

Gaussian Processes for Model Independent Resonance Searches

Fabricio Jiménez Machine Learning @ Cézeaux

17th of May 2018

Outline

- Gaussian process for MI Resonance Searches
- What are Gaussian Processes
- Modeling smooth bkgs and generic localized sigs using GPs <u>1709.05681</u>
- Preliminary work on using the approach in MI searches:
 - Details on the GPs used
 - Preliminary tests fitting 2-jet mass spectrum
 - Injection of signal
- Future work and concluding remarks

Note: most of what's shown here is based on a work from Meghan Frate et al., published in <u>1709.05681</u>, with codes <u>here</u> and <u>here</u>.

Gaussian Processes for MI Resonance Searches

Main idea is to use Gaussian Processes (GPs) to provide a smooth model of background and signal invariant mass (and other) distributions.

Among the advantages of Gaussian Processes:

- "Non-parametric" approach
- Not dependent on a completely ad-hoc functional form as it's the case in many analyses
- Correlation is modeled using a "kernel" function that can include physics insights
- Can be used as a complementary approach in many of the GS signatures

Gaussian Processes (GPs)

GP: associate a multivariate gaussian distribution to a set of random variables

→ The gaussian will have as many dimensions as random variables we have

A set of N values (bin counts) **y** can be associated with _ _

$$oldsymbol{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_N \end{bmatrix} \sim \operatorname{Gaus}(oldsymbol{\mu}, \Sigma)$$

Infer new values y_{*} by extending (the dim. of) the Gaussian distribution

Use a *kernel* or *measure of similarity* between points (bin centers) and a *mean function*

 \rightarrow One kernel example is the exponential squared kernel:

$$k(x_i, x_j) = A \exp\left(-\frac{(x_i - x_j)^2}{2l^2}\right)$$

where A and I are (hyper)parameters to be fixed

Gaussian Processes (GPs)

Infer a new value y, located in x, using the following

$$p(\boldsymbol{y}_*|\boldsymbol{x}_*,\boldsymbol{x},\boldsymbol{y}) = \operatorname{Gaus}(\boldsymbol{y}_*|\boldsymbol{\mu}_*,\Sigma_*)$$

 $\boldsymbol{\mu}_* = m(\boldsymbol{x}_*) + \boldsymbol{K}_*^T \Sigma^{-1}(\boldsymbol{y} - m(\boldsymbol{x}))$
 $\Sigma_* = \boldsymbol{K}_{**} - \boldsymbol{K}_*^T \Sigma^{-1} \boldsymbol{K}_*$

Where K is constructed from:

$$m{K}_* = k(m{x}, m{x}_*), \qquad m{K}_{**} = k(m{x}_*, m{x}_*)$$

Note:

- The hyperparameters of the kernel are optimized using e.g. Maximum Likelihood
- In general, GPs are flexible enough to model the mean of the distribution having m(x) = 0
- Can be used over pdfs

Gaussian Processes (GPs)

Modeling smooth backgrounds and generic localized signals using GPs

Use the dijet spectrum data as an alternative to the historic "parameterized" approach:

$$f(x|\theta) = \theta_0 (1-x)^{\theta_1} x^{\theta_2} x^{\theta_3 \log(x)}$$

Use a kernel that contains physics input: describe properly sources of uncertainty from e.g. JES and PDFs

$$k(x_i, x_j) = Ae^{\frac{d - (x_i + x_j)}{2a}} \sqrt{\frac{2l(x_i)l(x_j)}{l(x_i)^2 + l(x_j)^2}} e^{\frac{-(x_i - x_j)^2}{l(x_i)^2 + l(x_j)^2}}$$

Use the parameterized fit as input for mean prediction

Modeling smooth backgrounds and generic localized signals using GPs

- In a background-only scenario: fit is better than the one in the parameterized approach
- S+B tests: combine a background GP and fit a signal model shape. Test B and S+B hypotheses
- Use a GP in the background-only data (could be MC) and then combine that bkg kernel (with its parameters already fixed) with a signal kernel, e.g.

$$k_s(x_i, x_j) = Ae^{-\frac{1}{2}(x_i - x_j)^2/l^2} e^{-\frac{1}{2}((x_i - m)^2 + (x_j - m)^2)/t^2}$$

→ Successfully extract signal bumps of different shapes on top of the background

Procedure

- 1. Take binned dataset (MC or real data) and perform a GP fit using ML
- 2. From the dataset, smear and add Poisson noise to each of the bins.
- 3. Inject some (e.g. Gaussian) signal to that resulting dataset
- 4. Keep bkg fit parameters frozen and perform GP fit using bkg+sig kernels to extract signal params

At the end we will have: fits for bkg and bkg+sig plus a dataset with injected signal

Preliminary work

We propose to extend this to a larger set of signatures as a Model-Independent approach

Directions:

- Use an extended set of signatures (from GS)
- Get rid of the mean function

For the (background only) GPs I used:

- Exponential squared kernel, "custom" kernel
- No input for the mean function (assume zero vector)

Samples, pulls and covariance

(GP-Smeared)/GP Uncertainty

Sample many distributions from the fit and draw pull plots

Covariance+correlation structure of the GP (kernel)

 10^{-1}

2-jet mass spectrum with signal injected

Left - residuals:

Data + signal vs. bkg GP Data vs. bkg GP

Right:

Extracted signal

→ Final sig kernel hyperparams

Further details

Gaussian Processes using george: <u>link</u>
ML optimization through Migrad - Minuit
Kernels as quoted in yml format available <u>here</u>

Current + Future work

Work in progress:

- Work ongoing with the 2-jet sample from GS
- Produce toy samples from dataset + inject an artificial gaussian signal
- Fit GP in background MC and compare to data+signal
- Use signal kernel to extract signal
- Get rid of the "help" of the parametric approach in general not available

Directions in the near future:

- Extend this to more (n-jet) signatures
- Further investigations on already-working kernels (exp squared, "custom", signal kernel)
- Have this as a complementary approach in the context of GS

This Report is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°675440