The Very-Near-Site @ Chooz:

a new Experimental Hall to Study Coherent Elastic Neutrino Nucleus Scattering

T. Lasserre^{1,2}, A. Langenkamper³, G. Mention¹, Claudia Nones¹, J. Rothe⁴, R. Strauss⁴, M. Vivier¹ and <u>V. Wagner¹</u>

 ¹CEA, Centre de Saclay, DRF/Irfu, 91191 Gif-sur-Yvette, France
 ²APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cite, 75205 Paris Cedex 13, France
 ³Physik-Department, Technische Universität München, D-85748 Garching, Germany
 ⁴Max-Planck-Institut für Physik, D-80805 München, Germany

GDR Neutrino Meeting , APC June 11-12 2018

Coherent Elastic Neutrino Nucleus Scattering (CEvNS)

• Well predicted SM cross-section:

$$\frac{d\sigma}{d\Omega} = \frac{G_F^2}{12\pi^2} Q_W^2 E_v^2 (1 + \cos\theta) F^2 (Q^2)$$

with
$$Q_W = N + Z \cdot (1 - 4 \cdot \sin^2 \theta_W)$$

- Condition for coherence: fulfilled for $E_v < 50 \text{ MeV}$
- Large cross-section with ~N²
- In contrast to inverse beta decay (IBD):
 - no energy threshold
 - flavor blind

Relevance of $\ensuremath{\mathsf{CEvNS}}$

- Precision test of Standard Model (SM):
 e.g. Weinberg angle at low energies
- Fundamental neutrino properties:
 neutrino magnetic dipole-moment, sterile neutrinos
- Deviation from SM prediction may reveal new physics beyond SM:
 - new couplings, new bosons, etc.
- Neutrino floor: irreducible background for \square DM experiments from CEvNS

• Could have application in solar neutrino physics, nuclear physics, SN detection & nuclear reactor monitoring

Signature & Experimental Challenges

- Signal is a **nuclear recoil**
 - sub keV-energy threshold detector
 - quenching, high systematics

• Strong CEvNS signal:

- high ν -flux
- high kinetic ν -energy but in coherent regime
- careful target (N) selection

• Low background:

- v-sources usually at shallow depth O(10 m.w.e.)
- \rightarrow reduce cosmic background

VS

4

Experimental Approaches

- Similar recoil of WIMPs and CEvNS → WIMP detector technology
- Many different approaches:
 - COHERENT (CsI[Na] & Nal[Tl] crystals, LAr TPC, HPGe)
 - CONUS (HPGe)
 - NU-CLEUS (CaWO₄ & Al₂O₃ bolometers)
 - Ricochet (Zn & Ge bolometers)
 - BASKET (Li₂WO₄ bolometers)

V. Wagner (CEA)

Experimental Approaches

- Similar recoil of WIMPs and CEvNS → WIMP detector technology
- Many different approaches:
 - COHERENT (CsI[Na] & Nal[Tl] crystals, LAr TPC, HPGe)
 - CONUS (HPGe)
 - NU-CLEUS (CaWO₄ & Al₂O₃ bolometers)
 - Ricochet (Zn & Ge bolometers)
 - BASKET (Li₂WO₄ bolometers)

Cryogenic Bolometers

• Very low energy threshold (< 100 eV_{nr})

V. Wagner (CEA)

VNS @ Chooz

GDR, Paris 12.06.18

Neutrino Sources

- Stopped π-decay at rest (DAR) such as Spallation Neutron Source (SNS)
 @ Oak Ridge National Lab
 - high E_v up to 50 MeV
 - ν -flux at SNS is 10⁷ /s/cm² 20 m from the mercury target
 - pulsed beam \rightarrow bck rejection
 - but: possible neutron bck
- Reactor v's:
 - low E_{ν}
 - very high flux (1012 1013 v/s/cm2)
 - CEvNS signal correlated to reactor power

First Observation of CEvNS

... more than 40 years after its prediction

COHERENT Experiment

- SNS source with \overline{v} flux of 4.3 \cdot 10⁷ v/s/cm²
- 4 different detector technologies
 - 14 kg of Csl scintillating crystals
 35 kg single phase LAr detector

 - 185 kg Nal scintillating crystal
 10 kg HPGe PPC detectors

First COHERENT result July 2017

- 15 month of live-time accumulated with Csl[Na]
- 6.7σ significance for excess in events, with 1 σ consistency with the SM prediction

CEvNS @ Power Reactors

Reactor neutrino spectrum

- $E_v < 10 \text{ MeV}$
 - \rightarrow fully coherent
 - \rightarrow allows to probe SM @ low energies

First hint for CEvNS of reactor-v :

- Presented @ Neutrino '18 by CONUS
- $E_{th} \sim 300 \text{ eV}_{ee} (\rightarrow 1-2 \text{ keV}_{nr})$
- 2.4 σ significance for excess in reactor ON over OFF data (statistics only) @

CEvNS @ Power Reactors

Reactor neutrino spectrum

- $E_v < 10 \text{ MeV}$
 - \rightarrow fully coherent
 - \rightarrow allows to probe SM @ low energies

First hint for CEvNS of reactor-v :

- Presented @ Neutrino '18 by CONUS
- $E_{th} \sim 300 \text{ eV}_{ee} (\rightarrow 1-2 \text{ keV}_{nr})$
- 2.4 σ significance for excess in reactor ON over OFF data (statistics only) @

Precision measurement of CEvNS @ low energies

- New gram-size bolometric detectors with extremely low threshold O(< 100 eV_{nr})
- New experimental site close (~100m) to reactors
- Active and passive shielding for background suppression

Gram-scale Cryogenic Calorimeter

- Based on CRESST technology
 - \rightarrow CaWO₄, Al₂O3
 - \rightarrow transition edge sensor (TES)
 - $\rightarrow E_{th} \sim M^{2/3}$

$$\rightarrow E_{th} = (19.7 \pm 0.9) \text{ eV}$$

from R. Strauss

0.5g saphire prototype

V. Wagner (CEA)

Gram-scale Cryogenic Calorimeter

- Based on CRESST technology
 - \rightarrow CaWO₄, Al₂O3
 - \rightarrow transition edge sensor (TES)
 - $\rightarrow E_{th} \sim M^{2/3}$
 - $\rightarrow E_{th} = (19.7 \pm 0.9) \text{ eV}$
 - → fast rise-time: τ_{RT} = 0.1 ms + precisely known pulse on-set

→ on-set critical for timing with muon-veto and resulting dead-time

0.5g saphire prototype

from R. Strauss

Gram-scale Cryogenic Calorimeter

- Based on CRESST technology
 - \rightarrow CaWO₄, Al₂O3
 - \rightarrow transition edge sensor (TES)
 - $\rightarrow E_{th} \sim M^{2/3}$
 - $\rightarrow E_{th} = (19.7 \pm 0.9) \text{ eV}$
 - → fast rise-time: τ_{RT} = 0.1 ms + precisely known pulse on-set
 - $\rightarrow\,$ on-set critical for timing with muon-veto and resulting dead-time
 - → fiducial-volume cryogenic calorimeters for active background suppression of α/β -surface and external γ/n

NU-CLEUS Status

- Prototype demonstrated that NU-CLEUS technology is suitable for next generation CEvNS experiment
- Next step: 1g NU-CLEUS demonstrator fully commissioned in April 2018

NU-CLEUS 1g

from R. Strauss

0.5g saphire prototype

from R. Strauss

target crystal
 inner cryogenic
 veto + holder

outer veto: 200g Si crystal

14

NU-CLEUS Status

- Prototype demonstrated that NU-CLEUS technology is suitable for next generation CEvNS experiment
- Next step: 1g NU-CLEUS demonstrator fully commissioned in April 2018

- CEvNS measurement with 10g target array
- Technology scalable to larger masses

VNS @ Chooz

0.5g saphire prototype

from R. Strauss

NU-CLEUS 10g

from R. Strauss

NU-CLEUS 1g

The Chooz Power Plant

- **Commercial nuclear power** plant in Chooz in the Ardennes region
- Operated by EdF
- 2 reactor cores with max. thermal power of 4.25 GW
- Host of the Double Chooz experiment \rightarrow CEA has good relation and experience with EdF
- Activities decoupled from Double Chooz $\rightarrow\,$ new agreement between CEA and EdF being drafted

The Very-Near-Site @ Chooz

- 24m² room in an administrative building in-between the two reactors
- Distance to reactor core 72 m and 102 m
- Expected v flux O(10¹² v/s/cm²)
- v energy up to 8 MeV \rightarrow fully coherent
- < 5 m.w.e. overburden

Site-Characterization started October 2017

Background Characterization Measurements

- Campaign to characterize neutron- and muon-background started
- Measurements performed at surface and VNS to determine the attenuation
- Results will be used to optimize the design of a compact shielding and evaluate the backgrounds in the detectors

V. Wagner (CEA)

Neutron Attenuation

- Liquid scintillator cells from TUM
- Neutrons are expected to be most dangerous background
- Don't expect neutrons from reactor cores, only muon induced neutrons
- Preliminary results give a neutron attenuation of factor of ~8
- No change in the spectrum observed with respect to surface ₁

n-rate at VNS vs surface

VNS @ Chooz

Muon Attenuation

- Cosmic wheel from « Science à l'école » outreach program, developed by CPPM Marseille
- Preliminary results give a muon attenuation of factor of ~1.4
- Overburden ~ 3 m.w.e.

20

Muon MC Simulations

- Development of full MC simulation package on-going
- Results of background measurements taken as input
- Main goals of simulation studies:

 \rightarrow attenuation of muons and neutrons from building

 \rightarrow optimization of shielding: neutron/ gamma production in passive shielding

 $\rightarrow\,$ optimization of muon veto

Compact Shielding

Multi-layer active & passive shielding

- Outer active muon veto
- Borated polyethylen moderate and capture neutrons
- Lead to attenuate y's

• Many examples that low background levels even at shallow depths are feasible with such a multi-layer design:

from R. Strauss

- \rightarrow GIOVE detector @ MPIK: 0.4 counts/ keV/ kg/ day
- \rightarrow Dortmund low-background facility 5 counts/ keV/ kg/ day

Muon-Veto Simulations

- Trade-off between size of passive shielding for large attenuation and size of muon-veto
- First MC simulation of the muon-veto yield an expected muon-trigger rate < 500 Hz for a 1m³ shielding
 Fast rise-time of NU-CLEUS
- Fast rise-time of NU-CLEUS detectors implies a dead-time of 1%
- with NU-CLEUS a muon-veto up to the size of 2m x 2m x 2m is feasible
- Open question:
 muon veto efficiency needed

Muon Veto

- Compact active muon-veto ~1m³
- Re-use plastic scintillator panels and PMTs from the CAMERA experiment
- Principle: scintillator thickness (5cm) large enough such that muons (2 MeV/cm) deposit energy well above 2.6 MeV
 - → discrimination of muons from gamma's

 First prototype of scintillator panel will be tested in summer

First sketch by Loris SCOLA (CEA)

GDR, Paris 12.06.18

Summary and Outlook

- Precision measurement of coherent elastic neutrino nucleus scattering (CEvNS) may open the door to new physics
- Very-Near-Site (VNS) at Chooz is a promising experimental side for a new CEvNS experiment
- On-going background and simulation campaign to fully characterize the VNS
- EdF very supportive for project
- **NU-CLEUS** is a very promising detector technology:
 - based on well established CRESST technology
 - demonstrated to be able to run in above ground conditions like at VNS
 - first results from demonstrator will come soon
- Discussing possibility to join efforts with NU-CLEUS and Ricochet in a consortium

Bonus Slides

BSM with CEvNS

$$\frac{d\sigma}{d\Omega} = \frac{G_F^2}{12\pi^2} Q_W^2 E_v^2 (1 + \cos\theta) F^2 (Q^2)$$

$$Q_W = N - (1 - 4 \cdot \sin^2 \theta_W)$$

Search for BSM

- Neutrino magnetic moment

 <u>adds term</u> to CEvNS cross
 section and changes recoil
 spectrum
- Non-Standard v-Interactions (many possible channels)

 → changes Q_w and, thus, magnitude of cross-section and recoil spectrum
- Sterile Neutrinos $\rightarrow CevNS$ flavor blind, thus, insensitive to active flavor oscillations \rightarrow measure 1/R² flux dependence

from M. Lindner @ CNNP2017

Precision Test of SM

 Measurement of sin²θ_w at low energies → <u>Q_w= Q_w(sin²θ_w)</u>, thus, crosssection / recoil spectrum

Nuclear Physics

Measurement of <u>form factor F(Q²</u>)

Energy Threshold of ν -cleus Detectors

R. Strauss et al., Eur. Phys. J. C 77 (2017) 506

CENNS Recoild Rates in NU-CLEUS

Eur. Phys. J. C, C77(8):506, 2017 arXiv:1704.04320

V. Wagner (CEA)

Fiducial-Volume Cryogenic Detector

R. Strauss et al., Eur. Phys. J. C 77 (2017) 506

Science

Cite as: D. Akimov *et al.*, *Science* 10.1126/science.aao0990 (2017).

residual differences between signals in the 12 µs following POT triggers, and 12-µs before

Suppression of Coherence

2.3σ evidence of nuclear structure suppression of coherence

arXiv:1710.02730v3

The CONUS Project @ MPIK

low threshold point contact HPGe in novel active and passing shielding
for background reduction

- 4 kg target mass
- low background
 - screening of internal parts
 - close cooperation with manufacturer for Cu cryostat
 - underground storage
- detector threshold ~ 300 eV

Latest News from CONUS

presented @ Neutrino '18 by W. Maneschg

CONUS Experiment

- Nuclear power plant Brokdorf, Germany with $2.4\cdot10^{{}_{13}}\,\nu/cm^{2}\!/s\ @\ 17m$
- 4 x 1kg p-type point contact HPGe detectors in a compact multi-layer shielding
- Pulser resolution of ~70 eV
- $E_{th} \sim 300 \text{ eV}_{ee}$
- Bck rate ~ 10 counts/ kg/ day [0.5-1.0] keV

First hint for CEvNS of reactor-v :

- 114 kg days of reactor OFF data
- 112 kg days reactor ON data
- 2.4 σ significance for excess in reactor ON over OFF data (statistics only)

in

presented @ Neutrino '18 by W. Maneschg

X-ray peak resolution:

36