There are many different actions
- ▶ They are all equivalent in the continuum limit (\rightarrow QCD !)
- ▶ But they have different features at finite value of the lattice spacing

Action	Advantages	Disadvantages
Staggered	\checkmark computationally very fast	🗡 fourth root problem
		✗ complicated Wick contractions
		🗡 taste mixing
Wilson-Clover	\checkmark computationally fast ($ imes 10$)	🗡 breaks chiral symmetry
		🗡 needs operator improvement
Twisted mass fermions	\checkmark computationally fast ($ imes 10$)	🗡 breaks chiral symmetry
	\checkmark automatic O(a)-improvement	🗡 violation of isospin
Domain wall	\checkmark improved chiral symmetry	\checkmark computationally expensive ($\times 100$)
Overlap fermions	\checkmark exact chiral symmetry	\checkmark computationally expensive ($\times 100$)

- ► There are many different actions
- ▶ They are all equivalent in the continuum limit (\rightarrow QCD !)
- ▶ But they have different features at finite value of the lattice spacing

Action	Advantages	Disadvantages
Staggered	\checkmark computationally very fast	✗ fourth root problem
		✗ complicated Wick contractions
		🗡 taste mixing
Wilson-Clover	\checkmark computationally fast ($ imes 10$)	🗡 breaks chiral symmetry
		🗡 needs operator improvement
Twisted mass fermions	\checkmark computationally fast ($ imes 10$)	🗡 breaks chiral symmetry
	\checkmark automatic O(a)-improvement	✗ violation of isospin
Domain wall	\checkmark improved chiral symmetry	\checkmark computationally expensive (×100)
Overlap fermions	\checkmark exact chiral symmetry	\checkmark computationally expensive (×100)

- We now have a discrete formulation of the action \checkmark

- How to perform the path integral?

- ▶ In the continuum, the fundamental fields are
 - $\psi(x)$ (fermions)
 - $A_{\mu}(x)$ (gluons)

$$\mathcal{L}_F = \overline{\psi}(x) \left(\not\!\!\!D + m \right) \psi(x) \quad , \quad \not\!\!\!\!D = \gamma^{\mu} \left[\partial_{\mu} - ig A_{\mu}(x) \right]$$

► Naive discretization :

$$S_F = \frac{a^3}{2} \sum_{x \in \Lambda} \left(\overline{\psi}_i(x) \gamma_\mu \psi(x + a\hat{\mu}) - \overline{\psi}(x) \gamma_\mu \psi(x - a\hat{\mu}) \right) - a^4 ig \sum_{x \in \Lambda} \overline{\psi}(x) A_\mu(x) \psi(x) + ma^4 \sum_{x \in \Lambda} \overline{\psi}(x) \psi(x)$$

- ► This discretization couples the quark field at neighboring sites
- ► Breaks local gauge invariance
- Gauge invariance is easy to implement using the link variables $U_{\mu}(x)$

▶ In LQCD, expectation values are given by the (finite) path integral (S_E is the euclidean action) :

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U_{\mu}] \mathcal{D}[\psi, \overline{\psi}] \mathcal{O}[U_{\mu}, \psi, \overline{\psi}] e^{-S_E[U_{\mu}, \psi, \overline{\psi}]}$$

 $\blacktriangleright S_E = S_G + S_F$

- ► Lattice spacing : natural UV regulator for the theory [rigorous definition of the path integral]
- Integration over fermionic variables

$$S_F = a^4 \sum_{x \in \Lambda} \overline{\psi}(x) D_W \psi(x)$$

- \rightarrow Action quadratic (like in the free theory)
- \rightarrow can be computed using Wick contractions

$$\int D[\psi] D[\overline{\psi}] \ e^{-S_F} = \det D_W$$
$$\int D[\psi] D[\overline{\psi}] \ \psi_i(y) \ \overline{\psi}_j(x) \ e^{-S_F} = -\left(D_W^{-1}\right)_{ij} \det D_W$$

$$C_2(x) = \sum_{\vec{x}} \langle \left(\overline{\psi} \gamma_5 \psi \right)^{\dagger} (t, \vec{x}) \ \left(\overline{\psi} \gamma_5 \psi \right) (0) \rangle$$

 \rightarrow The results depends on $D^{-1}[U_{\mu}]$

 \rightarrow One needs to compute the inverse of a huge matrix !

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U_{\mu}] \langle \mathcal{O} \rangle_{F} [U_{\mu}] \det D \ e^{-S_{G}}$$

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U_{\mu}] \langle \mathcal{O} \rangle_{F} [U_{\mu}] \det D \ e^{-S_{G}}$$

- ▶ Assumes det $D \ e^{-S_G} > 0$: it acts as a weight function
- ► Stochastic evaluation using Monte-Carlo methods :

1) generate n gauge configurations $\{U_{\mu}^{(i)}\}\$ with a probability distribution $\mathcal{P} \propto e^{-S_G + \ln \det D}$ 2) on each gauge configuration, compute $\langle \mathcal{O} \rangle_F [U_{\mu}^{(i)}]$ (Wick contractions, require $D^{-1}[U_{\mu}^{(i)}]$)

3) compute expectation values :

$$\overline{\mathcal{O}} = \sum_{i=1}^{n} \left\langle \mathcal{O} \right\rangle_{F} [U_{\mu}^{(i)}] = \left\langle \mathcal{O} \right\rangle + \delta \mathcal{O} \rightarrow \text{ statistical error}$$

The calculation is done in two parts :

Generation of gauge configurations

- ▶ independent of the observable
- ▶ very expensive $(n = O(10^3))$
- ▶ need to be done only once for all
- ► Lattice collaborations : ETMC, CLS, UKQCD, ...

Computation of the observable

- write the different Wick contractions
- compute $D^{-1}[U_{\mu}]$ on each gauge configuration
- inverse of a huge matrix
- compute the correlation function

Supercomputers

Setting the scale

Consider QCD with two degenerate quarks

- ► The lattice action depends on two free parameters :
 - \rightarrow The quark mass : $m = m_u = m_d$
 - \rightarrow The value of the coupling constant : g_0
 - \rightarrow Those are bare parameters : $g_0(a), m(a)$ (lattice spacing = regulator)
- Numerically : only dimensionless quantities can be computed : am_{π} , af_{π} , ...

How to tune the bare parameters on a lattice simulation?

- ► Tune the quark mass such that $\left(\frac{m_{\pi}}{m_{p}}\right)_{\text{lat}} = \left(\frac{m_{\pi}}{m_{p}}\right)_{\text{exp}}$
- ▶ Determine a in physical units from $(am_{\pi})_{\text{lat}}$ and m_{π}^{phys}

 \rightarrow The continuum limit must be taken using a constant line of physics

 $ightarrow m_{\pi}, m_p \ll a^{-1}$ while keeping $\left(rac{m_{\pi}}{m_p}
ight)_{
m lat}$ constant

- ► In principle the result depends on the observables chosen to set the scale (not unique) → At low energies, small effect : decoupling
 - \rightarrow Some observables are better than others (statistical precision, experimental accuracy, ...)

Systematic errors in lattice QCD

Statistical error

 \blacktriangleright Monte-Carlo algorithm : statistical error $\rightarrow \sim 1/\sqrt{N_{\rm meas}}$

Systematic errors

- ▶ Finite lattice spacing : $a \neq 0$
 - \rightarrow Symanzik's improvement programme
- Finite volume V
 - \rightarrow one should take the infinite volume limit
 - $\rightarrow \chi {\rm PT}$ can help in some cases (pion dominates FSE)

Unphysical quark masses

- \rightarrow It is difficult to simulate light quarks
- (algorithmic performances, need large volume)
- \rightarrow Use different values of the quark masses
- \rightarrow Again, $\chi {\rm PT}$ can help
- \rightarrow Today : many simulations at physical point (But volume effects ...)
- ▶ Number of dynamical quarks : « N_f »

 \rightarrow $N_f=0$: quenched approximation. Neglect all fermion loops. Cheap but lost unitarity.

 $\rightarrow N_f = 2$: only two light quarks u and d in the sea with $m_u = m_d$.

 \rightarrow Nowadays most simulations used $N_f=2+1,~N_f=2+1+1.$

Example

Conclusion

- ▶ Lattice QCD is a specific regularization of QCD
 - \rightarrow hypercubic lattice : finite number of degrees of freedom
 - ightarrow adapted to numerical simulations : quarks live on sites, gluons on links
 - \rightarrow Explicitly gauge invariant
 - \rightarrow Not unique : different formulations exists (important cross-check)
 - \rightarrow it is not a model ! But :
- ► The path integral is estimated stochastically using Monte Carlo sampling → Statistical errors
- Finite lattice spacing, finite volume, $N_f = 2, 2 + 1, ...$
 - \rightarrow Systematic errors

In principle errors are under control and can be systematically reduced

How to compute an observable in LQCD : meson masses

- ▶ This is one of the simplest quantity to extract on the lattice
- ► Check if QCD can indeed reproduced the experimental patern (with correct quantum numbers)

- ► Predicts new particle
- ▶ Information about the internal structure of resonances (??)

- ► Construct an operator O with quantum numbers of a given particle (spin, parity, momentum, ...)
- $\mathcal{O}(x) = \overline{\psi}(x)\gamma_5\psi(x)$: pseudoscalar (pion quantum numbers)

 $\langle 0|\mathcal{O}|\pi\rangle \neq 0$

- ▶ Projection at given momentum : $\mathcal{O}(t, \vec{p}) = \sum_{\vec{x}} \mathcal{O}(\vec{x}, t) \ e^{i\vec{p}\vec{x}}$
- Two-point function $\langle \mathcal{O}^{\dagger}(t)\mathcal{O}(0)\rangle$

- Lorentz-invariance : $\mathcal{O}(t) = e^{Ht} \mathcal{O}(0) e^{-Ht}$ - Completeness relation : $1 = \sum_{n \frac{1}{2E_n}} |n\rangle \langle n|$

$$\begin{split} \langle \mathcal{O}^{\dagger}(t)\mathcal{O}(0)\rangle &= \sum_{n} \langle 0|\mathcal{O}^{\dagger}(t)|n\rangle \frac{1}{2E_{n}} \langle n|\mathcal{O}(0)|0\rangle \\ &= \sum_{n} \langle 0|e^{Ht}\mathcal{O}^{\dagger}(0)e^{-Ht}|n\rangle \frac{1}{2E_{n}} \langle n|\mathcal{O}(0)|0 \\ &= \sum_{n} \langle 0|\hat{\mathcal{O}}^{\dagger}|n\rangle \frac{1}{2E_{n}} \langle n|\hat{\mathcal{O}}|0\rangle e^{-E_{n}t} \end{split}$$

 $\langle \mathcal{O}^{\dagger}(t)\mathcal{O}(0)\rangle = \frac{Z_{\pi}^2}{2E_{\pi}} e^{-E_{\pi}t} \times (1 + \text{exponentially suppressed terms})$

Pion mass

Choose $\mathcal{O}(x) = \overline{\psi}(x)\gamma_5\psi(x)$ Compute $C^{(2)}(t) = \langle \mathcal{O}(t)\mathcal{O}(0) \rangle \rightarrow \frac{|Z_\pi|^2}{2E_\pi} e^{-E_\pi t}$ D200 D200

For t/a > 15 we observe a plateau : extraction of the pion mass am_π in lattice units
 At short time separation : contribution from excited states.
 → can be further reduced using ⟨0|𝒫|π⟩ ≠ 0 and ⟨0|𝒫|3π⟩ ≈ 0

Vector meson mass (« ρ »meson)

• Choose $\mathcal{O}(x) = \overline{\psi}(x)\gamma_k\psi(x)$ and project on vanishing momentum

- ► Similar behavior (exponential decay)
- ▶ Signal deteriorates at large time separation t/a : noise problem
- ▶ In this case noise/signal $\propto \exp\left[(m_V m_\pi)t\right]$
- \blacktriangleright It is therefore important to use optimal interpolating operators \mathcal{O} with large overlap

Pion mass : non-vanishing momentum

- ► Finite volume : $L^3 \times T$
- \blacktriangleright momentum takes only discrete values : $\vec{p}=\frac{2\pi}{L}\vec{n}$
- ▶ L/a = 64 with L = 4.2 fm $\Rightarrow \Delta p \approx 300$ MeV : no continuous spectrum !

- \blacktriangleright Statistical error increase with $|\vec{p}|$
- ▶ the range of $|\vec{p}|$ is also bounded (lattice spacing plays the role of the UV regulator)
- ▶ This can be a limitation in form factor calculations

Resonances

- ► This method works for stable particle (via QCD)
- \blacktriangleright E_n are eigenvalues of the Hamiltonian in finite volume
- \blacktriangleright The ρ meson, and most mesons, are resonances
- ► Requires more sophisticated methods

- In a finite box the two pion interacts with each other
- ▷ Discrete spectrum (and discrete momenta)
- \triangleright There is a strong resonance $\rho(780)$
- The interaction between the pions depends on the volume

[Bulava et al. '18]

Formalism developed by [Luescher '91]

Finite volume spectrum \leftrightarrow mass and width of the resonance